SlideShare a Scribd company logo
1 of 60
1
Chemistry
Second Edition
Julia Burdge
Lecture PowerPoints
Jason A. Kautz
University of Nebraska-Lincoln
Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
5
Thermochemistry
Thermochemistry5
5.1 Energy and Energy Changes
Forms of Energy
Energy Changes in Chemical Reactions
Units of Energy
5.2 Introduction to Thermodynamics
States and State Functions
The First Law of Thermodynamics
Work and Heat
5.3 Enthalpy
Reactions Carried Out at Constant Volume or at Constant Pressure
Enthalpy and Enthalpy Changes
Thermochemical Equations
5.4 Calorimetry
Specific Heat and Heat Capacity
Constant-Pressure Calorimetry
Constant-Volume Calorimetry
5.5 Hess’s Law
5.6 Standard Enthalpies of Formation
Energy and Energy Changes
Energy is the capacity to do work or transfer heat.
All forms of energy are either kinetic or potential.
Kinetic energy (EK) is the energy of motion.
m is the mass of the object in kilograms
u is the velocity in meters per second.
EK = mu2
1
2
5.1
Energy and Energy Changes
Potential energy is the energy possessed by an object by virtue of its
position.
Chemical energy is energy stored within the structural units of
chemical substances.
Electrostatic energy is potential energy that results from the
interaction of charged particles.
Q1 and Q2 represent two charges separated by the distance, d.
1 2
el
QQ
E
d
µ
Energy and Energy Changes
Kinetic and potential energy are interconvertible.
The law of conservation of energy states that the total amount of
energy in the universe is constant.
When energy of one form disappears, the same amount of energy
reappears in another form or forms.
Energy and Energy Changes
The system is a part of the universe that is of specific interest.
The surroundings constitute the rest of the universe outside the system.
The system is usually defined as the substances involved in chemical
and physical changes.
System
Surroundings
Universe = System + Surroundings
Energy and Energy Changes
Thermochemistry is the study of heat (the transfer of thermal energy) in
chemical reactions.
Heat is the transfer of thermal energy.
Heat is either absorbed or released during a process.
Surroundings
heat
Energy and Energy Changes
An exothermic process occurs when
heat is transferred from the system to
the surroundings.
“Feels hot!”
Surroundings
Universe = System + Surroundings
heat
System
2H2(g) + O2(g) 2H2O(l) + energy
Energy and Energy Changes
An endothermic process occurs
when heat is transferred from the
surroundings to the system.
“Feels cold”
energy + 2HgO(s) 2Hg(l) + O2(g)
Surroundings
Universe = System + Surroundings
heat
System
Energy and Energy Changes
Energy and Energy Changes
Calculate the energy in joules of a 5.25 g object moving at a speed of
655 m/s.
Solution:
Step 1: First convert grams to kilograms. (0.00525 kg)
Step 2: Substitute into the equation for kinetic energy and solve.
21
=
2
KE mu
21
= (0.00525 kg)(655 m/s) = 1130 J
2
KE
Introduction to Thermodynamics
Thermodynamics is the study of the interconversion of heat and other
kinds of energy.
In thermodynamics, there are three types
of systems:
An open system can exchange mass and
energy with the surroundings.
5.2
Introduction to Thermodynamics
Thermodynamics is the study of the interconversion of heat and other
kinds of energy.
In thermodynamics, there are three types
of systems:
An open system can exchange mass and
energy with the surroundings.
A closed system allows the transfer
of energy but not mass.
Introduction to Thermodynamics
Thermodynamics is the study of the interconversion of heat and other
kinds of energy.
In thermodynamics, there are three types
of systems:
An open system can exchange mass and
energy with the surroundings.
A closed system allows the transfer
of energy but not mass.
An isolated system does not exchange
either mass or energy with its
surroundings.
Introduction to Thermodynamics
State functions are properties that are determined by the sate of the
system, regardless of how that condition was achieved.
The magnitude of change depends only on the initial and final states of the
system.
Energy
Pressure
Volume
Temperature
Introduction to Thermodynamics
The first law of thermodynamics states that energy can be converted
from one form to another, but cannot be created or destroyed.
ΔU is the change in the internal energy.
“sys” and “surr” denote system and surroundings, respectively
ΔU = Uf – Ui; the difference in the energies of the initial and final states.
ΔUsys + ΔUsurr = 0
ΔUsys = –ΔUsurr
Introduction to Thermodynamics
The overall change in the system’s internal energy is given by:
q is heat
q is positive for an endothermic process (heat absorbed by the
system)
q is negative for an exothermic process (heat released by the system)
w is work
w is positive for work done on the system
w is negative for work done by the system
ΔU = q + w
Introduction to Thermodynamics
ΔU = q + w
Enthalpy
Sodium azide detonates to give a large quantity of nitrogen gas.
Under constant volume conditions, pressure increases:
2NaN3(s) 2Na(s) + 3N2(g)
5.3
Enthalpy
Sodium azide detonates to give a large quantity of nitrogen gas.
Under constant pressure conditions, volume increases:
2NaN3(s) 2Na(s) + 3N2(g)
Enthalpy
Pressure-volume, or PV work, is done when there is a volume change
under constant pressure.
w = −PΔV
P is the external opposing pressure
ΔV is the change in the volume of
the container
Enthalpy
Pressure-volume, or PV work, is done when there is a volume change
under constant pressure.
w = −PΔV
When a change occurs at constant volume, ΔV = 0 and no work is done.
ΔU = q + w
qv = ΔU
ΔU = q − PΔV
substitute
Enthalpy
Under conditions of constant pressure:
ΔU = q + w
qp = ΔU + PΔV
ΔU = q − PΔV
Enthalpy
The thermodynamic function of a system called enthalpy (H) is defined by
the equation:
H = U + PV
A note about SI units:
Pressure: pascal; 1Pa = 1 kg/(m . s2
)
Volume: cubic meters; m3
PV: 1kg/(m . s2
) x m3
= 1(kg . m2
)/s2
= 1 J
Enthalpy: joules
U, P, V, and H are all state functions.
Enthalpy
For any process, the change in enthalpy is:
ΔH = ΔU + Δ(PV) (1)
ΔH = ΔU + PΔV
If pressure is constant:
(2)
ΔU = ΔH + PΔV
Rearrange to solve for ΔU:
(3)
qp = ΔU + PΔV
Remember, qp:
(4)
qp = (ΔH − PΔV) + PΔV
Substitute equation (3) into equation (4) and solve:
(5)
qp = ΔH for a constant-pressure process
Enthalpy
The enthalpy of reaction is the difference between the enthalpies of the
products and the enthalpies of the reactants:
Assumes reactions in the lab occur at constant pressure
ΔH > 0 (positive) endothermic process
ΔH < 0 (negative) exothermic process
ΔH = H(products) – H(reactants)
Enthalpy
Concepts to consider:
• Is this a constant pressure
process?
• What is the system?
• What are the surroundings?
• ΔH > 0 endothermic
H2O(s) H2O(l) ΔH = +6.01 kJ/mol
Enthalpy
Concepts to consider:
• Is this a constant pressure process?
• What is the system?
• What are the surroundings?
• ΔH < 0 exothermic
CH4(g) + 2O2(g) CO2(g) + 2H2O(l) ΔH = −890.4 kJ/mol
Enthalpy
Enthalpy is an extensive property.
Extensive properties are dependent on the amount of matter involved.
H2O(l) → H2O(g) ΔH = +44 kJ/mol
2H2O(l) → 2H2O(g) ΔH = +88 kJ/mol
Units refer to
mole of reaction as written
Double the amount of matter Double the enthalpy
Enthalpy
The following guidelines are useful when considering thermochemical
equations:
1) Always specify the physical states of reactants and products because
they help determine the actual enthapy changes.
CH4(g) + 2O2(g) ΔH = −802.4 kJ/molCO2(g) + 2H2O(g)
CH4(g) + 2O2(g) ΔH = +890.4 kJ/molCO2(g) + 2H2O(l)
different states different enthalpies
Enthalpy
The following guidelines are useful when considering thermochemical
equations:
2) When multiplying an equation by a factor (n), multiply the ∆H value by
same factor.
CH4(g) + 2O2(g) ΔH = −802.4 kJ/molCO2(g) + 2H2O(g)
2CH4(g) + 4O2(g) ΔH = −1604.8 kJ/mol2CO2(g) + 4H2O(g)
3) Reversing an equation changes the sign but not the magnitude of
ΔH.
CH4(g) + 2O2(g) ΔH = +802.4 kJ/molCO2(g) + 2H2O(g)
CO2(g) + 2H2O(g) ΔH = -802.4 kJ/molCH4(g) + 2O2(g)
Enthalpy
Calculate the solar energy required to produce 5255 g of C6H12O6 given
the thermochemical equation for photosynthesis:
Solution:
Step 1: Determine the moles of C6H12O6. (29.16 mol C6H12O6)
Step 2: Multiply the thermochemical equation, including the enthalpy
change by 29.16 in order to write the equation in terms of the
appropriate amount of C6H12O6.
6H2O(l) + 6CO2(g) ΔH = +2803 kJ/molC6H12O6(s) + 6O2(g)
6H2O(l) + 6CO2(g) ΔH = +2803 kJ/molC6H12O6(s) + 6O2(g)
175.0H2O(l) + 175.0CO2(g) ΔH = +81,740 kJ29.16C6H12O6(s) + 175.0O2(g)
29.16 mol
Calorimetry
Calorimetry is the measurement of heat changes.
Heat changes are measured in a device called a calorimeter.
The specific heat (s) of a substance is the amount of heat required to
raise the temperature of 1 g of the substance by 1 °C.
5.4
Calorimetry
The heat capacity (C) is the amount of heat required to raise the
temperature of an object by 1°C.
The “object” may be a given quantity of a particular substance.
Specific heat capacity has units of J/(g • °C)
Heat capacity has units of J/°C
4.184 J
heat capacity of 1 kg of water = 1000 g = 4184 J/ C
1 g C
× °
• °
Specific heat capacity of water heat capacity of
1 kg water
Calorimetry
The heat associated with a temperature change may be calculated:
m is the mass.
s is the specific heat.
ΔT is the change in temperature (ΔT = Tfinal – Tinitial).
C is the heat capacity.
q = msΔT q = CΔT
Calorimetry
Calculate the amount of heat required to heat 1.01 kg of water from 0.05°C
to 35.81°C.
Solution:
Step 1: Use the equation q = msΔT to calculate q.
1000 g 4.184 J
1.01 kg [35.81 C 0.05 C] = 151000 J = 151 kJ
1 kg g C
q = × × × ° − °
• °
Calorimetry
A coffee-cup calorimeter may be used to measure the heat
exchange for a variety of reactions at constant pressure:
Heat of neutralization:
HCl(aq) + NaOH(aq) → H2O(l) + NaCl(aq)
Heat of ionization:
H2O(l) → H+
(aq) + OH‒
(aq)
Heat of fusion:
H2O(s) → H2O(l)
Heat of vaporization:
H2O(l) → H2O(g)
Calorimetry
Concepts to consider for coffee-cup calorimetry:
qp = ΔH
System: reactants and products (the reaction)
Surroundings: water in the calorimeter
For an exothermic reaction:
the system loses heat
the surroundings gain (absorb) heat
qsys = −msΔT
The minus sign is used to keep
sign conventions consistent.
qsurr = msΔT qsys = −qsurr
Calorimetry
A bolt is heated to 100.0°C and is dropped into a coffee-cup calorimeter
containing 125 g of water at 25.0°C. The final temperature of both the
bolt and the water is 35.8°C. Calculate the heat capacity of the bolt.
Solution:
Step 1: Calculate the heat absorbed by the water.
Step 2: The heat absorbed by the water must be released by the bolt.
qwater = −qbolt
qbolt = −5648.4 J
water
4.184 J
= 125 g [35.8 C 25.0 C] = 5648.4 J
g C
q × × ° − °
• °
q = msΔT
Calorimetry
A bolt is heated to 100.0°C and is dropped into a coffee-cup calorimeter
containing 125 g of water at 25.0°C. The final temperature of both the
bolt and the water is 35.8°C. Calculate the heat capacity of the bolt.
Solution:
Step 3: Determine the heat capacity of the bolt
−5648.4 J = Cbolt(35.8°C – 100.0°C)
Cbolt = 88.0 J/°C.
q = CΔT
Calorimetry
Constant volume calorimetry is carried out in a device known as a
constant-volume bomb.
qcal = −qrxn
A constant-volume calorimeter is
an isolated system.
Bomb calorimeters are typically
used to determine heats of
combustion.
Calorimetry
qrxn = −CcalΔT
qcal = CcalΔT
qrxn = −qcal
To calculate qcal, the heat capacity of the calorimeter must be known.
Solution:
Step 1: Calculate the heat capacity using the
equation qrxn = −CcalΔT.
−26.38 kJ = −Ccal(27.20°C – 23.40°C)
Ccal = 6.94 kJ/°C
Calorimetry
A 1.000 g sample of benzoic acid is burned in a bomb calorimeter. The
reaction gives off 26.38 kJ of heat and the temperature of the water in
the calorimeter increased from 23.40°C to 27.20°C.
What is the heat capacity of the calorimeter?
26.38 kJ of heat given off
Calorimetry
Solution:
Step 1: Calculate the heat using the
equation qrxn = −CcalΔT.
qrxn = −6.94 kJ/°C x (23.2°C)
qrxn = −161 kJ
When 10.0 g of a Krispy Kreme doughnut is burned in a bomb
calorimeter with a heat capacity of 6.94 kJ/°C, the temperature inside the
calorimeter increases by 23.2°C.
What is the energy content per gram?
Calorimetry
When 10.0 g of a Krispy Kreme doughnut is burned in a bomb
calorimeter with a heat capacity of 6.94 kJ/°C, the temperature inside
the calorimeter increases by 23.2°C.
What is the energy content per gram?
Solution:
Step 2: Determine the energy content per gram.
Note: Energy content per gram is a positive value.
161 kJ
energy content per gram = = 16.1 kJ/g
10.0 g
Hess’s Law
Hess’s law states that the change in enthalpy for a stepwise process is the
sum of the enthalpy changes for each of the steps.
CH4(g) + 2O2(g) ΔH = −890.4 kJ/molCO2(g) + 2H2O(l)
CH4(g) + 2O2(g) ΔH = −802.4 kJ/molCO2(g) + 2H2O(g)
2H2O(l) ΔH = +88.0 kJ/mol2H2O(g)
CH4(g) + 2O2(g)
CO2(g) + 2H2O(l)
ΔH = −890.4 kJ
ΔH = +88.0 kJ
CO2(g) + 2H2O(g)
ΔH = −802.4 kJ
5.5
Hess’s Law
When applying Hess’s Law:
1) Manipulate thermochemical equations in a manner that gives the
overall desired equation.
2) Remember the rules for manipulating thermochemical equations:
3) Add the ∆H for each step after proper manipulation.
4) Process is useful for calculating enthalpies that cannot be found directly.
Always specify the physical states of reactants and products
because they help determine the actual enthalpy changes.
When multiplying an equation by a factor (n), multiply the ∆H
value by same factor.
Reversing an equation changes the sign but not the magnitude
of ΔH.
Hess’s Law
Determine the ΔH for the following reaction:
Fe2O3(s) + 3CO(g) → 2Fe(s) + 3CO2(g)
Given the information below.
Solution:
Step 1: Arrange the thermochemical equations so that they sum to the
desired equation.
Reverse equation (1); remember to change the sign of ΔH.
CO(g) + O2(g) → CO2(g) ΔH = −282.7 kJ/mol (2)
1
2
2Fe(s) + O2(g) → Fe2O3(s) ΔH = −824.2 kJ/mol (1)
3
2
Fe2O3(s) → 2Fe(s) + O2(g) ΔH = +824.2 kJ/mol (1)
3
2
Hess’s Law
Determine the ΔH for the following reaction:
Fe2O3(s) + 3CO(g) → 2Fe(s) + 3CO2(g)
Given the information below.
Solution:
Step 2: Multiply equation (2) by a factor of 3.
CO(g) + O2(g) → CO2(g) ΔH = −282.7 kJ/mol (2)
1
2
2Fe(s) + O2(g) → Fe2O3(s) ΔH = −824.2 kJ/mol (1)
3
2
3CO(g) + O2(g) → 3CO2(g) ΔH = −848.1 kJ/mol
(2)
3
2
Hess’s Law
Determine the ΔH for the following reaction:
Fe2O3(s) + 3CO(g) → 2Fe(s) + 3CO2(g)
Solution:
Step 3: Sum all the steps and their enthalpy changes.
3CO(g) + O2(g) → 3CO2(g) ΔH = −848.1 kJ/mol
3
2
Fe2O3(s) → 2Fe(s) + O2(g) ΔH = +824.2 kJ/mol
3
2
Fe2O3(s) + 3CO(g) → 2Fe(s) + 3CO2(g) ΔH = −23.9 kJ/mol
Standard Enthapies of Formation
The standard enthalpy of formation (ΔH f°) is defined as the heat change
that results when 1 mole of a compound is formed from its constituent
elements in their standard states.
Elements in standard
states
C(graphite) + O2(g) CO2(g) ΔHf° = −393.5 kJ/mol
1 mole of product
5.6
Standard Enthapies of Formation
The standard enthalpy of formation (ΔH f°) is defined as the heat change
that results when 1 mole of a compound is formed from its constituent
elements in their standard states.
The superscripted degree sign denotes standard conditions.
1 atm pressure for gases
1 M concentration for solutions
“f” stands for formation.
ΔHf° for an element in its most stable form is zero
ΔHf° for many substances are tabulated in Appendix 2 of the textbook.
Standard Enthapies of Formation
The standard enthalpy of reaction (ΔH°rxn) is defined as the enthalpy of a
reaction carried out under standard conditions.
aA + bB → cC + dD
n and m are the stoichiometric coefficients for the reactants and products
ΔH°rxn = ΣnΔHf°(products) – ΣmΔHf°(reactants)
ΔH°rxn = [cΔH f°(C) + dΔHf°(D) ] – [aΔHf°(A) + bΔHf°(B)]
Standard Enthapies of Formation
Use the data provided to calculate ΔH°rxn for the following reaction:
CaCO3(s) → CaO(s) + CO2(g) ΔH°rxn = ?
Solution:
Step 1: Use the equation below to calculate ΔH°rxn.
ΔH°rxn = ΣnΔHf°(products) – ΣmΔHf°(reactants)
ΔH°rxn = [1ΔHf° CaO(s) + 1ΔHf° CO2(g) ] – [1ΔHf° CaCO3(s)]
Substance
ΔHf°
(kJ/mol)
CaCO3(s) −1206.9
CaO(s) −635.6
CO2(g) −393.5
ΔH°rxn = [1(−635.6 kJ/mol) + 1(−393.5 kJ/mol) ] – [1(−1206.9 kJ/mol)] = 177.8 kJ/mol
Standard Enthalpies of Formation
Use the following data to calculate ΔHf° for CS2(l):
Solution:
Step 1: Write the equation corresponding to the standard enthalpy of
formation of CS2(l).
CO2(g) ΔHrxn = –393.5 kJ/mol (1)C(graphite)(s) + O2(g) °
SO2(g) ΔHrxn = –296.4 kJ/mol (2)S(rhombic)(s) + O2(g) °
CO2(g) + 2SO2(g) ΔHrxn = –1073.6 kJ/mol (3)CS2(l) + 3O2(g) °
CS2(l) ΔHrxn = ?C(graphite)(s) + 2S(rhombic)(s) °
Standard Enthalpies of Formation
Use the following data to calculate ΔHf° for CS2(l):
Solution:
Step 2: Include Equation (1) and its ΔHrxn value as is:
CO2(g) ΔHrxn = –393.5 kJ/mol (1)C(graphite)(s) + O2(g) °
SO2(g) ΔHrxn = –296.4 kJ/mol (2)S(rhombic)(s) + O2(g) °
CO2(g) + 2SO2(g) ΔHrxn = –1073.6 kJ/mol (3)CS2(l) + 3O2(g) °
°
CO2(g) ΔHrxn = –393.5 kJ/molC(graphite)(s) + O2(g) °
Standard Enthalpies of Formation
Use the following data to calculate ΔHf° for CS2(l):
Solution:
Step 3: Multiply Equation (2) and its ΔHrxn value by 2:
CO2(g) ΔHrxn = –393.5 kJ/mol (1)C(graphite)(s) + O2(g) °
SO2(g) ΔHrxn = –296.4 kJ/mol (2)S(rhombic)(s) + O2(g) °
CO2(g) + 2SO2(g) ΔHrxn = –1073.6 kJ/mol (3)CS2(l) + 3O2(g) °
°
2SO2(g) ΔHrxn = –592.8 kJ/mol2S(rhombic)(s) + 2O2(g) °
Standard Enthalpies of Formation
Use the following data to calculate ΔHf° for CS2(l):
Solution:
Step 4: Reverse Equation (3) and change the sign of its ΔHrxn value:
CO2(g) ΔHrxn = –393.5 kJ/mol (1)C(graphite)(s) + O2(g) °
SO2(g) ΔHrxn = –296.4 kJ/mol (2)S(rhombic)(s) + O2(g) °
CO2(g) + 2SO2(g) ΔHrxn = –1073.6 kJ/mol (3)CS2(l) + 3O2(g) °
°
CS2(l) + 3O2(g) ΔHrxn = 1073.6 kJ/molCO2(g) + 2SO2(g) °
Standard Enthalpies of Formation
Solution:
Step 5: Sum the resulting equations and enthalpy values:
CS2(l) + 3O2(g) ΔHrxn = 1073.6 kJ/molCO2(g) + 2SO2(g) °
2SO2(g) ΔHrxn = –592.8 kJ/mol2S(rhombic)(s) + 2O2(g) °
CO2(g) ΔHrxn = –393.5 kJ/molC(graphite)(s) + O2(g) °
CS2(l) ΔHrxn = 87.3 kJ/molC(graphite)(s) + 2S(rhombic)(s) °
Chapter Summary: Key Points5
Energy and Energy Changes
Forms of Energy
Energy Changes in Chemical Reactions
Units of Energy
Introduction to Thermodynamics
States and State Functions
The First Law of Thermodynamics
Work and Heat
Enthalpy
Reactions Carried Out at Constant
Volume or at Constant Pressure
Enthalpy and Enthalpy Changes
Thermochemical Equations
Calorimetry
Specific Heat and Heat Capacity
Constant-Pressure Calorimetry
Constant-Volume Calorimetry
Hess’s Law
Standard Enthalpies of Formation
System
Surroundings
Universe = System + Surroundings

More Related Content

What's hot

Tang 01b enthalpy, entropy, and gibb's free energy
Tang 01b  enthalpy, entropy, and gibb's free energyTang 01b  enthalpy, entropy, and gibb's free energy
Tang 01b enthalpy, entropy, and gibb's free energy
mrtangextrahelp
 
Adsorption isotherms
Adsorption isotherms Adsorption isotherms
Adsorption isotherms
Jaskirat Kaur
 

What's hot (20)

BET IIT DHANBAD
BET IIT DHANBADBET IIT DHANBAD
BET IIT DHANBAD
 
UNIMOLECULAR SURFACE REACTION: MECHANISM, INHIBITION AND ACTIVATION ENERGY
UNIMOLECULAR SURFACE REACTION: MECHANISM, INHIBITION AND ACTIVATION ENERGYUNIMOLECULAR SURFACE REACTION: MECHANISM, INHIBITION AND ACTIVATION ENERGY
UNIMOLECULAR SURFACE REACTION: MECHANISM, INHIBITION AND ACTIVATION ENERGY
 
Colloids
ColloidsColloids
Colloids
 
Lect. 21 raman spectroscopy introduction
Lect. 21 raman spectroscopy introductionLect. 21 raman spectroscopy introduction
Lect. 21 raman spectroscopy introduction
 
CHROMATOGRAPHY FINAL.pptx
CHROMATOGRAPHY FINAL.pptxCHROMATOGRAPHY FINAL.pptx
CHROMATOGRAPHY FINAL.pptx
 
Charge-Transfer-Spectra. metal to metal, metal to ligand
Charge-Transfer-Spectra. metal to metal, metal to ligandCharge-Transfer-Spectra. metal to metal, metal to ligand
Charge-Transfer-Spectra. metal to metal, metal to ligand
 
Quantum mechanics
Quantum mechanicsQuantum mechanics
Quantum mechanics
 
basics of thermodynamics- chemical engg.
basics of thermodynamics- chemical engg.basics of thermodynamics- chemical engg.
basics of thermodynamics- chemical engg.
 
PHASE TRANSFER CATALYSIS - PTC
PHASE TRANSFER CATALYSIS - PTCPHASE TRANSFER CATALYSIS - PTC
PHASE TRANSFER CATALYSIS - PTC
 
Solvation effects on reactions
Solvation effects on reactionsSolvation effects on reactions
Solvation effects on reactions
 
Ch.06 Chemical Equilibrium
Ch.06 Chemical EquilibriumCh.06 Chemical Equilibrium
Ch.06 Chemical Equilibrium
 
Wave function
Wave functionWave function
Wave function
 
Thermal Analysis TA, TGA, DSC, DTA
Thermal Analysis TA, TGA, DSC, DTAThermal Analysis TA, TGA, DSC, DTA
Thermal Analysis TA, TGA, DSC, DTA
 
Crystallization (process chem).pptx
Crystallization (process chem).pptxCrystallization (process chem).pptx
Crystallization (process chem).pptx
 
Tang 01b enthalpy, entropy, and gibb's free energy
Tang 01b  enthalpy, entropy, and gibb's free energyTang 01b  enthalpy, entropy, and gibb's free energy
Tang 01b enthalpy, entropy, and gibb's free energy
 
Adsorption isotherms
Adsorption isotherms Adsorption isotherms
Adsorption isotherms
 
Solution and colligative properties
Solution and colligative propertiesSolution and colligative properties
Solution and colligative properties
 
Dipole moment hs13
Dipole moment hs13Dipole moment hs13
Dipole moment hs13
 
Rate Expression and Order of Reaction
Rate Expression and Order of ReactionRate Expression and Order of Reaction
Rate Expression and Order of Reaction
 
Advanced photochemistry
Advanced photochemistryAdvanced photochemistry
Advanced photochemistry
 

Similar to 005 lecture f

Honour Chemistry Unit 4 Thermoc.docx
Honour Chemistry                               Unit 4 Thermoc.docxHonour Chemistry                               Unit 4 Thermoc.docx
Honour Chemistry Unit 4 Thermoc.docx
wellesleyterresa
 
Chemistry- JIB Topic 9 Thermochemistry
Chemistry- JIB Topic 9 ThermochemistryChemistry- JIB Topic 9 Thermochemistry
Chemistry- JIB Topic 9 Thermochemistry
Sam Richard
 

Similar to 005 lecture f (20)

CHE 101 Thermochem.ppt
CHE 101 Thermochem.pptCHE 101 Thermochem.ppt
CHE 101 Thermochem.ppt
 
Chapter 6 notes
Chapter 6 notesChapter 6 notes
Chapter 6 notes
 
Ch 8 - Energy, Enthalpy, and Thermochemistry.pdf
Ch 8 - Energy, Enthalpy, and Thermochemistry.pdfCh 8 - Energy, Enthalpy, and Thermochemistry.pdf
Ch 8 - Energy, Enthalpy, and Thermochemistry.pdf
 
Honour Chemistry Unit 4 Thermoc.docx
Honour Chemistry                               Unit 4 Thermoc.docxHonour Chemistry                               Unit 4 Thermoc.docx
Honour Chemistry Unit 4 Thermoc.docx
 
Causes of change
Causes of changeCauses of change
Causes of change
 
AP_Chem_Thermodynamics.pptx
AP_Chem_Thermodynamics.pptxAP_Chem_Thermodynamics.pptx
AP_Chem_Thermodynamics.pptx
 
Inorganic Chemistry: Thermochemistry
Inorganic Chemistry: ThermochemistryInorganic Chemistry: Thermochemistry
Inorganic Chemistry: Thermochemistry
 
Thermochem
ThermochemThermochem
Thermochem
 
F y b. sc. ii. chemical energetics
F y b. sc. ii. chemical energeticsF y b. sc. ii. chemical energetics
F y b. sc. ii. chemical energetics
 
Ch6 Thermochemistry (updated)
Ch6 Thermochemistry (updated)Ch6 Thermochemistry (updated)
Ch6 Thermochemistry (updated)
 
First Law of Thermodynamics
First Law of ThermodynamicsFirst Law of Thermodynamics
First Law of Thermodynamics
 
Jatin bhatia art integration project 22
Jatin bhatia art integration project 22Jatin bhatia art integration project 22
Jatin bhatia art integration project 22
 
Thermodynamics notes
Thermodynamics notesThermodynamics notes
Thermodynamics notes
 
Chapter5.pdf
Chapter5.pdfChapter5.pdf
Chapter5.pdf
 
Thermochemistry
ThermochemistryThermochemistry
Thermochemistry
 
06 thermochemistry
06 thermochemistry06 thermochemistry
06 thermochemistry
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
Chemistry- JIB Topic 9 Thermochemistry
Chemistry- JIB Topic 9 ThermochemistryChemistry- JIB Topic 9 Thermochemistry
Chemistry- JIB Topic 9 Thermochemistry
 
C H5
C H5C H5
C H5
 
3 thermodynamics of pharmaceutical systems
3 thermodynamics of pharmaceutical systems3 thermodynamics of pharmaceutical systems
3 thermodynamics of pharmaceutical systems
 

More from Eng Mahamed (8)

Solved area
Solved areaSolved area
Solved area
 
Output(3)
Output(3)Output(3)
Output(3)
 
dadir mohmwed
dadir mohmweddadir mohmwed
dadir mohmwed
 
Coulombs law
Coulombs lawCoulombs law
Coulombs law
 
Forms 17th
Forms 17thForms 17th
Forms 17th
 
Transistors handout
Transistors handoutTransistors handout
Transistors handout
 
Ddf digitala
Ddf digitala Ddf digitala
Ddf digitala
 
003 pms wind turbine data sheet
003 pms wind turbine data sheet003 pms wind turbine data sheet
003 pms wind turbine data sheet
 

Recently uploaded

Top profile Call Girls In daman [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In daman [ 7014168258 ] Call Me For Genuine Models We ...Top profile Call Girls In daman [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In daman [ 7014168258 ] Call Me For Genuine Models We ...
gajnagarg
 
Top profile Call Girls In godhra [ 7014168258 ] Call Me For Genuine Models We...
Top profile Call Girls In godhra [ 7014168258 ] Call Me For Genuine Models We...Top profile Call Girls In godhra [ 7014168258 ] Call Me For Genuine Models We...
Top profile Call Girls In godhra [ 7014168258 ] Call Me For Genuine Models We...
gajnagarg
 
Top profile Call Girls In Varanasi [ 7014168258 ] Call Me For Genuine Models ...
Top profile Call Girls In Varanasi [ 7014168258 ] Call Me For Genuine Models ...Top profile Call Girls In Varanasi [ 7014168258 ] Call Me For Genuine Models ...
Top profile Call Girls In Varanasi [ 7014168258 ] Call Me For Genuine Models ...
gajnagarg
 
Top profile Call Girls In Rampur [ 7014168258 ] Call Me For Genuine Models We...
Top profile Call Girls In Rampur [ 7014168258 ] Call Me For Genuine Models We...Top profile Call Girls In Rampur [ 7014168258 ] Call Me For Genuine Models We...
Top profile Call Girls In Rampur [ 7014168258 ] Call Me For Genuine Models We...
nirzagarg
 
Jual obat aborsi Jakarta ( 085657271886 )Cytote pil telat bulan penggugur kan...
Jual obat aborsi Jakarta ( 085657271886 )Cytote pil telat bulan penggugur kan...Jual obat aborsi Jakarta ( 085657271886 )Cytote pil telat bulan penggugur kan...
Jual obat aborsi Jakarta ( 085657271886 )Cytote pil telat bulan penggugur kan...
ZurliaSoop
 
Jual obat aborsi Dubai ( 085657271886 ) Cytote pil telat bulan penggugur kand...
Jual obat aborsi Dubai ( 085657271886 ) Cytote pil telat bulan penggugur kand...Jual obat aborsi Dubai ( 085657271886 ) Cytote pil telat bulan penggugur kand...
Jual obat aborsi Dubai ( 085657271886 ) Cytote pil telat bulan penggugur kand...
ZurliaSoop
 
<DUBAI>Abortion pills IN UAE {{+971561686603*^Mifepristone & Misoprostol in D...
<DUBAI>Abortion pills IN UAE {{+971561686603*^Mifepristone & Misoprostol in D...<DUBAI>Abortion pills IN UAE {{+971561686603*^Mifepristone & Misoprostol in D...
<DUBAI>Abortion pills IN UAE {{+971561686603*^Mifepristone & Misoprostol in D...
gynedubai
 
b-sc-agri-course-curriculum.pdf for Karnataka state board
b-sc-agri-course-curriculum.pdf for Karnataka state boardb-sc-agri-course-curriculum.pdf for Karnataka state board
b-sc-agri-course-curriculum.pdf for Karnataka state board
ramyaul734
 
Top profile Call Girls In Hubli [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In Hubli [ 7014168258 ] Call Me For Genuine Models We ...Top profile Call Girls In Hubli [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In Hubli [ 7014168258 ] Call Me For Genuine Models We ...
gajnagarg
 

Recently uploaded (20)

7737669865 Call Girls In Ahmedabad Escort Service Available 24×7 In In Ahmedabad
7737669865 Call Girls In Ahmedabad Escort Service Available 24×7 In In Ahmedabad7737669865 Call Girls In Ahmedabad Escort Service Available 24×7 In In Ahmedabad
7737669865 Call Girls In Ahmedabad Escort Service Available 24×7 In In Ahmedabad
 
Top profile Call Girls In daman [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In daman [ 7014168258 ] Call Me For Genuine Models We ...Top profile Call Girls In daman [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In daman [ 7014168258 ] Call Me For Genuine Models We ...
 
Top profile Call Girls In godhra [ 7014168258 ] Call Me For Genuine Models We...
Top profile Call Girls In godhra [ 7014168258 ] Call Me For Genuine Models We...Top profile Call Girls In godhra [ 7014168258 ] Call Me For Genuine Models We...
Top profile Call Girls In godhra [ 7014168258 ] Call Me For Genuine Models We...
 
Top profile Call Girls In Varanasi [ 7014168258 ] Call Me For Genuine Models ...
Top profile Call Girls In Varanasi [ 7014168258 ] Call Me For Genuine Models ...Top profile Call Girls In Varanasi [ 7014168258 ] Call Me For Genuine Models ...
Top profile Call Girls In Varanasi [ 7014168258 ] Call Me For Genuine Models ...
 
Top profile Call Girls In Rampur [ 7014168258 ] Call Me For Genuine Models We...
Top profile Call Girls In Rampur [ 7014168258 ] Call Me For Genuine Models We...Top profile Call Girls In Rampur [ 7014168258 ] Call Me For Genuine Models We...
Top profile Call Girls In Rampur [ 7014168258 ] Call Me For Genuine Models We...
 
Jual obat aborsi Jakarta ( 085657271886 )Cytote pil telat bulan penggugur kan...
Jual obat aborsi Jakarta ( 085657271886 )Cytote pil telat bulan penggugur kan...Jual obat aborsi Jakarta ( 085657271886 )Cytote pil telat bulan penggugur kan...
Jual obat aborsi Jakarta ( 085657271886 )Cytote pil telat bulan penggugur kan...
 
Specialize in a MSc within Biomanufacturing, and work part-time as Process En...
Specialize in a MSc within Biomanufacturing, and work part-time as Process En...Specialize in a MSc within Biomanufacturing, and work part-time as Process En...
Specialize in a MSc within Biomanufacturing, and work part-time as Process En...
 
drug book file on obs. and gynae clinical pstings
drug book file on obs. and gynae clinical pstingsdrug book file on obs. and gynae clinical pstings
drug book file on obs. and gynae clinical pstings
 
B.tech civil major project by Deepak Kumar
B.tech civil major project by Deepak KumarB.tech civil major project by Deepak Kumar
B.tech civil major project by Deepak Kumar
 
Jual obat aborsi Dubai ( 085657271886 ) Cytote pil telat bulan penggugur kand...
Jual obat aborsi Dubai ( 085657271886 ) Cytote pil telat bulan penggugur kand...Jual obat aborsi Dubai ( 085657271886 ) Cytote pil telat bulan penggugur kand...
Jual obat aborsi Dubai ( 085657271886 ) Cytote pil telat bulan penggugur kand...
 
Guide to a Winning Interview May 2024 for MCWN
Guide to a Winning Interview May 2024 for MCWNGuide to a Winning Interview May 2024 for MCWN
Guide to a Winning Interview May 2024 for MCWN
 
Kannada Call Girls Mira Bhayandar WhatsApp +91-9930687706, Best Service
Kannada Call Girls Mira Bhayandar WhatsApp +91-9930687706, Best ServiceKannada Call Girls Mira Bhayandar WhatsApp +91-9930687706, Best Service
Kannada Call Girls Mira Bhayandar WhatsApp +91-9930687706, Best Service
 
<DUBAI>Abortion pills IN UAE {{+971561686603*^Mifepristone & Misoprostol in D...
<DUBAI>Abortion pills IN UAE {{+971561686603*^Mifepristone & Misoprostol in D...<DUBAI>Abortion pills IN UAE {{+971561686603*^Mifepristone & Misoprostol in D...
<DUBAI>Abortion pills IN UAE {{+971561686603*^Mifepristone & Misoprostol in D...
 
Low Cost Coimbatore Call Girls Service 👉📞 6378878445 👉📞 Just📲 Call Ruhi Call ...
Low Cost Coimbatore Call Girls Service 👉📞 6378878445 👉📞 Just📲 Call Ruhi Call ...Low Cost Coimbatore Call Girls Service 👉📞 6378878445 👉📞 Just📲 Call Ruhi Call ...
Low Cost Coimbatore Call Girls Service 👉📞 6378878445 👉📞 Just📲 Call Ruhi Call ...
 
Novo Nordisk Kalundborg. We are expanding our manufacturing hub in Kalundborg...
Novo Nordisk Kalundborg. We are expanding our manufacturing hub in Kalundborg...Novo Nordisk Kalundborg. We are expanding our manufacturing hub in Kalundborg...
Novo Nordisk Kalundborg. We are expanding our manufacturing hub in Kalundborg...
 
b-sc-agri-course-curriculum.pdf for Karnataka state board
b-sc-agri-course-curriculum.pdf for Karnataka state boardb-sc-agri-course-curriculum.pdf for Karnataka state board
b-sc-agri-course-curriculum.pdf for Karnataka state board
 
Top profile Call Girls In Hubli [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In Hubli [ 7014168258 ] Call Me For Genuine Models We ...Top profile Call Girls In Hubli [ 7014168258 ] Call Me For Genuine Models We ...
Top profile Call Girls In Hubli [ 7014168258 ] Call Me For Genuine Models We ...
 
DMER-AYUSH-MIMS-Staff-Nurse-_Selection-List-04-05-2024.pdf
DMER-AYUSH-MIMS-Staff-Nurse-_Selection-List-04-05-2024.pdfDMER-AYUSH-MIMS-Staff-Nurse-_Selection-List-04-05-2024.pdf
DMER-AYUSH-MIMS-Staff-Nurse-_Selection-List-04-05-2024.pdf
 
Joshua Minker Brand Exploration Sports Broadcaster .pptx
Joshua Minker Brand Exploration Sports Broadcaster .pptxJoshua Minker Brand Exploration Sports Broadcaster .pptx
Joshua Minker Brand Exploration Sports Broadcaster .pptx
 
Mysore Escorts Service Girl ^ 9332606886, WhatsApp Anytime Mysore
Mysore Escorts Service Girl ^ 9332606886, WhatsApp Anytime MysoreMysore Escorts Service Girl ^ 9332606886, WhatsApp Anytime Mysore
Mysore Escorts Service Girl ^ 9332606886, WhatsApp Anytime Mysore
 

005 lecture f

  • 1. 1 Chemistry Second Edition Julia Burdge Lecture PowerPoints Jason A. Kautz University of Nebraska-Lincoln Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 5 Thermochemistry
  • 2. Thermochemistry5 5.1 Energy and Energy Changes Forms of Energy Energy Changes in Chemical Reactions Units of Energy 5.2 Introduction to Thermodynamics States and State Functions The First Law of Thermodynamics Work and Heat 5.3 Enthalpy Reactions Carried Out at Constant Volume or at Constant Pressure Enthalpy and Enthalpy Changes Thermochemical Equations 5.4 Calorimetry Specific Heat and Heat Capacity Constant-Pressure Calorimetry Constant-Volume Calorimetry 5.5 Hess’s Law 5.6 Standard Enthalpies of Formation
  • 3. Energy and Energy Changes Energy is the capacity to do work or transfer heat. All forms of energy are either kinetic or potential. Kinetic energy (EK) is the energy of motion. m is the mass of the object in kilograms u is the velocity in meters per second. EK = mu2 1 2 5.1
  • 4. Energy and Energy Changes Potential energy is the energy possessed by an object by virtue of its position. Chemical energy is energy stored within the structural units of chemical substances. Electrostatic energy is potential energy that results from the interaction of charged particles. Q1 and Q2 represent two charges separated by the distance, d. 1 2 el QQ E d µ
  • 5. Energy and Energy Changes Kinetic and potential energy are interconvertible. The law of conservation of energy states that the total amount of energy in the universe is constant. When energy of one form disappears, the same amount of energy reappears in another form or forms.
  • 6. Energy and Energy Changes The system is a part of the universe that is of specific interest. The surroundings constitute the rest of the universe outside the system. The system is usually defined as the substances involved in chemical and physical changes. System Surroundings Universe = System + Surroundings
  • 7. Energy and Energy Changes Thermochemistry is the study of heat (the transfer of thermal energy) in chemical reactions. Heat is the transfer of thermal energy. Heat is either absorbed or released during a process. Surroundings heat
  • 8. Energy and Energy Changes An exothermic process occurs when heat is transferred from the system to the surroundings. “Feels hot!” Surroundings Universe = System + Surroundings heat System 2H2(g) + O2(g) 2H2O(l) + energy
  • 9. Energy and Energy Changes An endothermic process occurs when heat is transferred from the surroundings to the system. “Feels cold” energy + 2HgO(s) 2Hg(l) + O2(g) Surroundings Universe = System + Surroundings heat System
  • 10. Energy and Energy Changes
  • 11. Energy and Energy Changes Calculate the energy in joules of a 5.25 g object moving at a speed of 655 m/s. Solution: Step 1: First convert grams to kilograms. (0.00525 kg) Step 2: Substitute into the equation for kinetic energy and solve. 21 = 2 KE mu 21 = (0.00525 kg)(655 m/s) = 1130 J 2 KE
  • 12. Introduction to Thermodynamics Thermodynamics is the study of the interconversion of heat and other kinds of energy. In thermodynamics, there are three types of systems: An open system can exchange mass and energy with the surroundings. 5.2
  • 13. Introduction to Thermodynamics Thermodynamics is the study of the interconversion of heat and other kinds of energy. In thermodynamics, there are three types of systems: An open system can exchange mass and energy with the surroundings. A closed system allows the transfer of energy but not mass.
  • 14. Introduction to Thermodynamics Thermodynamics is the study of the interconversion of heat and other kinds of energy. In thermodynamics, there are three types of systems: An open system can exchange mass and energy with the surroundings. A closed system allows the transfer of energy but not mass. An isolated system does not exchange either mass or energy with its surroundings.
  • 15. Introduction to Thermodynamics State functions are properties that are determined by the sate of the system, regardless of how that condition was achieved. The magnitude of change depends only on the initial and final states of the system. Energy Pressure Volume Temperature
  • 16. Introduction to Thermodynamics The first law of thermodynamics states that energy can be converted from one form to another, but cannot be created or destroyed. ΔU is the change in the internal energy. “sys” and “surr” denote system and surroundings, respectively ΔU = Uf – Ui; the difference in the energies of the initial and final states. ΔUsys + ΔUsurr = 0 ΔUsys = –ΔUsurr
  • 17. Introduction to Thermodynamics The overall change in the system’s internal energy is given by: q is heat q is positive for an endothermic process (heat absorbed by the system) q is negative for an exothermic process (heat released by the system) w is work w is positive for work done on the system w is negative for work done by the system ΔU = q + w
  • 19. Enthalpy Sodium azide detonates to give a large quantity of nitrogen gas. Under constant volume conditions, pressure increases: 2NaN3(s) 2Na(s) + 3N2(g) 5.3
  • 20. Enthalpy Sodium azide detonates to give a large quantity of nitrogen gas. Under constant pressure conditions, volume increases: 2NaN3(s) 2Na(s) + 3N2(g)
  • 21. Enthalpy Pressure-volume, or PV work, is done when there is a volume change under constant pressure. w = −PΔV P is the external opposing pressure ΔV is the change in the volume of the container
  • 22. Enthalpy Pressure-volume, or PV work, is done when there is a volume change under constant pressure. w = −PΔV When a change occurs at constant volume, ΔV = 0 and no work is done. ΔU = q + w qv = ΔU ΔU = q − PΔV substitute
  • 23. Enthalpy Under conditions of constant pressure: ΔU = q + w qp = ΔU + PΔV ΔU = q − PΔV
  • 24. Enthalpy The thermodynamic function of a system called enthalpy (H) is defined by the equation: H = U + PV A note about SI units: Pressure: pascal; 1Pa = 1 kg/(m . s2 ) Volume: cubic meters; m3 PV: 1kg/(m . s2 ) x m3 = 1(kg . m2 )/s2 = 1 J Enthalpy: joules U, P, V, and H are all state functions.
  • 25. Enthalpy For any process, the change in enthalpy is: ΔH = ΔU + Δ(PV) (1) ΔH = ΔU + PΔV If pressure is constant: (2) ΔU = ΔH + PΔV Rearrange to solve for ΔU: (3) qp = ΔU + PΔV Remember, qp: (4) qp = (ΔH − PΔV) + PΔV Substitute equation (3) into equation (4) and solve: (5) qp = ΔH for a constant-pressure process
  • 26. Enthalpy The enthalpy of reaction is the difference between the enthalpies of the products and the enthalpies of the reactants: Assumes reactions in the lab occur at constant pressure ΔH > 0 (positive) endothermic process ΔH < 0 (negative) exothermic process ΔH = H(products) – H(reactants)
  • 27. Enthalpy Concepts to consider: • Is this a constant pressure process? • What is the system? • What are the surroundings? • ΔH > 0 endothermic H2O(s) H2O(l) ΔH = +6.01 kJ/mol
  • 28. Enthalpy Concepts to consider: • Is this a constant pressure process? • What is the system? • What are the surroundings? • ΔH < 0 exothermic CH4(g) + 2O2(g) CO2(g) + 2H2O(l) ΔH = −890.4 kJ/mol
  • 29. Enthalpy Enthalpy is an extensive property. Extensive properties are dependent on the amount of matter involved. H2O(l) → H2O(g) ΔH = +44 kJ/mol 2H2O(l) → 2H2O(g) ΔH = +88 kJ/mol Units refer to mole of reaction as written Double the amount of matter Double the enthalpy
  • 30. Enthalpy The following guidelines are useful when considering thermochemical equations: 1) Always specify the physical states of reactants and products because they help determine the actual enthapy changes. CH4(g) + 2O2(g) ΔH = −802.4 kJ/molCO2(g) + 2H2O(g) CH4(g) + 2O2(g) ΔH = +890.4 kJ/molCO2(g) + 2H2O(l) different states different enthalpies
  • 31. Enthalpy The following guidelines are useful when considering thermochemical equations: 2) When multiplying an equation by a factor (n), multiply the ∆H value by same factor. CH4(g) + 2O2(g) ΔH = −802.4 kJ/molCO2(g) + 2H2O(g) 2CH4(g) + 4O2(g) ΔH = −1604.8 kJ/mol2CO2(g) + 4H2O(g) 3) Reversing an equation changes the sign but not the magnitude of ΔH. CH4(g) + 2O2(g) ΔH = +802.4 kJ/molCO2(g) + 2H2O(g) CO2(g) + 2H2O(g) ΔH = -802.4 kJ/molCH4(g) + 2O2(g)
  • 32. Enthalpy Calculate the solar energy required to produce 5255 g of C6H12O6 given the thermochemical equation for photosynthesis: Solution: Step 1: Determine the moles of C6H12O6. (29.16 mol C6H12O6) Step 2: Multiply the thermochemical equation, including the enthalpy change by 29.16 in order to write the equation in terms of the appropriate amount of C6H12O6. 6H2O(l) + 6CO2(g) ΔH = +2803 kJ/molC6H12O6(s) + 6O2(g) 6H2O(l) + 6CO2(g) ΔH = +2803 kJ/molC6H12O6(s) + 6O2(g) 175.0H2O(l) + 175.0CO2(g) ΔH = +81,740 kJ29.16C6H12O6(s) + 175.0O2(g) 29.16 mol
  • 33. Calorimetry Calorimetry is the measurement of heat changes. Heat changes are measured in a device called a calorimeter. The specific heat (s) of a substance is the amount of heat required to raise the temperature of 1 g of the substance by 1 °C. 5.4
  • 34. Calorimetry The heat capacity (C) is the amount of heat required to raise the temperature of an object by 1°C. The “object” may be a given quantity of a particular substance. Specific heat capacity has units of J/(g • °C) Heat capacity has units of J/°C 4.184 J heat capacity of 1 kg of water = 1000 g = 4184 J/ C 1 g C × ° • ° Specific heat capacity of water heat capacity of 1 kg water
  • 35. Calorimetry The heat associated with a temperature change may be calculated: m is the mass. s is the specific heat. ΔT is the change in temperature (ΔT = Tfinal – Tinitial). C is the heat capacity. q = msΔT q = CΔT
  • 36. Calorimetry Calculate the amount of heat required to heat 1.01 kg of water from 0.05°C to 35.81°C. Solution: Step 1: Use the equation q = msΔT to calculate q. 1000 g 4.184 J 1.01 kg [35.81 C 0.05 C] = 151000 J = 151 kJ 1 kg g C q = × × × ° − ° • °
  • 37. Calorimetry A coffee-cup calorimeter may be used to measure the heat exchange for a variety of reactions at constant pressure: Heat of neutralization: HCl(aq) + NaOH(aq) → H2O(l) + NaCl(aq) Heat of ionization: H2O(l) → H+ (aq) + OH‒ (aq) Heat of fusion: H2O(s) → H2O(l) Heat of vaporization: H2O(l) → H2O(g)
  • 38. Calorimetry Concepts to consider for coffee-cup calorimetry: qp = ΔH System: reactants and products (the reaction) Surroundings: water in the calorimeter For an exothermic reaction: the system loses heat the surroundings gain (absorb) heat qsys = −msΔT The minus sign is used to keep sign conventions consistent. qsurr = msΔT qsys = −qsurr
  • 39. Calorimetry A bolt is heated to 100.0°C and is dropped into a coffee-cup calorimeter containing 125 g of water at 25.0°C. The final temperature of both the bolt and the water is 35.8°C. Calculate the heat capacity of the bolt. Solution: Step 1: Calculate the heat absorbed by the water. Step 2: The heat absorbed by the water must be released by the bolt. qwater = −qbolt qbolt = −5648.4 J water 4.184 J = 125 g [35.8 C 25.0 C] = 5648.4 J g C q × × ° − ° • ° q = msΔT
  • 40. Calorimetry A bolt is heated to 100.0°C and is dropped into a coffee-cup calorimeter containing 125 g of water at 25.0°C. The final temperature of both the bolt and the water is 35.8°C. Calculate the heat capacity of the bolt. Solution: Step 3: Determine the heat capacity of the bolt −5648.4 J = Cbolt(35.8°C – 100.0°C) Cbolt = 88.0 J/°C. q = CΔT
  • 41. Calorimetry Constant volume calorimetry is carried out in a device known as a constant-volume bomb. qcal = −qrxn A constant-volume calorimeter is an isolated system. Bomb calorimeters are typically used to determine heats of combustion.
  • 42. Calorimetry qrxn = −CcalΔT qcal = CcalΔT qrxn = −qcal To calculate qcal, the heat capacity of the calorimeter must be known.
  • 43. Solution: Step 1: Calculate the heat capacity using the equation qrxn = −CcalΔT. −26.38 kJ = −Ccal(27.20°C – 23.40°C) Ccal = 6.94 kJ/°C Calorimetry A 1.000 g sample of benzoic acid is burned in a bomb calorimeter. The reaction gives off 26.38 kJ of heat and the temperature of the water in the calorimeter increased from 23.40°C to 27.20°C. What is the heat capacity of the calorimeter? 26.38 kJ of heat given off
  • 44. Calorimetry Solution: Step 1: Calculate the heat using the equation qrxn = −CcalΔT. qrxn = −6.94 kJ/°C x (23.2°C) qrxn = −161 kJ When 10.0 g of a Krispy Kreme doughnut is burned in a bomb calorimeter with a heat capacity of 6.94 kJ/°C, the temperature inside the calorimeter increases by 23.2°C. What is the energy content per gram?
  • 45. Calorimetry When 10.0 g of a Krispy Kreme doughnut is burned in a bomb calorimeter with a heat capacity of 6.94 kJ/°C, the temperature inside the calorimeter increases by 23.2°C. What is the energy content per gram? Solution: Step 2: Determine the energy content per gram. Note: Energy content per gram is a positive value. 161 kJ energy content per gram = = 16.1 kJ/g 10.0 g
  • 46. Hess’s Law Hess’s law states that the change in enthalpy for a stepwise process is the sum of the enthalpy changes for each of the steps. CH4(g) + 2O2(g) ΔH = −890.4 kJ/molCO2(g) + 2H2O(l) CH4(g) + 2O2(g) ΔH = −802.4 kJ/molCO2(g) + 2H2O(g) 2H2O(l) ΔH = +88.0 kJ/mol2H2O(g) CH4(g) + 2O2(g) CO2(g) + 2H2O(l) ΔH = −890.4 kJ ΔH = +88.0 kJ CO2(g) + 2H2O(g) ΔH = −802.4 kJ 5.5
  • 47. Hess’s Law When applying Hess’s Law: 1) Manipulate thermochemical equations in a manner that gives the overall desired equation. 2) Remember the rules for manipulating thermochemical equations: 3) Add the ∆H for each step after proper manipulation. 4) Process is useful for calculating enthalpies that cannot be found directly. Always specify the physical states of reactants and products because they help determine the actual enthalpy changes. When multiplying an equation by a factor (n), multiply the ∆H value by same factor. Reversing an equation changes the sign but not the magnitude of ΔH.
  • 48. Hess’s Law Determine the ΔH for the following reaction: Fe2O3(s) + 3CO(g) → 2Fe(s) + 3CO2(g) Given the information below. Solution: Step 1: Arrange the thermochemical equations so that they sum to the desired equation. Reverse equation (1); remember to change the sign of ΔH. CO(g) + O2(g) → CO2(g) ΔH = −282.7 kJ/mol (2) 1 2 2Fe(s) + O2(g) → Fe2O3(s) ΔH = −824.2 kJ/mol (1) 3 2 Fe2O3(s) → 2Fe(s) + O2(g) ΔH = +824.2 kJ/mol (1) 3 2
  • 49. Hess’s Law Determine the ΔH for the following reaction: Fe2O3(s) + 3CO(g) → 2Fe(s) + 3CO2(g) Given the information below. Solution: Step 2: Multiply equation (2) by a factor of 3. CO(g) + O2(g) → CO2(g) ΔH = −282.7 kJ/mol (2) 1 2 2Fe(s) + O2(g) → Fe2O3(s) ΔH = −824.2 kJ/mol (1) 3 2 3CO(g) + O2(g) → 3CO2(g) ΔH = −848.1 kJ/mol (2) 3 2
  • 50. Hess’s Law Determine the ΔH for the following reaction: Fe2O3(s) + 3CO(g) → 2Fe(s) + 3CO2(g) Solution: Step 3: Sum all the steps and their enthalpy changes. 3CO(g) + O2(g) → 3CO2(g) ΔH = −848.1 kJ/mol 3 2 Fe2O3(s) → 2Fe(s) + O2(g) ΔH = +824.2 kJ/mol 3 2 Fe2O3(s) + 3CO(g) → 2Fe(s) + 3CO2(g) ΔH = −23.9 kJ/mol
  • 51. Standard Enthapies of Formation The standard enthalpy of formation (ΔH f°) is defined as the heat change that results when 1 mole of a compound is formed from its constituent elements in their standard states. Elements in standard states C(graphite) + O2(g) CO2(g) ΔHf° = −393.5 kJ/mol 1 mole of product 5.6
  • 52. Standard Enthapies of Formation The standard enthalpy of formation (ΔH f°) is defined as the heat change that results when 1 mole of a compound is formed from its constituent elements in their standard states. The superscripted degree sign denotes standard conditions. 1 atm pressure for gases 1 M concentration for solutions “f” stands for formation. ΔHf° for an element in its most stable form is zero ΔHf° for many substances are tabulated in Appendix 2 of the textbook.
  • 53. Standard Enthapies of Formation The standard enthalpy of reaction (ΔH°rxn) is defined as the enthalpy of a reaction carried out under standard conditions. aA + bB → cC + dD n and m are the stoichiometric coefficients for the reactants and products ΔH°rxn = ΣnΔHf°(products) – ΣmΔHf°(reactants) ΔH°rxn = [cΔH f°(C) + dΔHf°(D) ] – [aΔHf°(A) + bΔHf°(B)]
  • 54. Standard Enthapies of Formation Use the data provided to calculate ΔH°rxn for the following reaction: CaCO3(s) → CaO(s) + CO2(g) ΔH°rxn = ? Solution: Step 1: Use the equation below to calculate ΔH°rxn. ΔH°rxn = ΣnΔHf°(products) – ΣmΔHf°(reactants) ΔH°rxn = [1ΔHf° CaO(s) + 1ΔHf° CO2(g) ] – [1ΔHf° CaCO3(s)] Substance ΔHf° (kJ/mol) CaCO3(s) −1206.9 CaO(s) −635.6 CO2(g) −393.5 ΔH°rxn = [1(−635.6 kJ/mol) + 1(−393.5 kJ/mol) ] – [1(−1206.9 kJ/mol)] = 177.8 kJ/mol
  • 55. Standard Enthalpies of Formation Use the following data to calculate ΔHf° for CS2(l): Solution: Step 1: Write the equation corresponding to the standard enthalpy of formation of CS2(l). CO2(g) ΔHrxn = –393.5 kJ/mol (1)C(graphite)(s) + O2(g) ° SO2(g) ΔHrxn = –296.4 kJ/mol (2)S(rhombic)(s) + O2(g) ° CO2(g) + 2SO2(g) ΔHrxn = –1073.6 kJ/mol (3)CS2(l) + 3O2(g) ° CS2(l) ΔHrxn = ?C(graphite)(s) + 2S(rhombic)(s) °
  • 56. Standard Enthalpies of Formation Use the following data to calculate ΔHf° for CS2(l): Solution: Step 2: Include Equation (1) and its ΔHrxn value as is: CO2(g) ΔHrxn = –393.5 kJ/mol (1)C(graphite)(s) + O2(g) ° SO2(g) ΔHrxn = –296.4 kJ/mol (2)S(rhombic)(s) + O2(g) ° CO2(g) + 2SO2(g) ΔHrxn = –1073.6 kJ/mol (3)CS2(l) + 3O2(g) ° ° CO2(g) ΔHrxn = –393.5 kJ/molC(graphite)(s) + O2(g) °
  • 57. Standard Enthalpies of Formation Use the following data to calculate ΔHf° for CS2(l): Solution: Step 3: Multiply Equation (2) and its ΔHrxn value by 2: CO2(g) ΔHrxn = –393.5 kJ/mol (1)C(graphite)(s) + O2(g) ° SO2(g) ΔHrxn = –296.4 kJ/mol (2)S(rhombic)(s) + O2(g) ° CO2(g) + 2SO2(g) ΔHrxn = –1073.6 kJ/mol (3)CS2(l) + 3O2(g) ° ° 2SO2(g) ΔHrxn = –592.8 kJ/mol2S(rhombic)(s) + 2O2(g) °
  • 58. Standard Enthalpies of Formation Use the following data to calculate ΔHf° for CS2(l): Solution: Step 4: Reverse Equation (3) and change the sign of its ΔHrxn value: CO2(g) ΔHrxn = –393.5 kJ/mol (1)C(graphite)(s) + O2(g) ° SO2(g) ΔHrxn = –296.4 kJ/mol (2)S(rhombic)(s) + O2(g) ° CO2(g) + 2SO2(g) ΔHrxn = –1073.6 kJ/mol (3)CS2(l) + 3O2(g) ° ° CS2(l) + 3O2(g) ΔHrxn = 1073.6 kJ/molCO2(g) + 2SO2(g) °
  • 59. Standard Enthalpies of Formation Solution: Step 5: Sum the resulting equations and enthalpy values: CS2(l) + 3O2(g) ΔHrxn = 1073.6 kJ/molCO2(g) + 2SO2(g) ° 2SO2(g) ΔHrxn = –592.8 kJ/mol2S(rhombic)(s) + 2O2(g) ° CO2(g) ΔHrxn = –393.5 kJ/molC(graphite)(s) + O2(g) ° CS2(l) ΔHrxn = 87.3 kJ/molC(graphite)(s) + 2S(rhombic)(s) °
  • 60. Chapter Summary: Key Points5 Energy and Energy Changes Forms of Energy Energy Changes in Chemical Reactions Units of Energy Introduction to Thermodynamics States and State Functions The First Law of Thermodynamics Work and Heat Enthalpy Reactions Carried Out at Constant Volume or at Constant Pressure Enthalpy and Enthalpy Changes Thermochemical Equations Calorimetry Specific Heat and Heat Capacity Constant-Pressure Calorimetry Constant-Volume Calorimetry Hess’s Law Standard Enthalpies of Formation System Surroundings Universe = System + Surroundings