SlideShare ist ein Scribd-Unternehmen logo
1 von 67
Carbohydrate
 Classification
1. Numbers
2. Location of carbonyl group
3. Number of carbon atoms
4. Configuration
5. Reactivity
 Common hexoses
1. Aldoses
2. Ketoses
 Stereochemistry
1. Chirality
2. Enantio mers
3. D- & L-sugars
4. Physical properties
5. Fisher projections
6. Haworth formulae
7. Stereo projections
8. Chair presentations
 Conformation
1. Intramolecular cyclization
2. Anomer
3. Mutarotation
4. Furanose & pyranose
 Some important
monosaccharide
1. D-glyceraldehyde
2. D-glucose
3. D-fructose
4. D-galactose
5. D-ribose
 Disaccharide
1. Glycosidic bond
2. Disaccharide
 Oligosaccharide
 Polysaccharide
Carbohydrate
Carbohydrate Can Be Divided
up Into 3 Groups
¶ Sugar
Glucose + Sucrose
· Starch
¸ Cellulose
Why do we need
carbohydrate?
Carbohydrate
Compounds contain C, H, O with
general formula of Cm(H2O)n
All have C=O and -OH functional groups
Classified based on
Size of base carbon chain
Number of sugar unit
Location of C=O group
Stereochemistry
Types of Carbohydrates
Classification based on the number of sugar units
in the total chain
Monosachcarides Single sugar unit
Disaccharides Two sugar units
Trisachcarides Three sugar units
Oligosaccharides up to 10/13/ sugar units
Polysaccharides > 13 sugar units
Chaining relies on the glycosidic bonds
Fischer Projections
• Used to represent carbohydrates (chiral carbons)
• Places the most oxidized group at the top (C1)
• Uses horizontal lines for bonds that come forward
• Uses vertical lines for bonds that go back
D and L Notations
• By convention, the letter L is assigned to the
structure with the —OH on the left
• The letter D is assigned to the structure with —OH
on the right
D and L Monosaccharides
• Stereochemistry determined by the asymmetric center
farthest from the carbonyl group
• Most monosaccharides found in living organisms are D
D
D L
Aldose
Ketone Sugars
Ketones are not easy to oxidize except for ketoses
Enediol reaction -- All monosaccharides are reducing sugars
CHO
OH
H
H
HO
OH
H
OH
H
CH2OH
OH
H
HO
OH
H
OH
H
CH2OH
OH
O
H
HO
OH
H
OH
H
CH2OH
OH
Aldose Ketose
cis-enediol
intermediate
Ketose
Pure Fruits Sweetly Taste
Conformation
Intramolecular cyclization
Anomer
Mutaroation
Furanose & pyranose
Cyclization of D-glucose
b-D-glucose
a-D-glucose
CHO
OH
H
H
HO
OH
H
OH
H
CH2OH
O
HO
HO
OH
OH
OH
O
HO
HO
OH
OH
OH
C
OH
OH
OH
OH
CH2OH
O
H
OH
O
H
HO
HO
OH
OH
a
b
OH
H
HO
OH
O
H
HO
HO
O
HO
OH
OH
H
OH
OH
a
b
Intramolecular Cyclization
Chain can bend and rotate
Fisher Projections
Haworth Formulae
Stereo Projections
Chair Presentations
OH
O
OH
O
H
OH
OH
Aldose
(Glucose)
OH
OH
O
H
OH
OH
OH
OH
O
OH
O
H
OH
OH
O
OH
O
OH
O
H
OH
OH
O
H
O
OH
O
OH
O
H
OH
OH
O
H
Alditol
(Glucitol)
Aldouronic Acid
(Glucuronic Acid)
Aldaric Acid
(Glucaric Acid)
Aldonic Acid
(Gluconic Acid)
[H]
[O] C- 1 and C- 6
[O] C- 6
[O] C- 1
Pyranose: Chair, Boat, Half-chair, Skew.
O
1
2
3
4 5
4
C1
O
4 5
3 2 1
4
C1
O
1
2
3
4
5
1
C4
O
1
2
3
4
5
1,4
B
Furanose: Envelope, Twist.
O
1
E
O
1
T
O
O
COMPLICATION OF CARBOHYDRATE
1. Number of Carbon Atoms
2. The Location of Carbonyl Group
3. The Configuration of Sugar (D or L)
4. The Size of Ring (5, 6 or 7)
5. The Configuration at Position 1 (a or b)
6. The Connectivity between Sugar Units
7. Derivatives (oxidation, reduction, deoxy, various group)
CARBOHYDRATE ISOMERS
Combination of
Individual Units
Number of
Carbohydrates
Two identical units,
A-A dimer
11
Three identical
units, A-A-A trimer
176
Three different units,
A-B-C trimer
1,056
Five different units,
A-B-C-D-E
pentamer
2,144,640
Starch
Energy storage used by plant
Long repeating chain of a-D-glucose
Chain up to 4000 units
Amylose
Straight chain
Amylopectin
Branched structure
Major part of starch
Great for making gravy, jam & jelly
Starch
can be found
Pasta, Rice , Potatos
Bread
Too much …..
Carbohydrate will be converted
into fat and stored under the
skin leading to weight gain!

Weitere ähnliche Inhalte

Ähnlich wie carbohydrate.ppt

د.مصطفى طه محمد (Carbohydrates) الكاربوهيدرات
 د.مصطفى طه محمد (Carbohydrates) الكاربوهيدرات    د.مصطفى طه محمد (Carbohydrates) الكاربوهيدرات
د.مصطفى طه محمد (Carbohydrates) الكاربوهيدرات Mustafa Taha mohammed
 
BRIEF EXPLANATION OF CARBOHYDRATE
BRIEF EXPLANATION OF CARBOHYDRATEBRIEF EXPLANATION OF CARBOHYDRATE
BRIEF EXPLANATION OF CARBOHYDRATEBishnuPatra1
 
Carbohydrates Dr. Shasthree Taduri.pptx
Carbohydrates Dr. Shasthree Taduri.pptxCarbohydrates Dr. Shasthree Taduri.pptx
Carbohydrates Dr. Shasthree Taduri.pptxShastriTaduri
 
chapter 2 carbohydrates.ppt
chapter 2 carbohydrates.pptchapter 2 carbohydrates.ppt
chapter 2 carbohydrates.pptFatima117039
 
carbohydrates Dr. Shasthree Taduri.ppt
carbohydrates Dr. Shasthree Taduri.pptcarbohydrates Dr. Shasthree Taduri.ppt
carbohydrates Dr. Shasthree Taduri.pptShastriTaduri
 
Lecture 14 carbohydrates complete to be taught
Lecture 14 carbohydrates complete to be taughtLecture 14 carbohydrates complete to be taught
Lecture 14 carbohydrates complete to be taughtVedpal Yadav
 
Carbohydrate chemistry 15
Carbohydrate chemistry 15Carbohydrate chemistry 15
Carbohydrate chemistry 15Aparna Misra
 
2017-2018محاضرات الكاربوهيدرات
 2017-2018محاضرات الكاربوهيدرات 2017-2018محاضرات الكاربوهيدرات
2017-2018محاضرات الكاربوهيدراتMustafa Taha mohammed
 

Ähnlich wie carbohydrate.ppt (20)

د.مصطفى طه محمد (Carbohydrates) الكاربوهيدرات
 د.مصطفى طه محمد (Carbohydrates) الكاربوهيدرات    د.مصطفى طه محمد (Carbohydrates) الكاربوهيدرات
د.مصطفى طه محمد (Carbohydrates) الكاربوهيدرات
 
BRIEF EXPLANATION OF CARBOHYDRATE
BRIEF EXPLANATION OF CARBOHYDRATEBRIEF EXPLANATION OF CARBOHYDRATE
BRIEF EXPLANATION OF CARBOHYDRATE
 
Carbohydrate
Carbohydrate Carbohydrate
Carbohydrate
 
Overview of Carbohydrates
Overview of CarbohydratesOverview of Carbohydrates
Overview of Carbohydrates
 
Carbohydrates Dr. Shasthree Taduri.pptx
Carbohydrates Dr. Shasthree Taduri.pptxCarbohydrates Dr. Shasthree Taduri.pptx
Carbohydrates Dr. Shasthree Taduri.pptx
 
Ap Bio Ch3 PowerPoint
Ap Bio Ch3 PowerPointAp Bio Ch3 PowerPoint
Ap Bio Ch3 PowerPoint
 
CARBOHYDRATES
CARBOHYDRATESCARBOHYDRATES
CARBOHYDRATES
 
Carbohydrates
Carbohydrates Carbohydrates
Carbohydrates
 
The nature of carbohydrates
The nature of carbohydrates The nature of carbohydrates
The nature of carbohydrates
 
chapter 2 carbohydrates.ppt
chapter 2 carbohydrates.pptchapter 2 carbohydrates.ppt
chapter 2 carbohydrates.ppt
 
Introduction carbohydrates
Introduction carbohydratesIntroduction carbohydrates
Introduction carbohydrates
 
carbohydrates Dr. Shasthree Taduri.ppt
carbohydrates Dr. Shasthree Taduri.pptcarbohydrates Dr. Shasthree Taduri.ppt
carbohydrates Dr. Shasthree Taduri.ppt
 
Carbohydrates
Carbohydrates Carbohydrates
Carbohydrates
 
Lesson-02 carbohydrates.pdf
Lesson-02 carbohydrates.pdfLesson-02 carbohydrates.pdf
Lesson-02 carbohydrates.pdf
 
Chem 1123 unit 7a
Chem 1123 unit 7aChem 1123 unit 7a
Chem 1123 unit 7a
 
Lecture 14 carbohydrates complete to be taught
Lecture 14 carbohydrates complete to be taughtLecture 14 carbohydrates complete to be taught
Lecture 14 carbohydrates complete to be taught
 
Carbohydrate chemistry 15
Carbohydrate chemistry 15Carbohydrate chemistry 15
Carbohydrate chemistry 15
 
CHO-CNP .ppt
CHO-CNP .pptCHO-CNP .ppt
CHO-CNP .ppt
 
Phytochemistry carbohydrate intro.
Phytochemistry carbohydrate intro.Phytochemistry carbohydrate intro.
Phytochemistry carbohydrate intro.
 
2017-2018محاضرات الكاربوهيدرات
 2017-2018محاضرات الكاربوهيدرات 2017-2018محاضرات الكاربوهيدرات
2017-2018محاضرات الكاربوهيدرات
 

Mehr von bhavyag24

DOC-20230727-WA0006..pptx
DOC-20230727-WA0006..pptxDOC-20230727-WA0006..pptx
DOC-20230727-WA0006..pptxbhavyag24
 
datamarts.ppt
datamarts.pptdatamarts.ppt
datamarts.pptbhavyag24
 
metadata.pptx
metadata.pptxmetadata.pptx
metadata.pptxbhavyag24
 
SCREENLESS DISPLAY (2).pptx
SCREENLESS DISPLAY (2).pptxSCREENLESS DISPLAY (2).pptx
SCREENLESS DISPLAY (2).pptxbhavyag24
 
CRYPTOGRAPHY AND NETWORK SECURITY.pptx
CRYPTOGRAPHY AND NETWORK SECURITY.pptxCRYPTOGRAPHY AND NETWORK SECURITY.pptx
CRYPTOGRAPHY AND NETWORK SECURITY.pptxbhavyag24
 
supplychainmanagementppt-130123080351-phpapp02.pdf
supplychainmanagementppt-130123080351-phpapp02.pdfsupplychainmanagementppt-130123080351-phpapp02.pdf
supplychainmanagementppt-130123080351-phpapp02.pdfbhavyag24
 
AIT SEMINAR.pptx
AIT SEMINAR.pptxAIT SEMINAR.pptx
AIT SEMINAR.pptxbhavyag24
 

Mehr von bhavyag24 (7)

DOC-20230727-WA0006..pptx
DOC-20230727-WA0006..pptxDOC-20230727-WA0006..pptx
DOC-20230727-WA0006..pptx
 
datamarts.ppt
datamarts.pptdatamarts.ppt
datamarts.ppt
 
metadata.pptx
metadata.pptxmetadata.pptx
metadata.pptx
 
SCREENLESS DISPLAY (2).pptx
SCREENLESS DISPLAY (2).pptxSCREENLESS DISPLAY (2).pptx
SCREENLESS DISPLAY (2).pptx
 
CRYPTOGRAPHY AND NETWORK SECURITY.pptx
CRYPTOGRAPHY AND NETWORK SECURITY.pptxCRYPTOGRAPHY AND NETWORK SECURITY.pptx
CRYPTOGRAPHY AND NETWORK SECURITY.pptx
 
supplychainmanagementppt-130123080351-phpapp02.pdf
supplychainmanagementppt-130123080351-phpapp02.pdfsupplychainmanagementppt-130123080351-phpapp02.pdf
supplychainmanagementppt-130123080351-phpapp02.pdf
 
AIT SEMINAR.pptx
AIT SEMINAR.pptxAIT SEMINAR.pptx
AIT SEMINAR.pptx
 

Kürzlich hochgeladen

FBI Profiling - Forensic Psychology.pptx
FBI Profiling - Forensic Psychology.pptxFBI Profiling - Forensic Psychology.pptx
FBI Profiling - Forensic Psychology.pptxPayal Shrivastava
 
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2AuEnriquezLontok
 
Gas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptxGas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptxGiovaniTrinidad
 
LAMP PCR.pptx by Dr. Chayanika Das, Ph.D, Veterinary Microbiology
LAMP PCR.pptx by Dr. Chayanika Das, Ph.D, Veterinary MicrobiologyLAMP PCR.pptx by Dr. Chayanika Das, Ph.D, Veterinary Microbiology
LAMP PCR.pptx by Dr. Chayanika Das, Ph.D, Veterinary MicrobiologyChayanika Das
 
BACTERIAL SECRETION SYSTEM by Dr. Chayanika Das
BACTERIAL SECRETION SYSTEM by Dr. Chayanika DasBACTERIAL SECRETION SYSTEM by Dr. Chayanika Das
BACTERIAL SECRETION SYSTEM by Dr. Chayanika DasChayanika Das
 
cybrids.pptx production_advanges_limitation
cybrids.pptx production_advanges_limitationcybrids.pptx production_advanges_limitation
cybrids.pptx production_advanges_limitationSanghamitraMohapatra5
 
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxGENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxRitchAndruAgustin
 
final waves properties grade 7 - third quarter
final waves properties grade 7 - third quarterfinal waves properties grade 7 - third quarter
final waves properties grade 7 - third quarterHanHyoKim
 
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdfKDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdfGABYFIORELAMALPARTID1
 
dll general biology week 1 - Copy.docx
dll general biology   week 1 - Copy.docxdll general biology   week 1 - Copy.docx
dll general biology week 1 - Copy.docxkarenmillo
 
Loudspeaker- direct radiating type and horn type.pptx
Loudspeaker- direct radiating type and horn type.pptxLoudspeaker- direct radiating type and horn type.pptx
Loudspeaker- direct radiating type and horn type.pptxpriyankatabhane
 
Advances in AI-driven Image Recognition for Early Detection of Cancer
Advances in AI-driven Image Recognition for Early Detection of CancerAdvances in AI-driven Image Recognition for Early Detection of Cancer
Advances in AI-driven Image Recognition for Early Detection of CancerLuis Miguel Chong Chong
 
DNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptxDNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptxGiDMOh
 
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024Jene van der Heide
 
Oxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptxOxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptxfarhanvvdk
 
EGYPTIAN IMPRINT IN SPAIN Lecture by Dr Abeer Zahana
EGYPTIAN IMPRINT IN SPAIN Lecture by Dr Abeer ZahanaEGYPTIAN IMPRINT IN SPAIN Lecture by Dr Abeer Zahana
EGYPTIAN IMPRINT IN SPAIN Lecture by Dr Abeer ZahanaDr.Mahmoud Abbas
 
DETECTION OF MUTATION BY CLB METHOD.pptx
DETECTION OF MUTATION BY CLB METHOD.pptxDETECTION OF MUTATION BY CLB METHOD.pptx
DETECTION OF MUTATION BY CLB METHOD.pptx201bo007
 
Total Legal: A “Joint” Journey into the Chemistry of Cannabinoids
Total Legal: A “Joint” Journey into the Chemistry of CannabinoidsTotal Legal: A “Joint” Journey into the Chemistry of Cannabinoids
Total Legal: A “Joint” Journey into the Chemistry of CannabinoidsMarkus Roggen
 

Kürzlich hochgeladen (20)

Ultrastructure and functions of Chloroplast.pptx
Ultrastructure and functions of Chloroplast.pptxUltrastructure and functions of Chloroplast.pptx
Ultrastructure and functions of Chloroplast.pptx
 
FBI Profiling - Forensic Psychology.pptx
FBI Profiling - Forensic Psychology.pptxFBI Profiling - Forensic Psychology.pptx
FBI Profiling - Forensic Psychology.pptx
 
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
 
Gas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptxGas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptx
 
LAMP PCR.pptx by Dr. Chayanika Das, Ph.D, Veterinary Microbiology
LAMP PCR.pptx by Dr. Chayanika Das, Ph.D, Veterinary MicrobiologyLAMP PCR.pptx by Dr. Chayanika Das, Ph.D, Veterinary Microbiology
LAMP PCR.pptx by Dr. Chayanika Das, Ph.D, Veterinary Microbiology
 
BACTERIAL SECRETION SYSTEM by Dr. Chayanika Das
BACTERIAL SECRETION SYSTEM by Dr. Chayanika DasBACTERIAL SECRETION SYSTEM by Dr. Chayanika Das
BACTERIAL SECRETION SYSTEM by Dr. Chayanika Das
 
cybrids.pptx production_advanges_limitation
cybrids.pptx production_advanges_limitationcybrids.pptx production_advanges_limitation
cybrids.pptx production_advanges_limitation
 
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxGENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
 
final waves properties grade 7 - third quarter
final waves properties grade 7 - third quarterfinal waves properties grade 7 - third quarter
final waves properties grade 7 - third quarter
 
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdfKDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
 
dll general biology week 1 - Copy.docx
dll general biology   week 1 - Copy.docxdll general biology   week 1 - Copy.docx
dll general biology week 1 - Copy.docx
 
Loudspeaker- direct radiating type and horn type.pptx
Loudspeaker- direct radiating type and horn type.pptxLoudspeaker- direct radiating type and horn type.pptx
Loudspeaker- direct radiating type and horn type.pptx
 
Advances in AI-driven Image Recognition for Early Detection of Cancer
Advances in AI-driven Image Recognition for Early Detection of CancerAdvances in AI-driven Image Recognition for Early Detection of Cancer
Advances in AI-driven Image Recognition for Early Detection of Cancer
 
DNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptxDNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptx
 
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
 
Oxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptxOxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptx
 
Introduction Classification Of Alkaloids
Introduction Classification Of AlkaloidsIntroduction Classification Of Alkaloids
Introduction Classification Of Alkaloids
 
EGYPTIAN IMPRINT IN SPAIN Lecture by Dr Abeer Zahana
EGYPTIAN IMPRINT IN SPAIN Lecture by Dr Abeer ZahanaEGYPTIAN IMPRINT IN SPAIN Lecture by Dr Abeer Zahana
EGYPTIAN IMPRINT IN SPAIN Lecture by Dr Abeer Zahana
 
DETECTION OF MUTATION BY CLB METHOD.pptx
DETECTION OF MUTATION BY CLB METHOD.pptxDETECTION OF MUTATION BY CLB METHOD.pptx
DETECTION OF MUTATION BY CLB METHOD.pptx
 
Total Legal: A “Joint” Journey into the Chemistry of Cannabinoids
Total Legal: A “Joint” Journey into the Chemistry of CannabinoidsTotal Legal: A “Joint” Journey into the Chemistry of Cannabinoids
Total Legal: A “Joint” Journey into the Chemistry of Cannabinoids
 

carbohydrate.ppt

Hinweis der Redaktion

  1. FIGURE 7-1a Representative monosaccharides. (a)Two trioses, an aldose and a ketose. The carbonyl group in each is shaded.
  2. FIGURE 7-1 Representative monosaccharides. (a)Two trioses, an aldose and a ketose. The carbonyl group in each is shaded. (b) Two common hexoses. (c) The pentose components of nucleic acids. D-Ribose is a component of ribonucleic acid (RNA), and 2-deoxy-D-ribose is a component of deoxyribonucleic acid (DNA).
  3. FIGURE 7-2 (part 1) Three ways to represent the two enantiomers of glyceraldehyde. The enantiomers are mirror images of each other. Ball-and-stick models show the actual configuration of molecules. Recall (see Figure 1-17) that in perspective formulas, solid wedge-shaped bonds point toward the reader, dashed wedges point away.
  4. FIGURE 7-2 (part 2) Three ways to represent the two enantiomers of glyceraldehyde. The enantiomers are mirror images of each other. Ball-and-stick models show the actual configuration of molecules. Recall (see Figure 1-17) that in perspective formulas, solid wedge-shaped bonds point toward the reader, dashed wedges point away.
  5. FIGURE 7-2 (part 3) Three ways to represent the two enantiomers of glyceraldehyde. The enantiomers are mirror images of each other. Ball-and-stick models show the actual configuration of molecules. Recall (see Figure 1-17) that in perspective formulas, solid wedge-shaped bonds point toward the reader, dashed wedges point away.
  6. FIGURE 7-3a (part 1) Aldoses and ketoses. The series of (a) D-aldoses and (b) D-ketoses having from three to six carbon atoms, shown as projection formulas. The carbon atoms in red are chiral centers. In all these D isomers, the chiral carbon most distant from the carbonyl carbon has the same configuration as the chiral carbon in D-glyceraldehyde. The sugars named in boxes are the most common in nature; you will encounter these again in this and later chapters.
  7. FIGURE 7-3a (part 2) Aldoses and ketoses. The series of (a) D-aldoses and (b) D-ketoses having from three to six carbon atoms, shown as projection formulas. The carbon atoms in red are chiral centers. In all these D isomers, the chiral carbon most distant from the carbonyl carbon has the same configuration as the chiral carbon in D-glyceraldehyde. The sugars named in boxes are the most common in nature; you will encounter these again in this and later chapters.
  8. FIGURE 7-3a (part 3) Aldoses and ketoses. The series of (a) D-aldoses and (b) D-ketoses having from three to six carbon atoms, shown as projection formulas. The carbon atoms in red are chiral centers. In all these D isomers, the chiral carbon most distant from the carbonyl carbon has the same configuration as the chiral carbon in D-glyceraldehyde. The sugars named in boxes are the most common in nature; you will encounter these again in this and later chapters.
  9. FIGURE 7-3b (part 1) Aldoses and ketoses. The series of (a) D-aldoses and (b) D-ketoses having from three to six carbon atoms, shown as projection formulas. The carbon atoms in red are chiral centers. In all these D isomers, the chiral carbon most distant from the carbonyl carbon has the same configuration as the chiral carbon in D-glyceraldehyde. The sugars named in boxes are the most common in nature; you will encounter these again in this and later chapters.
  10. FIGURE 7-3b (part 2) Aldoses and ketoses. The series of (a) D-aldoses and (b) D-ketoses having from three to six carbon atoms, shown as projection formulas. The carbon atoms in red are chiral centers. In all these D isomers, the chiral carbon most distant from the carbonyl carbon has the same configuration as the chiral carbon in D-glyceraldehyde. The sugars named in boxes are the most common in nature; you will encounter these again in this and later chapters.
  11. FIGURE 7-3b (part 1) Aldoses and ketoses. The series of (a) D-aldoses and (b) D-ketoses having from three to six carbon atoms, shown as projection formulas. The carbon atoms in red are chiral centers. In all these D isomers, the chiral carbon most distant from the carbonyl carbon has the same configuration as the chiral carbon in D-glyceraldehyde. The sugars named in boxes are the most common in nature; you will encounter these again in this and later chapters.
  12. FIGURE 7-3b (part 2) Aldoses and ketoses. The series of (a) D-aldoses and (b) D-ketoses having from three to six carbon atoms, shown as projection formulas. The carbon atoms in red are chiral centers. In all these D isomers, the chiral carbon most distant from the carbonyl carbon has the same configuration as the chiral carbon in D-glyceraldehyde. The sugars named in boxes are the most common in nature; you will encounter these again in this and later chapters.
  13. FIGURE 7-5 Formation of hemiacetals and hemiketals. An aldehyde or ketone can react with an alcohol in a 1:1 ratio to yield a hemiacetal or hemiketal, respectively, creating a new chiral center at the carbonyl carbon. Substitution of a second alcohol molecule produces an acetal or ketal. When the second alcohol is part of another sugar molecule, the bond produced is a glycosidic bond (p. 243).
  14. FIGURE 7-6 Formation of the two cyclic forms of D-glucose. Reaction between the aldehyde group at C-1 and the hydroxyl group at C-5 forms a hemiacetal linkage, producing either of two stereoisomers, the α and β anomers, which differ only in the stereochemistry around the hemiacetal carbon. The interconversion of α and β anomers is called mutarotation.
  15. FIGURE 7-7 Pyranoses and furanoses. The pyranose forms of D-glucose and the furanose forms of D-fructose are shown here as Haworth perspective formulas. The edges of the ring nearest the reader are represented by bold lines. Hydroxyl groups below the plane of the ring in these Haworth perspectives would appear at the right side of a Fischer projection (compare with Figure 7-6). Pyran and furan are shown for comparison.
  16. FIGURE 7-9 Some hexose derivatives important in biology. In amino sugars, an —NH2 group replaces one of the —OH groups in the parent hexose. Substitution of —H for —OH produces a deoxy sugar; note that the deoxy sugars shown here occur in nature as the L isomers. The acidic sugars contain a carboxylate group, which confers a negative charge at neutral pH. D-Glucono-δ-lactone results from formation of an ester linkage between the C-1 carboxylate group and the C-5 (also known as the δ carbon) hydroxyl group of D-gluconate.
  17. FIGURE 7-11 Formation of maltose. A disaccharide is formed from two monosaccharides (here, two molecules of D-glucose) when an —OH (alcohol) of one glucose molecule (right) condenses with the intramolecular hemiacetal of the other glucose molecule (left), with elimination of H2O and formation of a glycosidic bond. The reversal of this reaction is hydrolysis—attack by H2O on the glycosidic bond. The maltose molecule, shown here as an illustration, retains a reducing hemiacetal at the C-1 not involved in the glycosidic bond. Because mutarotation interconverts the α and β forms of the hemiacetal, the bonds at this position are sometimes depicted with wavy lines, as shown here, to indicate that the structure may be either α or β.
  18. FIGURE 7-12 Some common disaccharides. Like maltose in Figure 7-11, these are shown as Haworth perspectives. The common name, full systematic name, and abbreviation are given for each disaccharide. Formal nomenclature for sucrose names glucose as the parent glycoside, although it is typically depicted as shown, with glucose on the left.
  19. Table 7-1
  20. FIGURE 7-14a Glycogen and starch. (a) A short segment of amylose, a linear polymer of D-glucose residues in (α1→4) linkage. A single chain can contain several thousand glucose residues. Amylopectin has stretches of similarly linked residues between branch points. Glycogen has the same basic structure, but has more branching than amylopectin.
  21. FIGURE 7-14b Glycogen and starch. (b) An (α1→6) branch point of glycogen or amylopectin.
  22. FIGURE 7-14c Glycogen and starch. (c) A cluster of amylose and amylopectin like that believed to occur in starch granules. Strands of amylopectin (red) form double-helical structures with each other or with amylose strands (blue). Glucose residues at the nonreducing ends of the outer branches are removed enzymatically during the mobilization of starch for energy production. Glycogen has a similar structure but is more highly branched and more compact.
  23. FIGURE 7-15a Cellulose. (a) Two units of a cellulose chain; the D-glucose residues are in (β1→4) linkage. The rigid chair structures can rotate relative to one another.
  24. FIGURE 7-17a Chitin. (a) A short segment of chitin, a homopolymer of N-acetyl-D-glucosamine units in (β1→4) linkage.
  25. FIGURE 7-20b Starch (amylose). (b) A model of a segment of amylose; for clarity, the hydroxyl groups have been omitted from all but one of the glucose residues. Compare the two residues shaded in pink with the chemical structures in (a). The conformation of (α1→4) linkages in amylose, amylopectin, and glycogen causes these polymers to assume tightly coiled helical structures. These compact structures produce the dense granules of stored starch or glycogen seen in many cells (see Figure 20-2).
  26. FIGURE 7-21 Agarose. The repeating unit consists of D-galactose (β1→4)-linked to 3,6-anhydro-L-galactose (in which an ether bridge connects C-3 and C-6). These units are joined by (α1→3) glycosidic links to form a polymer 600 to 700 residues long. A small fraction of the 3,6-anhydrogalactose residues have a sulfate ester at C-2 (as shown here).
  27. FIGURE 7-22 (part 1) Repeating units of some common glycosaminoglycans of extracellular matrix. The molecules are copolymers of alternating uronic acid and amino sugar residues (keratan sulfate is the exception), with sulfate esters in any of several positions, except in hyaluronan. The ionized carboxylate and sulfate groups (red in the perspective formulas) give these polymers their characteristic high negative charge. Therapeutic heparin contains primarily iduronic acid (IdoA) and a smaller proportion of glucuronic acid (GlcA, not shown), and is generally highly sulfated and heterogeneous in length. The space-filling model shows a heparin segment as its solution structure, as determined by NMR spectroscopy (PDB ID 1HPN). The carbons in the iduronic acid sulfate are colored blue; those in glucosamine sulfate are green. Oxygen and sulfur atoms are shown in their standard colors of red and yellow, respectively. The hydrogen atoms are not shown (for clarity). Heparan sulfate (not shown) is similar to heparin but has a higher proportion of GlcA and fewer sulfate groups, arranged in a less regular pattern.
  28. FIGURE 7-22 (part 1a) Repeating units of some common glycosaminoglycans of extracellular matrix. The molecules are copolymers of alternating uronic acid and amino sugar residues (keratan sulfate is the exception), with sulfate esters in any of several positions, except in hyaluronan. The ionized carboxylate and sulfate groups (red in the perspective formulas) give these polymers their characteristic high negative charge. Therapeutic heparin contains primarily iduronic acid (IdoA) and a smaller proportion of glucuronic acid (GlcA, not shown), and is generally highly sulfated and heterogeneous in length. The space-filling model shows a heparin segment as its solution structure, as determined by NMR spectroscopy (PDB ID 1HPN). The carbons in the iduronic acid sulfate are colored blue; those in glucosamine sulfate are green. Oxygen and sulfur atoms are shown in their standard colors of red and yellow, respectively. The hydrogen atoms are not shown (for clarity). Heparan sulfate (not shown) is similar to heparin but has a higher proportion of GlcA and fewer sulfate groups, arranged in a less regular pattern.
  29. FIGURE 7-22 (part 1b) Repeating units of some common glycosaminoglycans of extracellular matrix. The molecules are copolymers of alternating uronic acid and amino sugar residues (keratan sulfate is the exception), with sulfate esters in any of several positions, except in hyaluronan. The ionized carboxylate and sulfate groups (red in the perspective formulas) give these polymers their characteristic high negative charge. Therapeutic heparin contains primarily iduronic acid (IdoA) and a smaller proportion of glucuronic acid (GlcA, not shown), and is generally highly sulfated and heterogeneous in length. The space-filling model shows a heparin segment as its solution structure, as determined by NMR spectroscopy (PDB ID 1HPN). The carbons in the iduronic acid sulfate are colored blue; those in glucosamine sulfate are green. Oxygen and sulfur atoms are shown in their standard colors of red and yellow, respectively. The hydrogen atoms are not shown (for clarity). Heparan sulfate (not shown) is similar to heparin but has a higher proportion of GlcA and fewer sulfate groups, arranged in a less regular pattern.
  30. FIGURE 7-25a Two families of membrane proteoglycans. (a) Schematic diagrams of a syndecan and a glypican in the plasma membrane. Syndecans are held in the membrane by hydrophobic interactions between a sequence of nonpolar amino acid residues and plasma membrane lipids; they can be released by a single proteolytic cut near the membrane surface. In a typical syndecan, the extracellular aminoterminal domain is covalently attached (by tetrasaccharide linkers such as those in Figure 7-24) to three heparan sulfate chains and two chondroitin sulfate chains. Glypicans are held in the membrane by a covalently attached membrane lipid (GPI anchor; see Chapter 11), and are shed if the lipid-protein bond is cleaved by a phospholipase. All glypicans have 14 conserved Cys residues, which form disulfide bonds to stabilize the protein moiety, and either two or three glycosaminoglycan chains attached near the carboxyl terminus, close to the membrane surface.
  31. FIGURE 7-27 Proteoglycan aggregate of the extracellular matrix. Schematic drawing of a proteoglycan with many aggrecan molecules. One very long molecule of hyaluronan is associated noncovalently with about 100 molecules of the core protein aggrecan. Each aggrecan molecule contains many covalently bound chondroitin sulfate and keratan sulfate chains. Link proteins at the junction between each core protein and the hyaluronan backbone mediate the core protein–hyaluronan interaction. The micrograph shows a single molecule of aggrecan, viewed with the atomic force microscope (see Box 11-1).
  32. FIGURE 7-28 Interactions between cells and the extracellular matrix. The association between cells and the proteoglycan of the extracellular matrix is mediated by a membrane protein (integrin) and by an extracellular protein (fibronectin in this example) with binding sites for both integrin and the proteoglycan. Note the close association of collagen fibers with the fibronectin and proteoglycan.
  33. FIGURE 7-30 Bacterial lipopolysaccharides. Schematic diagram of the lipopolysaccharide of the outer membrane of Salmonella typhimurium. Kdo is 3-deoxy-D-manno-octulosonic acid (previously called ketodeoxyoctonic acid); Hep is L-glycero-D-manno-heptose; AbeOAc is abequose (a 3,6-dideoxyhexose) acetylated on one of its hydroxyls. There are six fatty acid residues in the lipid A portion of the molecule. Different bacterial species have subtly different lipopolysaccharide structures, but they have in common a lipid region (lipid A), a core oligosaccharide also known as endotoxin, and an "O-specific" chain, which is the principal determinant of the serotype (immunological reactivity) of the bacterium. The outer membranes of the gram-negative bacteria S. typhimurium and E. coli contain so many lipopolysaccharide molecules that the cell surface is virtually covered with O-specific chains.
  34. FIGURE 7-31 Role of lectin-ligand interactions in lymphocyte movement to the site of an infection or injury. A neutrophil circulating through a capillary is slowed by transient interactions between P-selectin molecules in the plasma membrane of the capillary endothelial cells and glycoprotein ligands for P-selectin on the neutrophil surface. As it interacts with successive P-selectin molecules, the neutrophil rolls along the capillary surface. Near a site of inflammation, stronger interactions between integrin in the capillary surface and its ligand in the neutrophil surface lead to tight adhesion. The neutrophil stops rolling and, under the influence of signals sent out from the site of inflammation, begins extravasation—escape through the capillary wall—as it moves toward the site of inflammation.