Igcse 16-astronomy

Bhavana Binu
Bhavana BinuTeacher um Arab Unity School, Dubai
EDEXCEL IGCSE / CERTIFICATE IN PHYSICS 1-6
Astronomy
Edexcel IGCSE Physics pages 49 to 56
June 17th
2011
All content applies for Triple & Double Science
Edexcel Specification
Section 1: Forces and motion
d) Astronomy
understand gravitational field strength, g, and know that it is different on other planets and the moon
from that on the Earth.
explain that gravitational force:
- causes moons to orbit planets
- causes the planets to orbit the sun
- causes the moon and artificial satellites to orbit the Earth
- causes comets to orbit the sun
describe the differences in the orbits of comets, moons and planets
use the relationship:
orbital speed = (2× π × orbital radius) / time period
v = (2× π × r) / T
understand that:
- the universe is a large collection of billions of galaxies
- a galaxy is a large collection of billions of stars
- our solar system is in the Milky Way galaxy.
The Solar System
The Solar System consists of the Sun orbited by eight
planets and their moons, some dwarf planets along with
many asteroids and comets.
Planets
A planet is a body that orbits
the Sun, is massive enough
for its own gravity to make it
round, and has cleared its
neighbourhood of smaller
objects around its orbit.
Based on this, International
Astronomical Union’s definition
of 2006, there are only eight
planets in orbit around the
Sun.
In order of distance
from the Sun:
Mercury
Venus
Earth
Mars
Jupiter
Saturn
Neptune
Uranus
Dwarf Planets
A dwarf planet is a celestial
body orbiting the Sun that is
massive enough to be
spherical as a result of its own
gravity. but has not cleared its
neighbouring region of other
similar bodies.
As of 2011 there are five dwarf
planets in the Solar System.
Between Mars and Jupiter:
Ceres
Beyond Neptune:
Pluto, Haumea,
Makemake
and Eris (the largest)
Hubble image of Pluto
and one of its moons
(Charon)
Asteroids
An asteroid is a celestial body
orbiting the Sun that is not
massive enough to be spherical
as a result of its own gravity.
Most asteroids are found between
the orbits of Mars and Jupiter – a
region called ‘The Asteroid Belt’.
There are about 750 000 asteroids
larger than 1km across.
A few, called ‘Near Earth
Asteroids’ can pass very close to
the Earth.
Asteroid Vesta – image
taken on July 17th
2011 by
the Dawn spacecraft
Moons
A moon orbits a planet.
Planet Moons (2011)
Mercury 0
Venus 0
Earth 1
Mars 2
Jupiter 64
Saturn 62
Uranus 27
Neptune 13
The Earth’s only
natural satellite
Note: A number of dwarf planets and asteroids also have
moons, for example Pluto has three moons.
This is the time
taken for a planet
to complete one
orbit around the
Sun.
It increases with a
planets distance
from the Sun.
Mercury 88 days
Venus 225 days
Earth 1 year
Mars 2 years
Jupiter 12 years
Saturn 29 years
Neptune 165 years
Uranus 84 years
Time period (T )
Gravitational attraction
The force of gravity is responsible for the orbits of
planets, moons, asteroids and comets.
In 1687 Sir Isaac Newton stated that this
gravitational force:
- is always attractive
- would double if either the mass of Sun or
the planet was doubled
- decreases by a factor of 4 as the distance
between the Sun and a planet doubles.
Gravitational field strength (g)
This is a way of measuring the strength of gravity.
The gravitational field strength is equal to the
gravitational force exerted per kilogram.
Near the Earth’s surface, g = 10 N/kg
In most cases gravitational field strength in N/kg is
numerically equal to the acceleration due to
gravity in m/s2
, hence they both use the same
symbol ‘g’.
Gravitational field strength (g) varies from planet
to planet.
It is greatest near the most massive objects.
Some examples of gravitational field strength:
Location N/kg Location N/kg
Earth 10 Jupiter 24
Moon 1.6 Pluto 0.7
Mars 3.7 The Sun 270
Planet,
Dwarf
Planet or
Moon
Number
of
moons
(2011)
Average distance
from the Sun
(millions of km)
Diameter
(km)
Time for
one orbit
(years)
Average
surface
temperature
(°C)
Gravitation
al field
strength
(N/kg)
Mercury 0 58 4 700 0.2
(88 days)
+ 350 4
Venus 0 108 12 100 0.6
(225 days)
+ 470 9
Earth 1 150
(93 million miles)
12 700 `1.0 + 15 10
Moon - 0.38
(from the Earth)
3 400 0.07
(27 days)
- 50 1.6
Mars 2 228 6 800 1.9 - 30 4
Ceres 0 414 970 4.6 - 100 0.3
Jupiter 64 779 143 000 12 - 150 23
Saturn 62 1443 120 000 30 - 180 9
Uranus 27 2877 51 000 84 - 210 9
Neptune 13 4503 49 000 165 - 220 11
Pluto 3 5874 2 300 248 - 230 0.7
Planetary orbits
The orbits of the planets
are slightly squashed
circles (ellipses) with
the Sun quite close to
the centre.
The Sun lies at a ‘focus’
of the ellipse
Planets move more quickly when they are closer
to the Sun.
faster slower
The above diagram is exaggerated!
What would happen to an orbit
without gravity
As the red planet moves it
is continually pulled by
gravity towards the Sun.
Gravity therefore causes
the planet to move along a
circular path – an orbit.
If this gravity is removed
the planet will continue to
move along a straight line
at a tangent to its original
orbit.
Comets
A comet is a body made of dust
and ice that occupies a highly
elongated orbit.
When the comet passes close to the
Sun some of the comet’s frozen
gases evaporate. These form a long
tail that shines in the sunlight.
Comets are most visible and travel
quickest when close to the Sun.
Comets are approximately 1-30km
in diameter.
Halley’s Comet
This is perhaps the most
famous comet.
It returns to the inner Solar
System every 75 to 76 years.
It last appeared in 1986 and is
due to return in 2061.
It has been observed since at
least 240BC. In 1705 Edmund
Halley correctly predicted its
reappearance in 1758.
Choose appropriate words to fill in the gaps below:
The Solar System consists of a ______, the Sun, orbited by
_______ planets, a number of dwarf planets and millions of
asteroids and ________.
All of these bodies ______ the Sun because of gravitational
force. Gravity is also responsible for the orbits of _______ and
artificial satellites.
Most orbits are nearly circular _______ but those of comets
are highly elongated. Comets move ________ when they are at
their nearest to the Sun
quickest eight star cometsellipses
WORD SELECTION:
orbit moons
quickest
eight
star
comets
ellipses
orbit
moons
Orbital speed (v)
orbital speed = (2π x orbital radius) / time period
v = (2π x r ) / T
orbital speed in metres per second (m/s)
orbital radius in metres (m)
time period in seconds (s)
Question 1
Calculate the orbital speed of the Earth around the Sun.
(Earth orbital radius = 150 million km)
v = (2π x r ) / T
= (2π x [150 000 000 km] ) / [1 year]
but 1 year = (365 x 24 x 60 x 60) seconds
= 31 536 000 s
and 150 000 000 km = 150 000 000 000 metres
v = (2π x [150 000 000 000] ) / [31 536 000]
orbital speed = 29 900 m/s
Question 2
Calculate the orbital speed of the Moon around the Earth.
(Moon orbital radius = 380 000 km; orbit time = 27.3 days)
v = (2π x r ) / T
= (2π x [380 000 km] ) / [27.3 days]
but 27.3 days = (27.3 x 24 x 60 x 60) seconds
= 2 359 000 s
and 380 000 km = 380 000 000 metres
v = (2π x [380 000 000] ) / [2 359 000]
orbital speed = 1 012 m/s
Question 3
Calculate the orbital speed of the ISS (International Space Station)
around the Earth. (ISS orbital height = 355 km; orbit time = 91 minutes;
Earth radius = 6 378 km)
The orbit radius of the ISS = (355 + 6 378) km = 6 733 km
v = (2π x r ) / T
= (2π x [6 733 km] ) / [91 minutes]
but 91 minutes = (91 x 60) seconds
= 5 460 s
and 6 733 km = 6 733 000 metres
v = (2π x [6 733 000] ) / [5 460]
orbital speed = 7 748 m/s
Question 4
Calculate the orbital time of a satellite that has a speed of 3 075 m/s
and height above the earth of 35 906 km. (Earth radius = 6 378 km)
The orbit radius of the satellite = (35 576 + 6 378) km = 42 284 km
v = (2π x r ) / T
becomes: T = (2π x r ) / v
= (2π x [42 284 km] ) / [3 075 m/s]
but 42 284 km = 42 284 000 metres
T = (2π x [41 954 000 ] ) / [3 075 ]
orbital time = 86 400 seconds
= 1440 minutes
= 24 hours
Communication satellites
These are usually placed in geostationary orbits
so that they always stay above the same place on
the Earth’s surface.
VIEW FROM
ABOVE THE
NORTH POLE
Geostationary satellites must have orbits that:
- take 24 hours to complete
- circle in the same direction as the Earth’s
spin
- are above the equator
- orbit at a height of about 36 000 km
Uses of communication satellites include satellite
TV and some weather satellites.
Choose appropriate words to fill in the gaps below:
A satellite is a ________ mass object orbiting around a
________ mass body.
The larger the orbit of a satellite the more ________ it moves
and the ________ it takes to complete one orbit.
Geostationary satellites are used for _____________ and have
an orbital period of _____ hours.
_____________ satellites normally use polar orbits.
24lowerlonger slowly
communications
WORD SELECTION:
highermonitoring
24
lower
longer
slowly
communications
higher
monitoring
The Milky Way
The Milky Way is the
name of our galaxy.
From Earth we can see
our galaxy edge-on. In a
very dark sky it appears
like a ‘cloud’ across the
sky resembling a strip of
spilt milk.
A very dark sky is required to
see the Milky Way this clearly
Galaxies
Galaxies consist of
billions of stars bound
together by the force of
gravity.
There are thought to be
at least 200 billion
galaxies in our Universe
each containing on
average 2 billion stars.
The Sun’s position in the Milky Way
The Andromeda Galaxy
Types of galaxy
Barred-Spiral – NGC 1300
Our galaxy is this type
Spiral – The Whirlpool Galaxy
Elliptical – M32
Irregular – The Small
Magellanic Cloud
Choose appropriate words to fill in the gaps below:
The ___________ is made up of billions of galaxies which
consist of __________ of stars bound to each other by the force
of ___________.
The name of our _________ is The Milky Way. The ______ is
located towards the outer edge of our galaxy.
The are different types of galaxy; ________, barred-spiral,
elliptical and irregular. The Milky Way is a ____________
galaxy. The _____________ Galaxy is the nearest spiral galaxy
to the Milky Way.
spiralgalaxy
gravity billionsSun
barred-spiral
WORD SELECTION:
Universe
Andromeda
spiral
galaxy
gravity
billions
Sun
barred-spiral
Universe
Andromeda
Online Simulations
My Solar System - PhET- Build your own system of
heavenly bodies and watch the gravitational ballet.
With this orbit simulator, you can set initial positions,
velocities, and masses of 2, 3, or 4 bodies, and then
see them orbit each other.
Multiple planets - 7stones
Planet orbit info - Fendt
Distances in Space - Powerpoint presentation by JAA
Solar system quizes - How well do you know the solar
system? This resource contains whiteboard activities to
order and name the planets corrrectly as well as a
palnet database - by eChalk
Hidden Pairs Game on Planet Facts - by KT - Microsoft
WORD
Fifty-Fifty Game on Planets with Atmospheres - by KT -
Microsoft WORD
Fifty-Fifty Game on
Planets that are smaller than the Earth - by KT -
Microsoft WORD
Sequential Puzzle on Planet Order - by KT - Microsoft
WORD
Sequential Puzzle on Planet Size - by KT - Microsoft
WORD
Lunar Eclipse - flash demo
Phases of the Moon - Freezeway.com
Phases of the Moon - eChalk
Seasons - Freezeway.com
Gravity & Orbits - PhET - Move the sun, earth, moon
and space station to see how it affects their
gravitational forces and orbital paths. Visualize the
sizes and distances between different heavenly bodies,
and turn off gravity to see what would happen without
it!
Projectile & Satellite Orbits - NTNU
Newton's Cannon Demo - to show how orbits occur - by
Michael Fowler
Kepler Motion - NTNU
Kepler's 2nd Law - Fendt
Two & Three Body Orbits - 7stones
Orbits - Gravitation program
BBC KS3 Bitesize Revision:
The Solar System
Gravitational Forces
Days & Nights
Years & Seasons - includes an applet showing the tilt
of the Earth
The Moon
Artificial space probes and satellites
Astronomy
Notes questions from pages 49 to 56
1. Outline the structure of the Solar System and explain the difference
between a planet and a moon. (see pages 49 to 50)
2. Define what is meant by gravitational field strength and explain how it may
differ throughout the Solar System. (see page 50)
3. How is the orbit of a comet different from a planet? (see pages 51 and 52)
4. (a) Give the equation for orbital speed. (b) Calculate the orbital speed of
Mercury around the Sun. [Mercury orbital radius = 58 million km; orbital
time = 88 days]. (see page 54)
5. (a) What is the ‘Milky Way’? (b) What is a galaxy? (c) How many galaxies
are there in the Universe? (see page 55)
6. Answer the questions on page 56.
7. Verify that you can do all of the items listed in the end of chapter checklist
on page 56.
1 von 32

Recomendados

Waves - IGCSE physics von
Waves - IGCSE physics Waves - IGCSE physics
Waves - IGCSE physics Maitreyee Joshi
25.8K views62 Folien
Astronomical scales von
Astronomical scalesAstronomical scales
Astronomical scalesLovely Professional University
2.2K views30 Folien
IGCSE PHYSICS CORE: ATOMIC PHYSICS von
IGCSE PHYSICS CORE: ATOMIC PHYSICSIGCSE PHYSICS CORE: ATOMIC PHYSICS
IGCSE PHYSICS CORE: ATOMIC PHYSICSRozzie Jhana CamQue
4.8K views16 Folien
The life cycle of a star von
The life cycle of a starThe life cycle of a star
The life cycle of a starNelson Correia
13.1K views14 Folien
Stars and Galaxies von
Stars and GalaxiesStars and Galaxies
Stars and Galaxiesduncanpatti
36K views45 Folien
The Universe and the Stars von
The Universe and the StarsThe Universe and the Stars
The Universe and the Starslabmouse7
2.3K views31 Folien

Más contenido relacionado

Was ist angesagt?

The moon von
The moonThe moon
The moonNoura Ishnawer
3.4K views35 Folien
Igcse 16-astronomy von
Igcse 16-astronomyIgcse 16-astronomy
Igcse 16-astronomyBinu Thankachen
746 views25 Folien
Moon Formation and Structure von
Moon Formation and StructureMoon Formation and Structure
Moon Formation and StructureTeach5ch
3.6K views38 Folien
Star formation von
Star formationStar formation
Star formationHoughton Lake High School
5.5K views33 Folien
Stars & The Solar System von
Stars & The Solar SystemStars & The Solar System
Stars & The Solar Systemitutor
5.6K views32 Folien

Was ist angesagt?(20)

Moon Formation and Structure von Teach5ch
Moon Formation and StructureMoon Formation and Structure
Moon Formation and Structure
Teach5ch3.6K views
Stars & The Solar System von itutor
Stars & The Solar SystemStars & The Solar System
Stars & The Solar System
itutor5.6K views
Birth of the star von Jason Duria
Birth of the starBirth of the star
Birth of the star
Jason Duria1.1K views
Neutron star von anu5195
Neutron starNeutron star
Neutron star
anu51957K views
The Life Cycle of a Star PowerPoint von Ruhee M
The Life Cycle of a Star PowerPointThe Life Cycle of a Star PowerPoint
The Life Cycle of a Star PowerPoint
Ruhee M12.7K views
P8 light von davaruss
P8 lightP8 light
P8 light
davaruss3.1K views
Waves ppt. von hlayala
Waves ppt.Waves ppt.
Waves ppt.
hlayala124.6K views
Formation of the Solar System von dwinter1
Formation of the Solar SystemFormation of the Solar System
Formation of the Solar System
dwinter12.6K views
Life cycle of stars von davideis
Life cycle of starsLife cycle of stars
Life cycle of stars
davideis7.6K views
Lightyear von niks1rock
LightyearLightyear
Lightyear
niks1rock6.5K views

Similar a Igcse 16-astronomy

Stellar quantities 2018 von
Stellar quantities 2018Stellar quantities 2018
Stellar quantities 2018Paula Mills
418 views72 Folien
Astrophysics Part 1 2012 von
Astrophysics Part 1 2012Astrophysics Part 1 2012
Astrophysics Part 1 2012cjordison
8.3K views47 Folien
Unit 1 - Our Planetary Neighborhood von
Unit 1 - Our Planetary NeighborhoodUnit 1 - Our Planetary Neighborhood
Unit 1 - Our Planetary NeighborhoodKCTCS
868 views17 Folien
IB Astrophysics - intro to the universe - Flippingphysics by nothingnerdy von
IB Astrophysics -  intro to the universe - Flippingphysics by nothingnerdyIB Astrophysics -  intro to the universe - Flippingphysics by nothingnerdy
IB Astrophysics - intro to the universe - Flippingphysics by nothingnerdyNothingnerdy
11.4K views32 Folien
Gravity Gravitation Gravitasi 1 von
Gravity  Gravitation Gravitasi 1Gravity  Gravitation Gravitasi 1
Gravity Gravitation Gravitasi 1Rifda Latifa
977 views74 Folien
Gravitation von
GravitationGravitation
GravitationArihant Jain
85 views74 Folien

Similar a Igcse 16-astronomy(20)

Stellar quantities 2018 von Paula Mills
Stellar quantities 2018Stellar quantities 2018
Stellar quantities 2018
Paula Mills418 views
Astrophysics Part 1 2012 von cjordison
Astrophysics Part 1 2012Astrophysics Part 1 2012
Astrophysics Part 1 2012
cjordison8.3K views
Unit 1 - Our Planetary Neighborhood von KCTCS
Unit 1 - Our Planetary NeighborhoodUnit 1 - Our Planetary Neighborhood
Unit 1 - Our Planetary Neighborhood
KCTCS868 views
IB Astrophysics - intro to the universe - Flippingphysics by nothingnerdy von Nothingnerdy
IB Astrophysics -  intro to the universe - Flippingphysics by nothingnerdyIB Astrophysics -  intro to the universe - Flippingphysics by nothingnerdy
IB Astrophysics - intro to the universe - Flippingphysics by nothingnerdy
Nothingnerdy11.4K views
Gravity Gravitation Gravitasi 1 von Rifda Latifa
Gravity  Gravitation Gravitasi 1Gravity  Gravitation Gravitasi 1
Gravity Gravitation Gravitasi 1
Rifda Latifa977 views
Our Solar System (Space) von kstashuk
Our Solar System (Space)Our Solar System (Space)
Our Solar System (Space)
kstashuk19.8K views
The Solar System (Space) von guestbd73aa
The Solar System (Space)The Solar System (Space)
The Solar System (Space)
guestbd73aa4.2K views
8. universe and earth ana von anaruperez
8. universe and earth ana8. universe and earth ana
8. universe and earth ana
anaruperez468 views
Solar system von isrokids
Solar systemSolar system
Solar system
isrokids1.2K views
Exploring Our Solar System Part 1 von guest1be680
Exploring Our Solar System Part 1Exploring Our Solar System Part 1
Exploring Our Solar System Part 1
guest1be680339 views
Exploring Our Solar System Part 1 von guest4407359
Exploring Our Solar System Part 1Exploring Our Solar System Part 1
Exploring Our Solar System Part 1
guest4407359174 views
Exploring Our Solar System Part 1 von guest4407359
Exploring Our Solar System Part 1Exploring Our Solar System Part 1
Exploring Our Solar System Part 1
guest4407359222 views
Exploring Our Solar System Part 1 von guest9a7a6a
Exploring Our Solar System Part 1Exploring Our Solar System Part 1
Exploring Our Solar System Part 1
guest9a7a6a187 views
Exploring Our Solar System Part 1 von guest9a7a6a
Exploring Our Solar System Part 1Exploring Our Solar System Part 1
Exploring Our Solar System Part 1
guest9a7a6a117 views
Overview Of Astronomy von guestfc4a02
Overview Of AstronomyOverview Of Astronomy
Overview Of Astronomy
guestfc4a02410 views

Último

11.30.23 Poverty and Inequality in America.pptx von
11.30.23 Poverty and Inequality in America.pptx11.30.23 Poverty and Inequality in America.pptx
11.30.23 Poverty and Inequality in America.pptxmary850239
160 views33 Folien
CUNY IT Picciano.pptx von
CUNY IT Picciano.pptxCUNY IT Picciano.pptx
CUNY IT Picciano.pptxapicciano
54 views17 Folien
7 NOVEL DRUG DELIVERY SYSTEM.pptx von
7 NOVEL DRUG DELIVERY SYSTEM.pptx7 NOVEL DRUG DELIVERY SYSTEM.pptx
7 NOVEL DRUG DELIVERY SYSTEM.pptxSachin Nitave
61 views35 Folien
ICS3211_lecture 08_2023.pdf von
ICS3211_lecture 08_2023.pdfICS3211_lecture 08_2023.pdf
ICS3211_lecture 08_2023.pdfVanessa Camilleri
149 views30 Folien
How to empty an One2many field in Odoo von
How to empty an One2many field in OdooHow to empty an One2many field in Odoo
How to empty an One2many field in OdooCeline George
65 views8 Folien
AUDIENCE - BANDURA.pptx von
AUDIENCE - BANDURA.pptxAUDIENCE - BANDURA.pptx
AUDIENCE - BANDURA.pptxiammrhaywood
84 views44 Folien

Último(20)

11.30.23 Poverty and Inequality in America.pptx von mary850239
11.30.23 Poverty and Inequality in America.pptx11.30.23 Poverty and Inequality in America.pptx
11.30.23 Poverty and Inequality in America.pptx
mary850239160 views
CUNY IT Picciano.pptx von apicciano
CUNY IT Picciano.pptxCUNY IT Picciano.pptx
CUNY IT Picciano.pptx
apicciano54 views
7 NOVEL DRUG DELIVERY SYSTEM.pptx von Sachin Nitave
7 NOVEL DRUG DELIVERY SYSTEM.pptx7 NOVEL DRUG DELIVERY SYSTEM.pptx
7 NOVEL DRUG DELIVERY SYSTEM.pptx
Sachin Nitave61 views
How to empty an One2many field in Odoo von Celine George
How to empty an One2many field in OdooHow to empty an One2many field in Odoo
How to empty an One2many field in Odoo
Celine George65 views
Ch. 8 Political Party and Party System.pptx von Rommel Regala
Ch. 8 Political Party and Party System.pptxCh. 8 Political Party and Party System.pptx
Ch. 8 Political Party and Party System.pptx
Rommel Regala49 views
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively von PECB
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks EffectivelyISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively
PECB 585 views
Use of Probiotics in Aquaculture.pptx von AKSHAY MANDAL
Use of Probiotics in Aquaculture.pptxUse of Probiotics in Aquaculture.pptx
Use of Probiotics in Aquaculture.pptx
AKSHAY MANDAL100 views
Pharmaceutical Inorganic chemistry UNIT-V Radiopharmaceutical.pptx von Ms. Pooja Bhandare
Pharmaceutical Inorganic chemistry UNIT-V Radiopharmaceutical.pptxPharmaceutical Inorganic chemistry UNIT-V Radiopharmaceutical.pptx
Pharmaceutical Inorganic chemistry UNIT-V Radiopharmaceutical.pptx
Dance KS5 Breakdown von WestHatch
Dance KS5 BreakdownDance KS5 Breakdown
Dance KS5 Breakdown
WestHatch79 views
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (GLOB... von Nguyen Thanh Tu Collection
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (GLOB...BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (GLOB...
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (GLOB...
Create a Structure in VBNet.pptx von Breach_P
Create a Structure in VBNet.pptxCreate a Structure in VBNet.pptx
Create a Structure in VBNet.pptx
Breach_P75 views

Igcse 16-astronomy

  • 1. EDEXCEL IGCSE / CERTIFICATE IN PHYSICS 1-6 Astronomy Edexcel IGCSE Physics pages 49 to 56 June 17th 2011 All content applies for Triple & Double Science
  • 2. Edexcel Specification Section 1: Forces and motion d) Astronomy understand gravitational field strength, g, and know that it is different on other planets and the moon from that on the Earth. explain that gravitational force: - causes moons to orbit planets - causes the planets to orbit the sun - causes the moon and artificial satellites to orbit the Earth - causes comets to orbit the sun describe the differences in the orbits of comets, moons and planets use the relationship: orbital speed = (2× π × orbital radius) / time period v = (2× π × r) / T understand that: - the universe is a large collection of billions of galaxies - a galaxy is a large collection of billions of stars - our solar system is in the Milky Way galaxy.
  • 3. The Solar System The Solar System consists of the Sun orbited by eight planets and their moons, some dwarf planets along with many asteroids and comets.
  • 4. Planets A planet is a body that orbits the Sun, is massive enough for its own gravity to make it round, and has cleared its neighbourhood of smaller objects around its orbit. Based on this, International Astronomical Union’s definition of 2006, there are only eight planets in orbit around the Sun. In order of distance from the Sun: Mercury Venus Earth Mars Jupiter Saturn Neptune Uranus
  • 5. Dwarf Planets A dwarf planet is a celestial body orbiting the Sun that is massive enough to be spherical as a result of its own gravity. but has not cleared its neighbouring region of other similar bodies. As of 2011 there are five dwarf planets in the Solar System. Between Mars and Jupiter: Ceres Beyond Neptune: Pluto, Haumea, Makemake and Eris (the largest) Hubble image of Pluto and one of its moons (Charon)
  • 6. Asteroids An asteroid is a celestial body orbiting the Sun that is not massive enough to be spherical as a result of its own gravity. Most asteroids are found between the orbits of Mars and Jupiter – a region called ‘The Asteroid Belt’. There are about 750 000 asteroids larger than 1km across. A few, called ‘Near Earth Asteroids’ can pass very close to the Earth. Asteroid Vesta – image taken on July 17th 2011 by the Dawn spacecraft
  • 7. Moons A moon orbits a planet. Planet Moons (2011) Mercury 0 Venus 0 Earth 1 Mars 2 Jupiter 64 Saturn 62 Uranus 27 Neptune 13 The Earth’s only natural satellite Note: A number of dwarf planets and asteroids also have moons, for example Pluto has three moons.
  • 8. This is the time taken for a planet to complete one orbit around the Sun. It increases with a planets distance from the Sun. Mercury 88 days Venus 225 days Earth 1 year Mars 2 years Jupiter 12 years Saturn 29 years Neptune 165 years Uranus 84 years Time period (T )
  • 9. Gravitational attraction The force of gravity is responsible for the orbits of planets, moons, asteroids and comets. In 1687 Sir Isaac Newton stated that this gravitational force: - is always attractive - would double if either the mass of Sun or the planet was doubled - decreases by a factor of 4 as the distance between the Sun and a planet doubles.
  • 10. Gravitational field strength (g) This is a way of measuring the strength of gravity. The gravitational field strength is equal to the gravitational force exerted per kilogram. Near the Earth’s surface, g = 10 N/kg In most cases gravitational field strength in N/kg is numerically equal to the acceleration due to gravity in m/s2 , hence they both use the same symbol ‘g’.
  • 11. Gravitational field strength (g) varies from planet to planet. It is greatest near the most massive objects. Some examples of gravitational field strength: Location N/kg Location N/kg Earth 10 Jupiter 24 Moon 1.6 Pluto 0.7 Mars 3.7 The Sun 270
  • 12. Planet, Dwarf Planet or Moon Number of moons (2011) Average distance from the Sun (millions of km) Diameter (km) Time for one orbit (years) Average surface temperature (°C) Gravitation al field strength (N/kg) Mercury 0 58 4 700 0.2 (88 days) + 350 4 Venus 0 108 12 100 0.6 (225 days) + 470 9 Earth 1 150 (93 million miles) 12 700 `1.0 + 15 10 Moon - 0.38 (from the Earth) 3 400 0.07 (27 days) - 50 1.6 Mars 2 228 6 800 1.9 - 30 4 Ceres 0 414 970 4.6 - 100 0.3 Jupiter 64 779 143 000 12 - 150 23 Saturn 62 1443 120 000 30 - 180 9 Uranus 27 2877 51 000 84 - 210 9 Neptune 13 4503 49 000 165 - 220 11 Pluto 3 5874 2 300 248 - 230 0.7
  • 13. Planetary orbits The orbits of the planets are slightly squashed circles (ellipses) with the Sun quite close to the centre. The Sun lies at a ‘focus’ of the ellipse
  • 14. Planets move more quickly when they are closer to the Sun. faster slower The above diagram is exaggerated!
  • 15. What would happen to an orbit without gravity As the red planet moves it is continually pulled by gravity towards the Sun. Gravity therefore causes the planet to move along a circular path – an orbit. If this gravity is removed the planet will continue to move along a straight line at a tangent to its original orbit.
  • 16. Comets A comet is a body made of dust and ice that occupies a highly elongated orbit. When the comet passes close to the Sun some of the comet’s frozen gases evaporate. These form a long tail that shines in the sunlight. Comets are most visible and travel quickest when close to the Sun. Comets are approximately 1-30km in diameter.
  • 17. Halley’s Comet This is perhaps the most famous comet. It returns to the inner Solar System every 75 to 76 years. It last appeared in 1986 and is due to return in 2061. It has been observed since at least 240BC. In 1705 Edmund Halley correctly predicted its reappearance in 1758.
  • 18. Choose appropriate words to fill in the gaps below: The Solar System consists of a ______, the Sun, orbited by _______ planets, a number of dwarf planets and millions of asteroids and ________. All of these bodies ______ the Sun because of gravitational force. Gravity is also responsible for the orbits of _______ and artificial satellites. Most orbits are nearly circular _______ but those of comets are highly elongated. Comets move ________ when they are at their nearest to the Sun quickest eight star cometsellipses WORD SELECTION: orbit moons quickest eight star comets ellipses orbit moons
  • 19. Orbital speed (v) orbital speed = (2π x orbital radius) / time period v = (2π x r ) / T orbital speed in metres per second (m/s) orbital radius in metres (m) time period in seconds (s)
  • 20. Question 1 Calculate the orbital speed of the Earth around the Sun. (Earth orbital radius = 150 million km) v = (2π x r ) / T = (2π x [150 000 000 km] ) / [1 year] but 1 year = (365 x 24 x 60 x 60) seconds = 31 536 000 s and 150 000 000 km = 150 000 000 000 metres v = (2π x [150 000 000 000] ) / [31 536 000] orbital speed = 29 900 m/s
  • 21. Question 2 Calculate the orbital speed of the Moon around the Earth. (Moon orbital radius = 380 000 km; orbit time = 27.3 days) v = (2π x r ) / T = (2π x [380 000 km] ) / [27.3 days] but 27.3 days = (27.3 x 24 x 60 x 60) seconds = 2 359 000 s and 380 000 km = 380 000 000 metres v = (2π x [380 000 000] ) / [2 359 000] orbital speed = 1 012 m/s
  • 22. Question 3 Calculate the orbital speed of the ISS (International Space Station) around the Earth. (ISS orbital height = 355 km; orbit time = 91 minutes; Earth radius = 6 378 km) The orbit radius of the ISS = (355 + 6 378) km = 6 733 km v = (2π x r ) / T = (2π x [6 733 km] ) / [91 minutes] but 91 minutes = (91 x 60) seconds = 5 460 s and 6 733 km = 6 733 000 metres v = (2π x [6 733 000] ) / [5 460] orbital speed = 7 748 m/s
  • 23. Question 4 Calculate the orbital time of a satellite that has a speed of 3 075 m/s and height above the earth of 35 906 km. (Earth radius = 6 378 km) The orbit radius of the satellite = (35 576 + 6 378) km = 42 284 km v = (2π x r ) / T becomes: T = (2π x r ) / v = (2π x [42 284 km] ) / [3 075 m/s] but 42 284 km = 42 284 000 metres T = (2π x [41 954 000 ] ) / [3 075 ] orbital time = 86 400 seconds = 1440 minutes = 24 hours
  • 24. Communication satellites These are usually placed in geostationary orbits so that they always stay above the same place on the Earth’s surface. VIEW FROM ABOVE THE NORTH POLE
  • 25. Geostationary satellites must have orbits that: - take 24 hours to complete - circle in the same direction as the Earth’s spin - are above the equator - orbit at a height of about 36 000 km Uses of communication satellites include satellite TV and some weather satellites.
  • 26. Choose appropriate words to fill in the gaps below: A satellite is a ________ mass object orbiting around a ________ mass body. The larger the orbit of a satellite the more ________ it moves and the ________ it takes to complete one orbit. Geostationary satellites are used for _____________ and have an orbital period of _____ hours. _____________ satellites normally use polar orbits. 24lowerlonger slowly communications WORD SELECTION: highermonitoring 24 lower longer slowly communications higher monitoring
  • 27. The Milky Way The Milky Way is the name of our galaxy. From Earth we can see our galaxy edge-on. In a very dark sky it appears like a ‘cloud’ across the sky resembling a strip of spilt milk. A very dark sky is required to see the Milky Way this clearly
  • 28. Galaxies Galaxies consist of billions of stars bound together by the force of gravity. There are thought to be at least 200 billion galaxies in our Universe each containing on average 2 billion stars. The Sun’s position in the Milky Way The Andromeda Galaxy
  • 29. Types of galaxy Barred-Spiral – NGC 1300 Our galaxy is this type Spiral – The Whirlpool Galaxy Elliptical – M32 Irregular – The Small Magellanic Cloud
  • 30. Choose appropriate words to fill in the gaps below: The ___________ is made up of billions of galaxies which consist of __________ of stars bound to each other by the force of ___________. The name of our _________ is The Milky Way. The ______ is located towards the outer edge of our galaxy. The are different types of galaxy; ________, barred-spiral, elliptical and irregular. The Milky Way is a ____________ galaxy. The _____________ Galaxy is the nearest spiral galaxy to the Milky Way. spiralgalaxy gravity billionsSun barred-spiral WORD SELECTION: Universe Andromeda spiral galaxy gravity billions Sun barred-spiral Universe Andromeda
  • 31. Online Simulations My Solar System - PhET- Build your own system of heavenly bodies and watch the gravitational ballet. With this orbit simulator, you can set initial positions, velocities, and masses of 2, 3, or 4 bodies, and then see them orbit each other. Multiple planets - 7stones Planet orbit info - Fendt Distances in Space - Powerpoint presentation by JAA Solar system quizes - How well do you know the solar system? This resource contains whiteboard activities to order and name the planets corrrectly as well as a palnet database - by eChalk Hidden Pairs Game on Planet Facts - by KT - Microsoft WORD Fifty-Fifty Game on Planets with Atmospheres - by KT - Microsoft WORD Fifty-Fifty Game on Planets that are smaller than the Earth - by KT - Microsoft WORD Sequential Puzzle on Planet Order - by KT - Microsoft WORD Sequential Puzzle on Planet Size - by KT - Microsoft WORD Lunar Eclipse - flash demo Phases of the Moon - Freezeway.com Phases of the Moon - eChalk Seasons - Freezeway.com Gravity & Orbits - PhET - Move the sun, earth, moon and space station to see how it affects their gravitational forces and orbital paths. Visualize the sizes and distances between different heavenly bodies, and turn off gravity to see what would happen without it! Projectile & Satellite Orbits - NTNU Newton's Cannon Demo - to show how orbits occur - by Michael Fowler Kepler Motion - NTNU Kepler's 2nd Law - Fendt Two & Three Body Orbits - 7stones Orbits - Gravitation program BBC KS3 Bitesize Revision: The Solar System Gravitational Forces Days & Nights Years & Seasons - includes an applet showing the tilt of the Earth The Moon Artificial space probes and satellites
  • 32. Astronomy Notes questions from pages 49 to 56 1. Outline the structure of the Solar System and explain the difference between a planet and a moon. (see pages 49 to 50) 2. Define what is meant by gravitational field strength and explain how it may differ throughout the Solar System. (see page 50) 3. How is the orbit of a comet different from a planet? (see pages 51 and 52) 4. (a) Give the equation for orbital speed. (b) Calculate the orbital speed of Mercury around the Sun. [Mercury orbital radius = 58 million km; orbital time = 88 days]. (see page 54) 5. (a) What is the ‘Milky Way’? (b) What is a galaxy? (c) How many galaxies are there in the Universe? (see page 55) 6. Answer the questions on page 56. 7. Verify that you can do all of the items listed in the end of chapter checklist on page 56.