SlideShare ist ein Scribd-Unternehmen logo
1 von 50
ENGENHARIA CIVIL
TOPOGRAFIA
06
10
11
12
13
ARQUITETURA
TOPOGRAFIA
ÍNDICE
1 Conceitos fundamentais ...................................................................... 3
1.1 Definições ............................................................................................ 3
1.2 Divisão ................................................................................................. 3
2 Planimetria ..........................................................................................
.
5
2.1 Medição de distâncias ......................................................................... 5
2.2 Medida direta de distâncias ................................................................. 5
2.3 Erros .................................................................................................... 6
2.4 Medida indireta de distâncias .............................................................. 6
2.5 Taqueometria ...................................................................................... 7
2.6 Ângulos ................................................................................................ 7
2.7 Distâncias verticais ou diferença de nível ........................................... 10
2.8 Caderneta de campo ........................................................................... 11
2.9 Medida eletrônica de distâncias .......................................................... 11
3 Avaliação de áreas .............................................................................. 13
3.1 Processos geométricos ....................................................................... 13
3.2 Método analítico (dupla distância meridiana) ...................................... 14
3.3 Planilha de cálculo analítico ................................................................ 15
4 Altimetria .............................................................................................. 18
4.1 Nivelamento geométrico ...................................................................... 18
4.2 Nivelamento trigonométrico ................................................................. 19
4.3 Nivelamento
barométrico .....................................................................
20
5 Estudo da planta topográfica ............................................................... 21
5.1 Denominações e definições topológicas de algumas formas do terreno 21
5.2 Curvas de
nível ....................................................................................
22
6 Terraplenagem .................................................................................... 26
6.1 Cálculo da cota final pela média ponderada ....................................... 26
6.2 Cálculo de volumes ............................................................................. 28
7 Equipamentos de medição, unidades de medidas e
escalas ..............
31
7.1 Equipamentos de medição angular ..................................................... 31
7.2 Generalidades ..................................................................................... 31
7.3 Unidades de superfície ........................................................................ 31
7.4 Unidades de medidas .......................................................................... 31
7.5 Escalas usadas em topografia ............................................................ 31
7.6 Sistemas e unidades ........................................................................... 31
7.7 Procedimento para estacionar equip. topográficos com prumo
ótico ..
32
8 Aerofotogrametria ................................................................................ 34
8.1 Execução das fotos aéreas ................................................................. 34
8.2 Recobrimento da área ......................................................................... 35
8.3 Mapa-índice e foto-índice .................................................................... 36
9 Cadastro imobiliário e registros públicos ............................................. 37
9.1 Cadastro imobiliário
municipal .............................................................
37
9.2 Cadastro técnico municipal ................................................................. 37
9.3 Origem das imprecisões entre áreas mapeadas ................................ 39
9.4 Métodos para o correto cadastramento técnico de imóveis rurais ...... 40
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
2
10 Exercícios resolvidos 41
Bibliografia 45
NOTAS DE AULA (Topografia) ENGENHARIA CIVIL / ARQUITETURA
Prof. Luís Márcio Faleiros
Franca, 1999/2010
1 CONCEITOS FUNDAMENTAIS
1.1 DEFINIÇÕES
Topografia tem por finalidade determinar o contorno, dimensão e posição relativa de uma porção
limitada da superfície terrestre, sem levar em conta a curvatura resultante da esfericidade terrestre.
Geodésia é a ciência que estuda a superfície da Terra com a finalidade de conhecer sua forma
quanto ao contorno e ao relevo e sua orientação, levando em consideração a curvatura da terra.
Geoprocessamento é a ciência que estuda a produção de mapas com informações referentes a
ele, tudo num só produto e em meio digital.
Geotecnia estuda a composição, disposição e condição do solo como produto para utilização em
obras. A topografia determina e posiciona os solos de acordo com sua localização na superfície da
terra.
Croqui: esboço gráfico sem escala, em breves traços a mão livre, que facilite a identificação de
detalhes topográficos.
Caderneta de Campo: planilha utilizada em campo para anotar os dados coletados (distâncias,
ângulos e informações).
Planta: representação gráfica de uma parte limitada da superfície terrestre, sobre um plano de
referência horizontal, para fins específicos, na qual não se considera a curvatura da Terra. As escalas
normalmente são grandes.
Carta ou Mapa: representação gráfica sobre uma superfície plana, dos detalhes físicos, naturais
e artificiais, de parte ou toda a superfície terrestre. Esta representação leva em consideração a
curvatura terrestre. As escalas normalmente são pequenas.
1.2 DIVISÃO
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
3














otopograficDesenho
riaFotogramet
iaTaqueometr
iaTopo
Altimetria
aPlanimetri
Topometria
Topografia
log
Planimetria: conjunto de métodos e técnicas que visam detalhar a superfície terrestre sobre um
plano horizontal de referência. Trata apenas das distâncias horizontais e ângulos horizontais.
Altimetria: conjunto de métodos e técnicas que visam detalhar a superfície terrestre sobre um
plano vertical de referência.
Planialtimetria: conjunto de métodos e técnicas que visam detalhar a superfície terrestre sobre
um plano horizontal de referência com dados referenciados a um plano vertical de referência.
Topologia: é a parte da topografia que estuda as formas do relevo. Ela estuda as formas
exteriores da superfície terrestre no sentido planialtimétrico.
Topometria: conjunto dos métodos empregados para colher os dados necessários para o
traçado da planta. Subdivide em: Planimetria e Altimetria.
Planimetria é a representação em projeção horizontal dos detalhes existentes na superfície. As
medidas, tanto lineares como angulares, são efetuadas em planos horizontais, obtendo-se ângulos
azimutais e distâncias horizontais.
Altimetria: determina as cotas ou distâncias verticais de um certo número de pontos referidos ao
plano horizontal de projeção. As medidas são efetuadas na vertical ou num plano vertical, obtendo-se
as distâncias verticais ou diferenças de nível
Topologia: complemento indispensável da topometria, tem por objeto de estudo as formas
exteriores da superfície terrestre e as leis a que deve obedecer seu modelado. Sua aplicação principal é
na representação cartográfica do terreno pelas curvas de nível.
Taqueometria: tem por finalidade o levantamento de pontos do terreno, pela resolução de
triângulos retângulos aptos a representá-los, tanto plani como altimetricamente, ou, dando origem a
plantas cotadas ou com curvas de nível (Planialtimétricas).
Fotogrametria: utiliza medidas feitas em fotografias orientadas (fotogramas) para definir a forma
e as dimensões dos objetos nelas contidos.
Desenho topográfico: constitui a representação em escala reduzida, por meio de sinais
convencionais (Convenções topográficas), da forma do terreno levantado. Segundo a escala, grau de
precisão, detalhes e amplitude, tal desenho denomina-se esboço, planta ou mapa topográfico, carta
geodésica, geográfica ou corográfica. As plantas topográficas devem ser sempre acompanhadas das
cadernetas de campo, planilha dos cálculos e memoriais descritivos.
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
4
2 PLANIMETRIA
2.1 MEDIÇÃO DE DISTÂNCIAS
Na Topografia, a distância D entre dois pontos A e B será sempre a distância horizontal entre
eles, mesmo que o terreno seja inclinado.
Se o trecho a ser medido não for plano, não permitindo medida direta de A até B, procede-se da
mesma forma, porém em segmentos sucessivos, obtendo-se a distância horizontal D, pela soma dos
valores das distâncias horizontais desses segmentos sucessivos.
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
5
A
B
h
D
d1
d2
d3
D
2.2 MEDIÇÃO DIRETA DE DISTÂNCIAS
O processo de medida de distância é direto, quando se percorre a grandeza em questão,
comparando-a com uma grandeza padrão.
Os padrões de medida direta são denominados diastímetros.
Tipos de diastímetros flexiveis:
Trena: fitas de aço ou lona geralmente usadas nos trabalhos de engenharia e arquitetura.
Comprimento: 1m, 3m, 5m, 10m, 20m, 50m
Precisão: 1cm em 100m (média precisão).
Diastimetros rígidos: metro, duplo metro, régua, etc.
Existe uma série de acessórios utilizados na medida direta de distância:
Baliza: vara de ferro ou madeira, de 2m de comprimento, pintada geralmente de branco e
vermelho, para que sejam vistas com facilidade a distância. Tem a função de facilitar a localização dos
pontos do terreno.
Piquetes e estacas: peças de madeira que são cravadas no terreno para a determinação dos
pontos visados.
Fio de prumo: constituído por um fio que sustém na extremidade inferior um peso de forma
cônica, destinado a determinar a direção da vertical, no ponto considerado.
Nível de mangueira: constituído de uma mangueira d'água transparente, onde o nível da água
nas duas extremidades permite a determinação de pontos com o mesmo nível em posições
relativamente afastadas.
2.3 ERROS
Nas medições com fitas deve-se ter conhecimento das causas da ocorrência de erros, e da influência
que esses erros podem causar na medida da grandeza.
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
6
Piquete
Estaca
Erros grosseiros:







anotações
fitadagraduaçãodesentido
fitadazerodoajuste
trenadenúmeronoengano
Erros sistemáticos:










tensão
atemperatur
oalinhament
extremospontososentredesníveldocorreção
catenaria
fitadaocompriment
2.4 MEDIDA INDIRETA DE DISTÂNCIA
O processo de medida é indireto quando a distância é calculada em função da medida de outras
grandezas, não havendo, portanto, necessidade de percorrer a distância para compará-la com a
grandeza padrão.
Na estadimetria, a distância é geralmente obtida através de um triângulo retângulo ou um
triângulo isósceles, utilizando-se semelhança de triângulos (teorema de Tales).
ab
ABd
D
ab
AB
d
D ×
=∴=
Sendo d e ab constantes, w também é constante.
2.5 TAQUEOMETRIA
A taqueometria compreende uma série de operações que constituem um processo rápido e
econômico para se obter o relevo de um terreno. Estuda os processos de levantamentos planimétricos
realizados com o taqueômetro (teodolito e mira).
2.6 ÂNGULOS
2.6.1 AZIMUTES
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
7
A
B
MO
a
b
m
m
d
D
Azimute é o ângulo formado entre uma direção do terreno e a direção norte-sul.
O azimute varia de 0° a 360°, com origem no norte e sentido NESW (direita).
O primeiro azimute é lido astronomicamente (com auxilio da bússola), os demais são calculados
pela fórmula:
o
nnn AiAzAz 1801 ±±= −
Az = azimute
Ai = angulo interno
n = número do vértice
+ Ain ⇒ caminhamento à direita
- Ain ⇒ caminhamento à esquerda
nn AiAz ±−1 < ⇒o
180 soma-se 180°
nn AiAz ±−1 > ⇒o
180 subtrai-se 180°
Nos problemas topográficos, também é
comum a medida do azimute em quadrantes
(variando de 0° a 90°), com origem no norte, nos
sentidos NW e NE e, com origem no sul, nos
sentidos SW e SE; nestes casos, o azimute recebe o
nome particular de RUMO.
1º Quadrante (NE) - R = Az
2º Quadrante (SE) - R = 180° - Az
3º Quadrante (NE) - R = Az - 180°
4º Quadrante (NE) - R = 360° - Az
2.6.2 ANGULOS HORIZONTAIS
Dadas duas direções quaisquer, a medida angular horizontal entre elas é feita através da medida
do ângulo diedro formado por dois planos verticais que contêm respectivamente as direções em
questão.
Ai = ângulo interno
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
8
N
Az
A
B
A
B
Ai
EW
S
N
R = Az
R
Az
R
Az
R
Az
1 Q
2 Q3 Q
4 Qo
o
oo
Os terrenos normalmente são definidos
por poligonais compostas de vértices, distâncias
e ângulos internos.
Exercício:
Calcular azimutes e rumos:
vértice angulo interno azimute rumo
angulo quadrante
1 88.59 135.05
2 111.87
3 34.00
4 235.11
5 70.43
total 540.00
Caminhamento à direita
Podemos classificar as poligonais como:
Poligonais fechadas Poligonais apoiadas Poligonais abertas
2.6.3 ANGULOS VERTICAIS
O ângulo de inclinação (α), com origem no horizonte, varia de 0° a 90°, positivamente para as
retas ascendentes e negativamente para as retas descendentes.
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
9
Ai1
Ai2
Ai3
Ai4
Ai5
Ai6
1
2
3
4
5
6
D1 D2
D3
D4
D5
D6
1
2
3
4
5
1
2
3
4
5
6
Z
Z'
C
a+
a-
B
B
1
2
3
4
5
6
2.6.4 DISTÂNCIAS HORIZONTAIS
Os taqueômetros são teodolitos munidos de fios chamados estadimétricos e que, além da
função de medir ângulos, podem efetuar medidas indiretas de distância.
A luneta dos taqueômetros é munida de um retículo, destinado á medida indireta de distância.
Os distanciômetros de luneta são constituídos por uma objetiva munida de tres fios
estadimétricos a, m e b equidistantes e a ocular por onde o observador pode visualizar aqueles fios e
uma régua graduada (mira).
f - distância local entre pínulas (constante do
aparelho)
ab - espaçamento entre dois fios estadimétricos
extremos (constante do aparelho)
Para medir uma distância com o teodolito,
coloca-se o teodolito num dos extremos e a mira no
outro, em posição vertical; observando-se o intervalo
abrangido na mira pelos raios visuais que passam
pelos fios estadimétricos extremos, calcula-se a
distância D:
ab
BA
Om
OM
BAOab
''
''
=∴
∆≈∆
mas, fOm =
logo
ab
f
BAOM ×= '' (1)
Como ω é muito pequeno, geralmente da ordem de 35º, podemos considerar MB'B = 90º, de onde se
conclui que:
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
10
m
b
a
v
v - fio vertical
m - fio nivelador
a e b - fios estadimétricos
A
B
M
O
a
b
m
D
H
m
A '
B '
f
a
a
αcos'' ABBA =
substituindo-se em (1) temos:
αcosAB
ab
f
OM ×=
mas, αcosOMD = , temos que:
α2
cosAB
ab
f
D ×=
como f e ab são constantes, podemos escrever f/ab = K onde K é uma constante da estadia,
geralmente com valor 100.
Fazendo-se AB = G (número gerador) temos:
α2
cos100GD =
D = distância
G = número gerador (leitura fio superior - leitura fio inferior)
α = ângulo vertical
2.7 DISTÂNCIAS VERTICAIS OU DIFERENÇA DE NÍVEL
MGsenhN −±= α250
N = distância vertical ou diferença de nível
h = altura do aparelho
G = número gerador (leitura fio superior - leitura fio inferior)
α = ângulo vertical
M = leitura do fio médio
Exercício:
Calcular distâncias horizontais e verticais:
estação ponto
visado
altura do
aparelho
angulo
vertical
retículo
superior
retículo
médio
reticulo
inferior
distância
horizontal
distância
vertical
1 2 1.47 4.754 2.33 1.84 0.99
2 3 1.50 4.400 2.52 1.76 1.52
3 4 1.48 -7.550 1.98 1.49 0.98
4 5 1.51 4,600 1.70 1.35 0.70
5 1 1.46 -5,390 1.80 1.22 1.17
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
11
A
B
M
a
b
m
D
A'
B'
f
a
a
m
Nh
2.8 CADERNETA DE CAMPO
LEVANTAMENTO TAQUEOMÉTRICO DE : .................................................................................
DADOS DE CAMPO
ESTAÇÀO PONTO
VISADO
ALTURA
INSTR.
ÂNGULOS
HORIZONTAIS
ÂNGULOS
VERTICAIS
LEITURAS NA MIRA CROQUIS E
OBSERVAÇÕE
S
s m i
A B 1.43 0,000° +3,645° 3.12 2.54 1.96 Azf = 92,500°
1 102,376° +6,365° 1.53 1.36 1.19
2 165,975° -2,870° 3.27 1.64 1.00
3 253,164° -2,239° 3.89 2.455 1.02
B 4 1.52 47,584° -7,763° 2.37 1.465 0.56
5 127,385° +0,087° 2.58 2.02 1.46
5 6 1.48 34,986° +1,851° 3.12 2.06 1.00
6 7 1.51 158,604° -3,098° 2.14 1.685 1.23
2.9 MEDIDA ELETRONICA DE DISTÂNCIA
Os distanciômetros eletrônicos DME medem a distância usando como padrão de medida o
comprimento de onda do espectro eletromagnético, de valor rigorosamente conhecido, nas gamas de
luz ou microondas.
A distância é conhecida pela comparação de fase entre uma "amostra" da onda emitida, com a
fase da onda recebida, após ter ela percorrido a distância a ser medida e refletida de volta ou
retransmitida no ponto de retorno.
Os DME são constituídos de:
- gerador de luz ou microondas que produz a onda portadora;
- oscilador que gera frequência precisa e estável, necessária à modulação da onda portadora;
- modulador para transformar a onda portadora em onda modulada (ampliação de zero até um
máximo) no mesmo ritmo da frequência gerada pelo oscilador;
- emissor do feixe de ondas moduladas;
- receptor de ondas e amplificador;
- comparador de fase das ondas emitidas e recebidas e
- dispositivo de leitura de fase ou da distância
A = λ' / 2
B = λ / 2
C = Ke
sendo:
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
12
gerador da
onda
portadora
oscilador
de quartzo
comparador
de fase
leituras
modulador
amplificador
centro do instrumento
emissor
receptor
A B
C D
φ = diferença de fase entre a
onda recebida e a emitida;
λ = comprimento da onda
modulada;
N = número inteiro de meias
ondas.
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
13
3 AVALIAÇÃO DE ÁREAS
Podemos classificar os processos topográficos de avaliação de áreas em três tipos: geométrico,
analítico e mecânico.
3.1 PROCESSOS GEOMÉTRICOS
3.1.1 DECOMPOSIÇÃO DO POLÍGONO EM FIGURAS GEOMÉTRICAS SIMPLES
Seja o polígono ABCDEFG; para efeito de avaliação de sua área, foi decomposto em três
triângulos e um trapézio.
3.1.2 REDUÇÃO OU QUIVALÊNCIA GEOMÉTRICA
Consiste o processo na transformação da superfície de um polígono qualquer na de um triângulo
da mesma área, utilizando-se construções gráficas.
3.1.3 PROCESSOS PARA AVALIAÇÃO DAS ÁREAS EXTRAPOLIGONAIS
Seja a área extrapoligonal ABPQ, que se deseja avaliar.
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
14
A
B
C
D
E
F
G
h1
h2
h3
h4
S1
S2
S3
S4
A
B
C
D
E
N
MQ
P
h
A
B
Q
P
b1 b2
b3 b4
b5
bn-1
bn bn+1
SSn-1 n
h h h h h
h h
S1 S2 S3 S4 S5
3.2 MÉTODO ANALÍTICO (DUPLA DISTÂNCIA MERIDIANA)
Seja a poligonal cujos vértices são: 1(x1,y1); 2(x2,y2); 3(x3,y3); 4(x4,y4) e 5(x5,y5).
x1 x2
x3x4x5
y1y5
y2y3y4
1
2
3
4
5
N
L1 L2
L3
L4
L5
L= distância meridiana Multiplicando p/ 2:
2
1
1
x
L = 112 xL =
22
21
12
xx
LL ++= 2112 22 xxLL ++=
22
32
23
xx
LL −+= 3223 22 xxLL −+=
22
43
34
xx
LL −−= 4334 22 xxLL −+=
22
54
45
xx
LL −−= 5445 22 xxLL −−=
∴ nnnn xxLL ±±= −− 1122
Para calcularmos a área interna à poligonal 12345 podemos considerar os triângulos e trapézios
formados por cada lado da poligonal, com pontos correspondentes às abcissas dos respectivos vértices.
2
)2()2()2()2()2( 5544332211 yLyLyLyLyL
A
×+×+×+×+×
=
2
∑ ∑+
=
sulprodnorteprod
A
2
2∑ ×
=∴ nn yL
A
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
15
Exercício:
Calcular a área do terreno:
x y 2Ln 2Ln x y
1 68.80 70.30
2 138.20 62.70
3 95.40 18.10
4 30.70 67.20
5 80.90 77.70
Área:
3.3 PLANILHA DE CÁLCULO ANALÍTICO
3.3.1 DADOS DE CAMPO E DE ESCRITÓRIO
V
é
rt
ic
e
s
Estacas ELEMENTOS ANGULARES Distâncias
medidas
Funções angulares dos
rumos
Ângulos internos Azimutes Rumos ® sen cos
Lidos Compensados ângulos Q
a b c d e f g h i j
1 45+ 9.35 59°19' 25 " 59°19' 25 " 81°00' 00 " 81°00' 00 " NE 439.20 0.98766 0.15643
2 8+ 39.20 211°49' 00 " 211°48' 55 " 112°48' 45 " 67°11' 15 " SE 219.80 0.92178 0.38772
3 13+ 9.00 74°42' 45 " 74°42' 35 " 7°31' 20 " 7°31' 20 " NE 351.10 0.13091 0.99140
4 20+10.10 198°11' 15 " 198°10' 55 " 25°42' 15 " 25°42' 15 " NE 192.75 0.43373 0.90105
5 24+ 2.85 60°50' 00 " 60°49' 50 " 266°32' 05 " 86°32' 05 " SW 303.80 0.99817 0.06045
6 30+ 6.65 169°49' 15 " 169°49' 20 " 256°21' 25 " 76°21' 25 " SW 305.90 0.97178 0.23587
7 36+12.55 125°19' 15 " 125°19' 15 " 201°40' 35 " 21°40' 35 " SW 446.80 0.36937 0.92929
SOMAS 900°01' 15 " 900°00' 00 " 2 259.35
Verifica-
ções
Erro angular total: εt = + 1' 15"
Erro por ângulo: ε = εt/n = + 75"/7 = + 10" 7
( ∑l )
Distribuição prática  l > 400m - 2 x 5°
l > 300m - 3 x 10° = 75"
l > 200m - 1 x 15°
l< 200m - 1 x 20°
a) Vértices ou estações do instrumento.
b) O estaqueamento dos alinhamentos, sempre que houver levantamento altimétrico, será de 20, 25 ou
de 50 em 50 m.
c/d) A soma dos ângulos internos é verificada por:
∑ −= )2(180 nA O
I
n = número de vértices
εt = ε √ n
εt = erro total
ε = menor aproximação do teodolito
e) Azimutes: pag. 7;
f/g) Rumos: pag. 8;
h) Distâncias: distâncias medidas no terreno (l)
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
16
Sl = perímetro
i/j) Linhas trigonométrica: funções naturais de ângulos
3.3.2 PROJEÇÕES NATURAIS E COMPENSADAS
PROJEÇÕES NATURAIS Correções PROJEÇÕES COMPENSADAS
Sobre o eixo X Sobre o eixo Y
( x'= l . sen R ) ( y'= l . cos R ) Cx Cy Eixo X (x) Eixo Y (y)
E+ W- N+ S- E+; W- N+; S-
k l m n o q r s
433.793 68.704 + 81 - 94 + 433.712 + 68.798
202.608 85.221 + 42 - 47 + 202.566 - 85.174
45.963 348.081 + 65 - 76 + 45.898 + 348.157
83.601 173.677 + 36 - 40 + 83.565 + 173.717
306.244 18.365 + 56 - 65 - 303.300 - 18.300
297.268 72.153 + 57 - 66 - 297.325 - 72.087
165.034 415.207 + 82 - 96 - 165.116 - 415.111
765.965 765.546 590.462 590.946 + 419 - 484 ± 765.741 ± 590.672
765.546 590.462 (∑x) (∑y) ∑(x) = 0 ∑(y) = 0
+ 0.419 (∑x) - 0.484 (∑y)
e' = x/∑l = 0.00019 m; e" = y/∑l = 0.00021 m
k/l/n/m) Projeções naturais: Rsenlx ×='
Rly cos' ×=
Se as medidas forem rigorosamente exatas, a soma das projeções E, seria igual a das projeções W e
∑(±x) = 0; e, também, ∑(±y) = 0
Na prática, ∑x = ± ∆x e ∑y = ± ∆y e o erro de fechamento do perímetro é dado por ∑∑ += 22
yxE
o/q) Correções:
∑
∑
∑
∑ ×
=
×
=
l
yl
Cy
l
xl
Cx
r/s) Projeções compensadas:
(±x) = (±x') - (±Cx) e
(±y) = (±y') - (±Cy)
3.3.3 COORDENADAS E ÁREA
COODENADAS SOMA DAS DUPLAS ÁREAS
Abscissas Ordenadas
Abscissas Ordenadas ∑X ∑Y ∑X.y ∑Y.x
X Y (Xn+X n+1) (Yn+Yn+1) A somar (+) A subtrair (-)
t u v x y z
000.000 000.000 + 433.712 + 68.798 + 29 838.518 176 + 29 838.518 176
+ 433.712 + 68.798 + 1 069.990 + 54.422 - 91 135.328 260 + 10 618.914 852
+ 636.278 - 16.376 + 1 318.454 + 315.405 + 459 028.989 278 + 14 476.458 690
+ 682.176 + 331.781 + 1 447.917 + 837.279 + 251 527.797 489 + 69 9767.219 635
+ 765.741 + 505.498 + 1 228.182 + 992.696 - 22 475.730 600 - 301 084.696 800
+ 462.441 + 487.198 + 627.557 + 902.309 - 45 238.701 459 - 268 279.023 425
+ 165.116 + 415.111 + 165.116 + 415.111 - 68 541.467 876 - 68 541.467 876
+ 3 145.464 + 1 792.010 + 6 290.928 + 3 584.020 + 740 395.304 943 + 124 901.111 353
x 2 x 2 - 227 391.228 195 - 637 905.188 101
+ 6 290.928 + 3 584.020 + 513 004.076 748 - 513 004.076 748
Área = 513 004.076 748 = 256 502,04
m2
2
Área = 25,6502 Ha
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
17
t/u) Coordenadas: As primeiras coordenadas são iguais a zero, as coordenadas dos segundos vértices
são iguais as projeções do primeiro alinhamento. As coordenadas do terceiro, quarto, etc. vértices são
iguais a dos vértices anteriores, somadas algebricamente às projeções dos segundos, terceiros, etc. As
ultimas coordenadas são iguais as primeiras projeções com sinal contrário.
v/x) Somatória de coordenadas: a primeira somatória é igual à soma das primeiras e segundas
coordenadas, a segunda somatória é igual à soma das segundas e terceiras coordenadas, a ultima
somatória é igual à ultima coordenada.
y/z) Duplas áreas: somatórias x projeções ( ∑X . y ) ou ( ∑Y . x )
A verificação é feita determinando a somatória de Y e área dupla de Y.
Área:
2
∑ ×
=
yX
S
( ) ( ) ( ) ( )[ ]
2
0332221110 nn yxxyxxyxxyxx
S
+++++++
=
( ) ( ) ( ) ( )[ ]
2
0332221110 nn xyyxyyxyyxyy
S
+++++++
=
Exercício:
Calcular á área do terreno:
Azimute fundamental = o
000,111
Caminhamento à direita
vértices Ângulos
internos
distancias
1 59,324 439.20
2 211,817 219.80
3 74,713 351.10
4 198,188 192.75
5 60,833 303.80
6 169,821 305.90
7 125,321 446.80
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
18
4 ALTIMETRIA
A altimetria tem por fim a medida da distância vertical ou diferença de nível entre diversos
pontos.
Dá-se o nome de nivelamento á determinação do relevo de um terreno, obtendo-se, através de
processos específicos, as altitudes (referidas à superfície média dos mares), as cotas (referem a uma
superfície de nível fictícia, situada acima ou abaixo das superfície dos mares) ou as diferenças de
altitudes ou de cotas, dos diversos pontos desse terreno.
A diferença de nível pode ser determinada por três processos:
nivelamento geométrico
nivelamento trigonométrico
nivelamento barométrico
4.1 NIVELAMENTO GEOMÉTRICO
4.1.1 APARELHOS DE NIVELAMENTO
• Nível - para determinar um plano horizontal
• Mira - para medida das linhas retas verticais
• Nível de pedreiro
• Nível d'água (mangueira)
4.1.2 NIVELAMENTO SIMPLES
vr HHH −= vHhH −=
ba HHH −=
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
19
A
B
Hr
Hv
H
A
B
Hv
H
h
A
B H
Ha
Hb
4.1.3 NIVELAMENTO COMPOSTO
654321 HHHHHHH −+−+−=
( ) ( )642531 HHHHHHH ++−++=
4.2 NIVELAMENTO TRIGONOMÉTRICO
Este método baseia-se na resolução de um triângulo
retângulo ABC, conhecendo a base AB = D e o ângulo de
inclinação α.
α
4.2.1 VISANDO UM PONTO DA MIRA COLOCADA À MESMA ALTURA ACIMA DO SOLO
α
4.2.2 VISANDO UM PONTO QUALQUER NA MIRA
α
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
20
A
B
H1
H2
H3
H4
H5
H6
H7
H8
H
A B
C
O
C
B
E
F
D
i
h
A
O
C
B
E
F
D
h = i
i
A
4.2.3 CADERNETA PARA NIVELAMENTO TRIGONOMÉTRICO
ESTAÇÃO PONTO
VISADO
DISTÂNCIAS ÂNGULOS
VERTICAIS
LEITURA
MIRA
ALTURA
INSTR.
DIFERENÇA
DE NÍVEL
COTAS
A 1 47,30m 8° 30" solo 1,43m + 8,50m 8,50m
2 73,10 10° 26" 1,87 1,27 + 12,86 21,36
3 23,80 -5° 18" solo 1,18 - 1,03 20,33
4 52,90 7° 21" 2,02 1,15 + 5,98 26,31
4.3 NIVELAMENTO BAROMÉTRICO
O nivelamento barométrico é baseado na relação que existe entre altitude e pressão
atmosférica.
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
21
5 ESTUDO DA PLANTA TOPOGRÁFICA
Existem vários métodos para a representação do relevo de um terreno, sendo de uso corrente o
método das curvas de nível, que consiste em seccionar o terreno por um conjunto de planos horizontais
equidistantes, que interceptam a superfície do local, determinando linhas fechadas que recebem o
nome de "curvas de nível".
Para maior facilidade de leitura, representamos com traços mais fortes as curvas mestras que
são, geralmente de 5 ou de 10 metros.
A união de pontos notáveis da mesma categoria dá origem às linhas notáveis, que se classificam
em:
a) linhas de cumiada, de espigão ou divisórias de água: são as linhas formadas pela sucessão
de pontos notáveis mais altos.
As águas das chuvas que caem sobre uma linha de cumiada se dividem, caindo uma parte em
cada uma das superfícies laterais, chamadas vertentes das águas.
b) linhas de talvegue: são as linhas formadas pela sucessão dos pontos notáveis mais baixos.
Ao longo das linhas de talvegue se reúnem as águas das vertentes, formando os cursos d'água.
5.1 DENOMINAÇÕES E DEFINIÇÕES TOPOLÓGICAS DE ALGUMAS FORMAS DO TERRENO
Cordilheira: cadeia de montanhas de grandes altitudes.
Contraforte: montanha alongada que se destaca da cordilheira, formando uma cadeia de
segunda ordem.
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
22
10095
100
100
105
100
Espigão: contraforte secundário.
Serra: cadeia de montanhas de forma alongada, cuja parte elevada aparenta dentes de
serra.
Montanha: grande elevação de terra, de altura superior a 400m.
Vértice ou cimo: ponto culminante da montanha; pode ser arredondado (pico) ou pontia-
gudo (agulha).
Maciço: conjunto de montanhas agrupadas em torno de um ponto culminante.
Morro: pequena elevação.
Colina: pequena elevação, de 200m a 400m de altura, com declives pouco pronunciados.
Planaltos: superfícies regulares, mais ou menos extensas, situadas a grande altitude.
Planícies: superfícies regulares, mais ou menos extensas, situadas a pequena altitude.
Vertentes: superfícies inclinadas que vem do cimo até a base das montanhas.
Dorso ou divisor de águas: superfícies convexa formada pelo encontro de duas vertentes.
Vale: superfícies côncava formada pelo conjunto de duas vertentes opostas; os vales po-
dem ter fundo côncavo, fundo de ravina ou fundo chato.
Garganta ou selado: lugar do terreno onde a superfície sobe para dois lados opostos e desce para
outros dois lados opostos; a garganta é o ponto mais baixo de um divisor de águas e o ponto mais alto
dos dois talvegues que aí nascem. Se a profundidade for muito grande recebe o nome de canion.
5.2 CURVAS DE NÍVEL
É a interseção da superfície do solo com um plano horizontal de cota conhecida e relacionada a um
referencial básico, “RN”, chamado referência de nível.
A COTA é um valor relativo podendo ser positiva, quando corresponde a um valor situado
acima do plano referencial básico, RN, e negativa, quando situada abaixo dele. O lugar geométrico dos
pontos da mesma cota é um plano paralelo ou plano de comparação, que se denomina plano de nível.
• As curvas de nível espaçadas significam uma inclinação mais suave.
• Quando excessivamente espaçadas indicam terreno quase plano.
• Com pouco espaçamento indicam maiores inclinações.
• As curvas de nível não se cruzam.
• As curvas de nível formam linhas fechadas em torno das elevações e depressões.
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
23
1 0234 -1 -2
1
0
2
3
4
-1
-2
43210-1 0 1 2 3 40 -1 -2-1 0 1
A
B
C
D
E
F
A1
B1
C1
D1
F1
E1
O O O O
A2
B2
C2
E2
O
E3
D2
cotas positivas dos planos paralelos
cotas negativas
RN ouplano referencialdenível
cota 0
FERFIL
PLANTA
Por meio destas curvas, podemos representar com precisão o relevo do solo de qualquer terreno
e, levantar todos os dados que interessam.
NOTAS
• As curvas de nível espaçadas significam uma inclinação mais suave.
• Quando excessivamente espaçadas indicam terreno quase plano.
• Com pouco espaçamento indicam maiores inclinações.
• As curvas de nível não se cruzam.
• As curvas de nível formam linhas fechadas em torno das elevações e depressões.
• Os cortes no terreno, para fins de implantação e estudo preliminar, são feitos no sentido
perpendicular às curvas de nível. Tais cortes, geralmente, são em número de dois.
A A
0.50 1.00 1.50 2.00 2.50 3.00
BB
0.50 0.80 1.30 1.80 2.30 2.80
12.00m
25.00m
0.00
PERFIL LONGITUDINAL A - A
0.00
+1.30
+0.80
+0.50
+1.80
+2.30
+3.10
PLANTA
PERFIL LONGITUDINAL B - B
+0.50
+1.00
+1.50
+2.00
+2.50
+3.00
NOTA
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
24
• Quando a elevação é pequena , procura-se locar em posição que não haja muito movimento de
terra para não onerar a obra.
5.2.1 DIVISÃO DO SEGMENTO EM PARTES PROPORCIONAIS
Sejam A e B dois pontos da planta de cotas 25,30m e 31,75m.
Marca-se sobre a planta, a partir de A, um segmento que forme um ângulo qualquer em relação
a AB; sobre esse novo segmento marcam-se, numa escala qualquer, pontos graduados de números
inteiros a partir do valor da cota do ponto A(25,30), terminado no ponto P correspondente ao valor da
cota B(31,75).
5.2.2 PERFIL DE UMA SEÇÃO DO TERRENO
Perfil de uma seção do terreno é o desenho do relevo esse terreno, ao longo da seção, que é
representada na planta por uma linha (reta, quebrada, curva, etc.).
5.2.3 PLATAFORMAS
As plataformas são obras projetadas e executadas com a finalidade de tornar plana a superfície
irregular de um terreno; elas tanto podem ser horizontais como inclinadas.
Com relação ao tipo de movimento de terra utilizado, podem ser classificadas em:
a) Plataformas em corte
b) Plataformas em aterro
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
25
25
26
27
28
29
30
31
31.75
P
A(25,30) B(31,75)
talude
corte
saia
aterro
c) Plataforma em corte e aterro ou mista
5.2.4. TERRENO MODIFICADO PELA IMPLANTAÇÃO DA PLATAFORMA
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
26
saia
talude
corte
aterro
105100
95
105
100
95
110
90
105100
95
105
100
95
110
6 TERRAPLENAGEM
6.1 CÁLCULO DE COTA FINAL PELA MÉDIA PONDERADA.
A B C D
1
2
3
4
8.0
6.0 7.0
9.06.0
7.0 8.0 8.4 9.0
6.8 8.2 8.6 9.3
5.9 7.0 7.6 8.2
5.2 6.5 7.1 7.720.00 20.00 20.00
20.0020.0020.00
12.7
10.0
11.0
12.0
10.0 11.0 12.0
Obs.: os valores nos vértices dos quadrados são as cotas, em metros.
6.1.1 CÁLCULO DA COTA FINAL DO PLANO HORIZONTAL QUE RESULTE EM VOLUMES DE
CORTE E ATERRO IGUAIS.
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
27
x2x1
x3 x4
a) p = 1 p = 2 p = 3 p = 4 246.4 = 7.7 m
5.2 5.9 8.2 7.0 32
7.0 6.8 8.6 7.6
8.4 9.3 16.8 14.6 a) cota final que resulta em
9.0 8.2 x3 x4
12.7 7.1 50.4 58.4 Vc = Va = 7.7 m
7.7 6.5
50.0 43.8 50.0
x2 87.6
87.6 50.4
58.4
246.4
b) 51,7
00,5
00,20
88,1
54,13
00,5
00,20
38,3
63,14
00,5
00,20
66,3
3
3
2
2
1
1
=∴==∴==∴= x
x
x
x
x
x
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
28
A B C D
1
2
3
4
8.0
6.0 7.0
9.06.0
7.0 7.6 8.0 8.4 9.0
6.8 8.2 8.6 9.3
5.9 7.0 7.6 8.2
5.2 6.5 7.1 7.7
7.51
13.54
14.63
20.00 20.00 20.00
20.0020.0020.00
ATERRO
CO
RTE
12.7
10.0
11.0
12.0
10.0 11.0 12.0
7.7
1.40
1.35
10.20
6.2 CÁLCULO DE VOLUMES
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
29
A B C D
1
2
3
4
7.51
13.54
14.63
5.0
7.0
9.0
5.0
7.0
9.0
5.0
7.0
9.0
5.0
7.0
9.0
0.0
11.0
13.0
-1.5
-1.2
-0.6
0.0+0.5
-1.8
-0.7
-0.9
+0.5
+0.9
+1.6
-0.7
+0.7
+1.3
+5.0
Aa=-37.0 m 2
Aa=-18.0 m 2
Aa=-4.4 m 2 Ac=0.0 m 2
Aa=-25.0 m 2
Va=-620.0 m 3
Aa=-8.0 m 2
Ac=4.0 m 2
Va=-43.9 m 3
Va=-260.0 m 3
Vc=40.0 m 3
Aa=-6.1 m 2
Ac=14.0 m 2
Ac=1.6 m 2
Ac=25.0 m 2
Ac=63.0 m 2
Vc=250.0 m 3
Va=-310.0 m 3
Vc=8.1 m 3
V a=-20.0 m 3
Vc=105.0 m 3
Aa=-2.6 m 2
Ac=4.4 m 2
V a=-87.2 m 3
V c=59.9 m 3 Vc=880.0 m 3
5,2 -2,5 -2,5 -1,2 -0,6 14,6 0,0
6,5 -1,2 -37,0 -18,0 -4,4
7,1 -0,6 0,0
7,7 0,0 -620,0 -260,0 -43,9
40,0
5,9 -1,8 -1,8 -0,7 -0,1 0,5
7,0 -0,7 -25,0 -8,0 4,0
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
30
7,6 -0,1 -310,9 -20,0 250,0
8,2 0,5 8,1 105,0
-0,9 13,5 0,5 0,9 1,6
6,8 -0,9 -6,1 14,0 25,0
8,2 0,5 1,6
8,6 0,9 -87,2 880,0
9,3 1,6 59,9
-0,7 7,5 0,7 1,3 5,0
7,0 -0,7 -2,6 63,0
8,4 0,7 4,4
9,0 1,3
12,7 5,0 -620,0 40,0
-260,0 8,1
-43,9 105,0
-310,9 250,0
-20,0 59,9
-87,2 0,0
880,0
ATERRO CORTE
-1342,0 m3 1342,9 m3
0,9
A inclinação dos planos de contenção depende do ângulo de atrito do material do solo, no
estado de agregação em que se encontra; o ângulo de atrito (ϕ) é o maior ângulo no qual o cone de
atrito desse solo é estável.
ϕ
A interseção entre um talude de corte e o terreno original recebe o nome de linha de off-set de
corte; a interseção entre uma saia de aterro e o terreno original recebe o nome de linha de off-set de
aterro.
Exercício:
• Traçar curvas de nível de 1 em 1 m.
• Calcular cota de compensação.
• Traçar perfis 1-2, 6-3, 5-4
• Calcular volumes de corte e aterro.
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
31
1(98.30)
2(101.00)3(102.36)4(102.45)
5(98.38)6(98.64)
10.00
20.00
98
99
100
101
102
103
98
99
100
101
102
103
98
99
100
101
102
103
1 m
ESCALA
Exercício:
• Calcular cota de compensação
• Calcular volumes de corte
• Calcular volumes de aterro
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
32
est pv D N X Y Cotas
1 2 14.39 -2.17 0.00 0.00
2 3 11.97 -3.70 14.39 0.00
3 4 4.73 0.34 14.39 11.97
4 5 5.00 -0.47 10.00 10.00
5 6 10.22 3.72 10.00 15.00
6 7 5.36 0.96 0.00 13.20
7 1 7.84 1.32 0.00 7.84
14.39m
11.97m
7.84m
13.20m
1 (100.00) 2 (97.83)
4 (94.47)
5 (94.00)
3 (94.13)
6 (97.72)
7 (98.68)
99
98
97
96
95
99.12 97.42 96.30
96.4298.22
95.87
95.75
99.24 98.46
10.00m
15.00m
10.00m
14.39
11.97
4.73
5.00
7.845.36
10.22
SEÇÕES TRANSVERSAIS
A-A 100
99
98
97
96
95
94
93
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
33
92
91
B-B 100
99
98
97
96
95
94
93
92
91
C-C 100
99
98
97
96
95
94
93
92
91
D-D 100
99
98
97
96
95
94
93
92
91
CÁLCULO DE COTA DE COMPENSAÇÃO
x1 x2 x3 x4
7 EQUIPAMENTOS DE MEDIÇÃO, UNIDADES DE
MEDIDAS E ESCALAS
7.1 EQUIPAMENTOS DE MEDIÇÃO ANGULAR
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
34
• Teodolito: Equipamento utilizado para medir ângulos horizontais e verticais com precisão. Os
teodolitos atuais são todos eletrônicos, mas ainda é muito comum os teodolitos ótico-mecânico.
• Estação Total: Assim como o teodolito, a estação total também mede ângulos horizontais e
verticais. O que as difere dos teodolitos, é que elas também medem distâncias. Todas as
estações totais são eletrônicas e possibilitam o armazenamento automático das informações.
7.2 GENERALIDADES
A unidade que mais representa um espaço a ser ocupado, é sem dúvida as medidas de área
(duas dimensões). De acordo com a ABNT, a medida padrão utilizada em topografia, é o metro
quadrado (m2
).
7.3 UNIDADES DE SUPERFÍCIE
Ainda hoje se utilizam alguns tipos de áreas para facilitar a leitura e dimensão. Qualquer unidade
linear elevada ao quadrado, pode virar também unidade de área. Uma outra unidade que se utiliza é o
hectare (ha), que é igual a 10000m2
. Para a conversão de outras unidades, poderemos utilizar a tabela
a seguir:
7.4 UNIDADES DE MEDIDAS
Lineares m (metro)
Superficiais m2 (metro quadrado)
Ha (hectare - 10.000 m2)
Angulares º (graus)
7.5 ESCALAS USADAS EM TOPOGRAFIA
Escala - Relação entre duas dimensões
MD = E. MO
MD = Medida no desenho
MO = Medida no terreno
E = Escala
Principais escalas para plantas e cartas topográficas
ESCALA
EQUIVALÊNCIA
Emprego1 Km
(terreno)
1 cm
(desenho)
Desenho Terreno
1/100
1/200
1/250
10 m
5 m
4 m
1 m
2 m
2,50 m
Detalhe de edifícios;
terraplenagem, etc
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
35
1/500
1/1 000
1/2 000
2 m
1 m
0,50 m
5 m
10 m
20 m
Planta de uma fazenda;
Planta de uma vila;
Planta de uma cadastral
1/5 000
1/10 000
0,20 m
0,10 m
50 m
100 m
Planta pequena cidade;
Planta grande propriedade
1/50 000
1/100 000
1/200 000
0,02 m
0,01 m
0,005 m
500 m
1 000 m
2 000 m
Carta de diversos países e Estados;
Cartas (grande país)
Cartas aeronáuticas
1/500 000 0,002 m 5 000 m Carta reduzida (grande país)
1/1 000 000 0,001 m 10 000 m Carta internacional do mundo
7.6 SISTEMAS DE UNIDADES
Assim como a medida linear, temos várias unidades angulares. As unidades angulares são de
acordo com a divisão de um círculo.
• Grau: Um círculo dividido, a partir de seu centro, em 360 partes. Cada parte desta, é chamada
de grau. Cada grau por sua vez, é dividido em 60 partes, chamada de minuto. Cada minuto é
divido em mais 60 partes, chamada de segundo, e cada segundo assume as divisões decimais.
Este sistema é chamado de Sexagesimal.
• Grado: Um círculo dividido, a partir de seu centro, em 400 partes. Cada parte desta, é chamada
de grado. Cada grado segue a divisão decimal. Este sistema é chamado de Centesimal.
• Radiano: Um radiano é representado pelo ângulo formado quando o valor do comprimento do
arco da circunferência é igual ao seu raio. Uma circunferência total, possui 2π radianos.
7.7 PROCEDIMENTOS PARA ESTACIONAR EQUIPAMENTOS TOPOGRÁFICOS COM PRUMO
ÓTICO
1. Posicione o tripé do instrumento aproximadamente na vertical do ponto topográfico. Se a superfície
topográfica for irregular, posicione apenas uma perna na parte mais alta e utilize o fio de prumo para
auxiliar na detecção da vertical. Procure adaptar a altura do tripé para a sua altura, não deixando de
considerar a irregularidade da superfície e nem a altura do instrumento. Aproveite este momento
para deixar a mesa do tripé aproximadamente nivelada e crave uma das pernas no solo (de
preferência a que estiver na parte mais alta do terreno).
2. Retire o instrumento de seu estojo conforme o item 4 do manual “CUIDADOS COM
EQUIPAMENTOS TOPOGRÁFICOS” e coloque-o sobre o tripé conforme o item 5 do referido
manual. Posicione os três calantes numa mesma altura (de preferência num ponto intermediário do
recurso total do calante). Normalmente os instrumentos possuem marcas fiduciais como anéis
pintados ou parafusos de fixação de seu eixo que podem servir de referência.
3. Posicione a marca central do prumo ótico sobre o ponto topográfico utilizando as duas pernas do
tripé que ainda não estão cravadas. Quando a marca estiver perfeitamente sobre o ponto
topográfico, crave as pernas soltas e inicie o nivelamento da bolha circular utilizando as três pernas.
Preste muita atenção na direção formada pela bolha e o círculo. Esta direção irá definir com qual
perna você deverá subir ou abaixar a mesa.
Conforme as ilustrações ao lado, a perna que deverá baixar a mesa é a perna 1, pois a bolha circular
está na sua direção para o seu lado.
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
36
perna 2
vista superior da bolha circular vista superior do tripé
4. Com a bolha perfeitamente dentro do círculo (automaticamente a mesa estará nivelada, pois os
calantes estão numa mesma altura), verifique se a marca central do prumo ótico saiu da vertical do
ponto. Caso tenha saído afrouxe o instrumento do tripé e posicione novamente a marca sobre o
ponto topográfico.
5. Inicie então o nivelamento da bolha tubular utilizando o “Método dos Três Calantes” ou o “Método do
Calante Perpendicular”(ambos descrito a seguir). Independente de qual método você optar, deverá
ser feito duas vezes. Após feito, verifique se a marca central do prumo ótico saiu do ponto. Caso
tenha saído volte ao passo 4.
Método dos Três Calantes: Deixe a bolha tubular paralela aos calantes 1-2
e nivele-a utilizando somente estes dois calantes. O movimento dos
calantes deverão ser sempre em sentidos opostos (quando um for
girado no sentido horário o outro deverá ser girado no anti-horário). Em
seguida posicione a bolha tubular paralela aos calantes 2-3 e use estes
calantes para nivelar a bolha. Não esqueça que os calantes devem
giram em sentidos opostos. Finalmente deixe a bolha paralela aos
calantes 3-1 e nivele-a também.
Método do Calante Perpendicular: Deixe a bolha paralela aos calantes 1-2 e nivele-a utilizando somente
estes dois calantes. O movimento dos calantes deverão ser sempre em sentidos opostos (quando um
for girado no sentido horário o outro deverá ser girado no anti-horário). Em seguida posicione a bolha
tubular perpendicular aos calantes 1-2 e use somente o calante 3 para nivelar a bolha.
Movimento do calantes
8 AEROFOTOGRAMETRIA
8.1 EXECUÇÃO DAS FOTOS AÉREAS
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
37
retículosbolha circular
direção
mesa
perna 1
perna 3
direção
perna 2
1
2
3
8.1.1 CÂMARA FOTOGRÁFICA
• Nivelamento em vôo (parafusos).
• Série de fotos numeradas.
• Correção do eixo longitudinal da câmera em relação à linha de vôo (devido a ventos de través)
8.1.2 CONDIÇÕES ATMOSFÉRICAS
Principal característica do “dia aerofotogramétrico”: boa visibilidade.
8.1.3 POSIÇÃO DO SOL
Sombras excessivas: promovem perda de nitidez (ideal: 9:30 hs às 15:00 hs).
Pouca sombra: acarreta perda do contraste entre os objetos.
8.1.4 ERROS E DISTORÇÕES:
• Linha de vôo não retilínea devido a movimentações verticais e horizontais.
• Desnivelamento da aeronave e da câmera.
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
38
VENTOS PREDOMINANTES
LINHA DE VÔO
A
B
REGIÃODE SOMBRAS
• Distorções devidas ao relevo.
8.2 RECOBRIMENTO DA ÁREA
Promove o aparecimento de pontos comuns em fotos consecutivas ou laterais.
Recobrimento longitudinal: necessário para permitir a observação de um par
estéreofotogramétrico e para amarração.
Recobrimento lateral: para amarrar as sequências fotográficas.
A : afastamento das linhas de vôo.
B : base (distância entre verticais da foto)
L : dimensão da área abrangida pela foto (quadrado)
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
39
L
30%
60%
LINHA DE VÔO
A
recobrimento longitudinal recobrimento transversal
A B
8.3 MAPA-ÍNDICE E FOTO-ÍNDICE
Permitem a observação da área através das fotos e reconhecer a posição de cada foto na área
levantada.
Deve-se observar as bandas das fotos na posição invertida e os reconhecimentos.
9 CADASTRO IMOBILIÁRIO E REGISTROS PÚBLICOS
9.1 CADASTRO IMOBILIÁRIO MUNICIPAL
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
40
128
129
130
131
132
133
176
177
178
179
180
181
209
210
211
212
213
214
9.1.1 ESTRUTURA
Planta de Referência Cadastral, em escala 1: 5.000 / 1: 10.000 com codificação de quadras para
amarração das Plantas de Quadra.
Planta de Valores de Terreno na mesma escala da Planta de Referência Cadastral, onde vem lançado o
valor da terra, atualizado e aprovado por lei anualmente.
Planta de Equipamentos Urbanos, na mesma escala da Referência Cadastral, onde são lançados os
elementos de infra estrutura que significam valor agregado aos terrenos. Em geral separam-se em três
plantas: a de água e esgoto, a de luz, força e telefonia e a de esgoto pluvial, pavimentação, iluminação
e edificação.
Planta de quadra em escala 1: 500 / 1: 1.000 onde estão lançados os lotes, as projeções das
edificações, as medidas dos lotes, a numeração (emplacamento) da edificação e o nome da rua.
Boletim de Informações Cadastrais - BIC, onde vem indicado o nome e endereço do proprietário, a tipo
de título de propriedade, as característica do lote, da edificação e dos equipamentos além de croquis do
lote e da edificação.
9.1.2. FINALIDADE
A finalidade técnica da grande maioria dos cadastros é fiscal, ou seja, a cobrança do IPTU
(Imposto Predial Territorial Urbano), do ISS (Imposto Sobre Serviços), do ITBI (Imposto de Transmissão
de Bens Imóveis) e do ITR (Imposto Territorial Rural).
9.2. CADASTRO TÉCNICO MUNICIPAL
9.2.1. ESTRUTURA BÁSICA DO CADASTRO TÉCNICO MUNICIPAL
Carta topográfica em escala 1: 50.000 do IBGE, destinada a compreender o relevo geral do Município,
sistema de drenagem geral, sistema viário básico e as relações desses elementos com os municípios
vizinhos.
Carta topográfica 1: 10.000 ou 1: 5.000 dependendo da densidade de informações, como carta básica
para a construção das demais cartas nessas escalas e para planejamento de bairro, macro
planejamento de saneamento, redes elétricas, telefônicas, disposição de lixo, etc.,... e carta para
cadastro fundiário rural.
Rede de referência Cadastral Municipal composta de rede de marcos materializando vértices
planimétricos e Referências de nível que referenciarão os serviços de levantamentos topográficos e
aerofotogramétricos.
Os vértices planimétricos deverão ser em densidade de 1 a cada 3 Km2
na área urbana e 1 a cada 16
Km2
a 1 a cada 50 Km2
na área rural dependendo da densidade de ocupação,
Planta de Referência Cadastral, Planta Genérica de Valores e Plantas Indicativas de Equipamentos
Urbanos, todos em escala 1: 5.000 ou 1: 10.000, dependendo da carta básica.
Planta Cadastral da Área Urbanizada em escala 1: 1.000, básica para a produção das plantas de
quadras e par o cadastro de toda a infra estrutura como: rede de água, rede de esgotos sanitários, rede
elétrica, de telefone, de esgoto pluvial, iluminação pública, arborização, controle das áreas de proteção
ambiental e controle do sistema fundiário, inclusive do patrimônio público.
Planta de quadra em escala 1: 1.000.
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
41
Boletim de Informações Cadastrais - BIC que além de informções sobre o terreno e a edificação deve
conter dados pedológicos, informações sócio-econômicas necessárias à decisões dos investimentos
públicos.
Cadastro de Produtores.
Cadastro de Prestadores de Serviços.
Cadastro de Usuários de Serviços Públicos, quando de competência Municipal e em forma conveniada
quando não.
Outros elementos dependendo de Município.
9.2.2. ALGUMAS POSSIBILIDADES DE UTILIZAÇÃO
Planejamento e controle do uso do solo.
Controle do parcelamento da terra.
Controle de novas edificações.
Controle e uso das edificações.
Planejamento Controle
Lançamento de impostos e taxas.
Controle da arrecadação e da cobrança da dívida.
Avaliação da política tributária.
Controle dos cadastros de infra-estrutura como subsídios a projetos .
Planejamento de obras públicas.
Planejamento e controle de:
- serviços urbanos e equipamentos urbanos sociais
- transporte, circulação, armazenagem
- transporte coletivo
- transporte e estacionamento
- política urbana
Integração de atuação com os registros de imóveis.
9.2.3. ATUALIZAÇÃO
A atualização deve ser permanente, com o estabelecimento de procedimentos técnicos
administrativos de intercâmbio de informações rotineiras dos atos administrativos que resultam em
alterações nos imóveis cadastrados, tais como: venda do imóvel, pedidos de ligação de água, luz ou
telefone, aprovação de construções, pedidos de licença de uso, etc.
9.3 ORIGEM DAS IMPRECISÕES RELATIVAS AO CONFRONTO ENTRE ÁREAS MAPEADAS DE
PROPRIEDADES RURAIS E SEU TÍTULO DE DOMÍNIO
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
42
Pode-se considerar como fundamentais, para entender os problemas correntes, três fatores:
A forma como eram descritos os perímetros que deram origem aos primeiros registros de imóveis,
contendo vários elementos de imprecisões;
A técnica frequentemente adotada para os levantamentos topográficos até períodos recentes;
A dificuldade para retificação de registros de imóveis.
9.3.1. DESCRIÇÕES ORIGINAIS IMPRECISAS
Exemplos:
a) “O braço de Pescaria tem uma légua de comprimento com outro tanto de quadra, compreendendo
as divisões seguintes: para a parte de cima principia em um córrego seco ao correr da margem faz
divisas em matas virgens, em largura divide-se em um cume de morro pertencente ao Braço da
mesma Pescaria, à margem do Rio fica dividido com terras de Jerônimo Xavier Moura, tudo de
acordo com registro Paroquial junto, feito no ano de 1856”.
Nome do Adquirente: Coronel Antônio Avelino Cunha.
Nome do Transmitente: José Mendes de Lima.
b) “Aos dezenove de novembro de mil oitocentos e cinquenta e cinco nesta Freguesia de Iporanga, me
foram apresentadas dois exemplares ambos do teor seguinte. Terras que possui Jerônimo Xavier
Moura, nesta Freguesia de Iporanga: Eu Jerônimo Xavier Moura sou possuidor das terras seguintes
nesta Freguesia: uma posse de terras lavradias no Bairro da Pescaria cujas medidas não conheço, mas
julgo que terá umas mil e quinhentas braças de testada, confina com as terras de Salvador Henrique,
indo desta Freguesia, e do Rio abaixo confina do Salto em um Córrego Seco e de fundo suponho ter
três mil braças, estes terrenos foi por mim apossados em mil oitocentos e quarenta e nove”.
São elementos como estes, extraídos de processos reais, apenas para exemplificar, que se
defronta no dia a dia em trabalhos de regularização fundiária, tanto no Estado de São Paulo, quanto em
mais de 40 projetos analisados no Nordeste brasileiro.
9.3.2. TÉCNICAS ADOTADAS NOS LEVANTAMENTOS
Até recentemente, a técnica adotada para o levantamento Topográfico de glebas, era a de
levantamento por poligonação medida com taqueômetro de leitura angular de 1 minuto
sexagesimal e distâncias medidas em mira, com orientação em Norte Magnético, sem
qualquer amarração à rede Geodésica brasileira.
Como consequência tem-se:
Erro transversal (angular) equivalente a 30 cm por quilômetro, considerado pequeno quando comparado
a erro linear.
Erro longitudinal (distância) equivalente a 2 m por quilômetro quando adotada a boa técnica, chegando
a 3 m por quilômetro, na forma mais frequentemente utilizada.
Erro de rotação em relação ao Norte Geográfico (orientação) com variáveis até 2° pelo uso de agulha
magnética com correção pela declinação magnética, o que significa em apenas um quilômetro o desvio
de cerca de 35 m em direção.
Amarrações de origem em elementos construídos em substituição à rede Geodésica.
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
43
A grande maioria dos profissionais que atuavam e atuam na área são práticos e não profissionais
habilitados.
9.4 MÉTODOS PARA O CORRETO CADASTRAMENTO TÉCNICO DE IMÓVEIS RURAIS
9.4.1. MÉTODO MISTO
Procedimento:
Vôo em escala 1: 25.000, recobrimento longitudinal de 60% e lateral de 30%, câmera métrica focal de
150 mm.
Rede de apoio, amarrado à rede Geodésica brasileira, com densidade de 1 vértice a cada 16 a 50 Km2,
medido com G.P.S. (Global Positioning System).
Apoio foto planejado para ajuste em bloco e medido com G.P.S.
Restituição planimétrica em escala 1 : 5.000, digital dos detalhes visíveis nas fotos e necessários para a
identificação de limites de propriedade e edificação.
Reambulação de campo, utilizando-se fotos ampliadas na escala de 1: 5.000, sobre as quais se
identificam limites das propriedades, tipo de materializados e no caso de limites não materializados,
cravam-se marcos nos locais acordados pelos confrontantes, para posterior levantamento topográfico.
Simultaneamente com a reambulação são levantados os dados do ocupante, de sua família e de sua
titulação (domínio ou posse).
Edição, via computador, compatibilizando-se os dados reambulados e levantados em campo por
topografia com os dados levantados via aerofotogrametria.
Plotagem de planta geral e codificação dos lotes.
Produção do memorial descritivo de propriedades individualizadas, indicando-se: as coordenadas de
todos os pontos de divisa em sistema único; os azimutes e distâncias de cada lado; sua materializaçãoe
confrontante; a área abrangida; o nome do titular; o código do lote.
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
44
10 EXERCÍCIOS RESOLVIDOS
1) No desenho, indicar as medidas a serem feita para levantamentos de todos os detalhes, usando
apenas trena ao medir AB.
A
B
10m
20m
40m
60m
80m
50m
70m
POSTE
CONSTRUÇÃO
A resposta aparece em negrito
a) quando se quer amarrar pontos usam-se triângulos.
b) para amarrar detalhes que acompanham a linha medida pode-se usar perpendiculares tiradas
sem aparelho.
______________________________________________________________________________
2) Calcular azimutes e rumos:
vértice angulo interno azimute rumo
angulo quadrante
1 88.590 135.050 44.950 SE
2 111.870 66.920 66.920 NE
3 34.000 280.920 79.080 NW
4 235.110 336.030 23.970 NW
5 70.430 226.460 46.460 SW
total 540.000
Caminhamento à direita
_______________________________________________________________________________
3) Calcular a área do polígono pelo método das duplas distâncias meridianas com origem no ponto
mais oeste.
Linha
Coord. parciais
Duplas distâncias
meridianas
produtos
Norte
Produtos
Sul
x Y
E W N S
0-1 5 40 55 + 55 + 5 = 115 40 x 115 = 4.600
1-2 10 10 115 + 5 + 10 = 130 10 x 30 = 1.300
2-3 10 80 130 + 10 + 10 = 150 80 x 150 = 12.000
3-4 20 5 150 + 10 - 20 = 140 5 x 140 = 700
4-5 40 30 140 – 20 - 40 = 80 30 x 80 = 2.400
5-6 20 10 80 – 40 - 20 = 20 10 x 20 = 200
6-0 55 45 0 + 0 + 55 = 55 45 x 55 =2.475
80 80 110 110 ∑pN = 14.400 ∑pS = 9.275
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
45
estaca X
Procura do ponto mais oeste 0 0
+5
1 +5
+10
2 +15
+10
3 +25
-20
4 +5
-40
5 -35
-20
O ponto mais oeste é a estaca 6
porque apresenta o maior valor
6 -55
+55
Área = 14.400 – 9275 = 2.525.50 m2
2
negativo 0 0
______________________________________________________________________________
4) Calcular a área do polígono pelo sistema de coordenadas.
estaca
s
Rumos
Dist.
Coordenadas parciais Coord. parciais
corrigidas
Duplas
distância
s
meridian
as
Produtos
Norte
Produtos
SulÂng. Q x y x Y
E+ W- Cx N+ S- Cy E+ W- N+ S-
1 33°
07’
NE 60.672 33.148 22 50.816 63 33.126 50.753 54.694 2.775,885
2 80°
44’
SE 58.511 57.747 39 -9.422 -12 57.708 -9.434 145.528 1.372,911
3 58°
47’
NE 43.340 37.065 25 22.462 28 37.040 22.434 240.276 5.390,352
4 71°
37’
SE 90.464 85.847 58 -28.530 -35 85.789 -8.565 363.105 10.372,094
5 2° 06’ SW 99.404 -3.643 -2 -99.337 -123 -3.645 -99.460 445.249 44.284,466
6 66°
47’
SW 63.609 -58.458 -39 -25.075 -31 -58.497 -25.106 383.107 9.618,284
7 44°
39’
SW 143.22 -
100.656
-68 -101.894 -127 -100.724 -102.021 223.886 22.841,064
8 38°
27’
NW 98.965 -64.540 -41 77.505 96 -61.581 77.409 61.581 4.766,924
9 21°
02’
NE 30.067 10.791 7 28.064 35 10.784 28.029 10.789 302,265
10 0° 0’ N 86.068 0.0 86.068 107 0 85.961 21.568 1.854,007
774.32
7
0.301 0.657 15.089,431 88.488,829
A = 88.488,829 = 36.699,699 m2
15.089,431
________________________________________________________________________________________________
5) A escala e os nônios pertencem a um teodolito. Fazer a leitura na escala horária (explicando como
leu) e também na escala anti horária.
20 15 10 5
0
5 10 15 20
130
230
140
220
120
240
110
250
100
260
CONINCIDÊNCIA (11' 20") CONINCIDÊNCIA (8' 40")
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
46
Resposta: 123° 00’
11’ 20”
123° 11’ 40” (escala horária)
236° 40’
8’ 40”
236° 48’ 40” (escala anti-horária)
______________________________________________________________________________
6) Compor a tabela de nivelamento geométrico, calculando as cotas dos pontos visados.
0.520 3.8162.4040.398
3.1230.4443.711
0.857
3.8022.841
RN - 1
(cota 105.215)
estaca V Ré AI V Vante Cota
Intermed. Mudança
RN - 1 105.215
0.520 105.735
2 2.841 102.894
3 3.802 101.933
4 0.857 104.878
3.711 108.589
5 0.444 108.145
6 3.123 105.466
0.398 105.864
7 2.404 103.460
8 3.816 102.048
Soma 4.629 7.796
Prova do cálculo:
Cota final = cota inicial + ∑ V Ré - ∑ V Mud
105,215
+ 4.629
109.844
- 7.796
102.049
___________________________________________________________________________
7) Calcular a distância horizontal entre A e B e a cota de B.
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
47
Estaca Ponto
visado
Mira Ângulo
vertical
D
dist. horiz
N
dist. vert Cotasup. méd. inf.
A
1.42 B 0.81 0.57 0.32 + 5° 45’ 48.51 + 3.293
100.00
105.678
2
D = 100 G cos α D = 100 (0.81-0.32) 0.990025 = 48.51 m
N = h ± 50 G sen 2α - m N = 1.42 + 50(0.81-0.32) sen11.5° - 0.57 = + 3.293 m
__________________________________________________________________________
8) Determinar os pontos de cota inteira e traçar as curvas de nível 13, 14, 15, 16 e 17, com
interpolação gráfica.
12.2
15.6
17.2
16.4
10
11
12
13
14
15
16
17
13
14
1510
11
12
13
14
15
16
17
16
17
______________________________________________________________________________
9) Calcular o volume de corte quando o projeto exigir uma plataforma horizontal na cota 3.
Área de corte: Ac = 10 (1,4 + 2 x 2,1 + 2,6) = 41 m2
2
Bc = 10 (0,2 + 2 x 1,0 + 1,8) = 20 m2
2
Volume pela fórmula de prisma:
2
30510
2
2041
mxV =
++
=
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
48
Volume pela fórmula de tronco de pirâmide:
2
77,29810
3
20412041
mx
x
V =
++
=
10.00 m 10.00 m
10.00m
4.4 5.1 5.6
3.2 4.0 4.8
A
B
PLANTA
10.00 m 10.00 m
10.00 m 10.00 m
4.4
5.1
5.6
1.4
2.1
2.6
3.2
4.0
4.8
0.2
1.0
1.8
SEÇÃO A
SEÇÃO B
3.003.00
BIBLIOGRAFIA
DOMINGUES, Felipe Augusto Aranha, Topografia e astronomia de posição: para engenheiros e
arquitetos.
ESPARTEL, Lélis, Curso de topografia.
ESPARTEL, Lélis, Caderneta de campo.
FONSECA, Rômulo Soares, Elementos de desenho topográfico.
BORGES, Alberto de Campos, Topografia, 1921.
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
49
L U I S M A R C I O F A L E I R O S T O P O G R A F I A
50

Weitere ähnliche Inhalte

Was ist angesagt?

Topografia exercícios propostos com solução
Topografia    exercícios  propostos com soluçãoTopografia    exercícios  propostos com solução
Topografia exercícios propostos com soluçãoMaíra Barros
 
Aula Sensoriamento Remoto
Aula Sensoriamento RemotoAula Sensoriamento Remoto
Aula Sensoriamento Remotocarlieden
 
Relatório de levantamento topográfico altimétrico - Sistematização de terrenos
Relatório de levantamento topográfico altimétrico - Sistematização de terrenosRelatório de levantamento topográfico altimétrico - Sistematização de terrenos
Relatório de levantamento topográfico altimétrico - Sistematização de terrenosluancaio_aguas
 
Apostila topografia 1ªparte
Apostila topografia 1ªparteApostila topografia 1ªparte
Apostila topografia 1ªparteCarla Tamara
 
Relatório de levantamento topográfico planimétrico
Relatório de levantamento topográfico planimétricoRelatório de levantamento topográfico planimétrico
Relatório de levantamento topográfico planimétricoluancaio_aguas
 
Desenho arquitetônico cortes
Desenho arquitetônico cortesDesenho arquitetônico cortes
Desenho arquitetônico cortesTiago Gomes
 
Projeções e sistemas de representação
Projeções e sistemas de representaçãoProjeções e sistemas de representação
Projeções e sistemas de representaçãoHiran Ferreira Lira
 
Aula 2 nivelamento_geom_trico_1sem2013
Aula 2 nivelamento_geom_trico_1sem2013Aula 2 nivelamento_geom_trico_1sem2013
Aula 2 nivelamento_geom_trico_1sem2013UCB
 
Aula 07 topografia UFPI 2018.1
Aula 07 topografia UFPI 2018.1Aula 07 topografia UFPI 2018.1
Aula 07 topografia UFPI 2018.1Martins Neto
 

Was ist angesagt? (20)

Topografia basica
Topografia basicaTopografia basica
Topografia basica
 
Geoprocessamento
Geoprocessamento Geoprocessamento
Geoprocessamento
 
Levantamento Topografico Palnimetrico
Levantamento Topografico PalnimetricoLevantamento Topografico Palnimetrico
Levantamento Topografico Palnimetrico
 
Topografia exercícios propostos com solução
Topografia    exercícios  propostos com soluçãoTopografia    exercícios  propostos com solução
Topografia exercícios propostos com solução
 
Aula Sensoriamento Remoto
Aula Sensoriamento RemotoAula Sensoriamento Remoto
Aula Sensoriamento Remoto
 
Interpolação e Geoestatística em R
Interpolação e Geoestatística em RInterpolação e Geoestatística em R
Interpolação e Geoestatística em R
 
Relatório de levantamento topográfico altimétrico - Sistematização de terrenos
Relatório de levantamento topográfico altimétrico - Sistematização de terrenosRelatório de levantamento topográfico altimétrico - Sistematização de terrenos
Relatório de levantamento topográfico altimétrico - Sistematização de terrenos
 
Escalas: Conceitos e Aplicações
Escalas: Conceitos e AplicaçõesEscalas: Conceitos e Aplicações
Escalas: Conceitos e Aplicações
 
Geoprocessamento
Geoprocessamento Geoprocessamento
Geoprocessamento
 
Apostila topografia 1ªparte
Apostila topografia 1ªparteApostila topografia 1ªparte
Apostila topografia 1ªparte
 
Apostila 3 topografia
Apostila 3 topografiaApostila 3 topografia
Apostila 3 topografia
 
Relatório de levantamento topográfico planimétrico
Relatório de levantamento topográfico planimétricoRelatório de levantamento topográfico planimétrico
Relatório de levantamento topográfico planimétrico
 
Desenho arquitetônico cortes
Desenho arquitetônico cortesDesenho arquitetônico cortes
Desenho arquitetônico cortes
 
Detalhamento de Telhado
Detalhamento de TelhadoDetalhamento de Telhado
Detalhamento de Telhado
 
Projeções e sistemas de representação
Projeções e sistemas de representaçãoProjeções e sistemas de representação
Projeções e sistemas de representação
 
Aula 2 nivelamento_geom_trico_1sem2013
Aula 2 nivelamento_geom_trico_1sem2013Aula 2 nivelamento_geom_trico_1sem2013
Aula 2 nivelamento_geom_trico_1sem2013
 
Aula - Topografia
Aula - TopografiaAula - Topografia
Aula - Topografia
 
Aula 07 topografia UFPI 2018.1
Aula 07 topografia UFPI 2018.1Aula 07 topografia UFPI 2018.1
Aula 07 topografia UFPI 2018.1
 
Exercícios de rumos e azimutes
Exercícios de rumos e azimutesExercícios de rumos e azimutes
Exercícios de rumos e azimutes
 
Curso de introdução ao Qgis
Curso de introdução ao QgisCurso de introdução ao Qgis
Curso de introdução ao Qgis
 

Andere mochten auch

Unidade 3 Projeto de terraplenagem
Unidade 3   Projeto de terraplenagemUnidade 3   Projeto de terraplenagem
Unidade 3 Projeto de terraplenagemAlexandre Esmeraldo
 
Topografia - Apostila pratica [1]
Topografia - Apostila pratica [1]Topografia - Apostila pratica [1]
Topografia - Apostila pratica [1]Carlos Elson Cunha
 
Apostila terraplenagem
Apostila terraplenagemApostila terraplenagem
Apostila terraplenagemsfon
 
Exercicios-topografia-corrigidos
 Exercicios-topografia-corrigidos Exercicios-topografia-corrigidos
Exercicios-topografia-corrigidosLaécio Bezerra
 
Topografia - Formação Conjunta 2010-2011
Topografia - Formação Conjunta 2010-2011Topografia - Formação Conjunta 2010-2011
Topografia - Formação Conjunta 2010-2011Fireshaker
 
Apostila de topografia ii boa
Apostila de topografia ii boaApostila de topografia ii boa
Apostila de topografia ii boaGislan Rocha
 
Topografia - Nivelamento e Sistematização de Terrenos
Topografia - Nivelamento e Sistematização de TerrenosTopografia - Nivelamento e Sistematização de Terrenos
Topografia - Nivelamento e Sistematização de TerrenosBruno Anacleto
 
Aula de Topografia
Aula de TopografiaAula de Topografia
Aula de TopografiaGilson Lima
 
Calculo de rumos e azimutes2
Calculo de rumos e azimutes2Calculo de rumos e azimutes2
Calculo de rumos e azimutes2botelho_19
 
Compilação de exercicios topografia altimetria
Compilação de exercicios topografia altimetriaCompilação de exercicios topografia altimetria
Compilação de exercicios topografia altimetriaCleide Soares
 
Curvas de nível
Curvas de nívelCurvas de nível
Curvas de nívelfernando-tn
 
CURVAS DE NIVEL
CURVAS DE NIVELCURVAS DE NIVEL
CURVAS DE NIVELLeslyaylin
 
Caderno de exercícios resolvidos
Caderno de exercícios resolvidosCaderno de exercícios resolvidos
Caderno de exercícios resolvidosSimone Flores
 
Portafolio unidad 2
Portafolio unidad 2Portafolio unidad 2
Portafolio unidad 2Yined Llanos
 

Andere mochten auch (20)

Unidade 3 Projeto de terraplenagem
Unidade 3   Projeto de terraplenagemUnidade 3   Projeto de terraplenagem
Unidade 3 Projeto de terraplenagem
 
Topografia - Apostila pratica [1]
Topografia - Apostila pratica [1]Topografia - Apostila pratica [1]
Topografia - Apostila pratica [1]
 
Apostila terraplenagem
Apostila terraplenagemApostila terraplenagem
Apostila terraplenagem
 
Exercicios-topografia-corrigidos
 Exercicios-topografia-corrigidos Exercicios-topografia-corrigidos
Exercicios-topografia-corrigidos
 
Exercícios de volumes
Exercícios de volumesExercícios de volumes
Exercícios de volumes
 
Topografia - Formação Conjunta 2010-2011
Topografia - Formação Conjunta 2010-2011Topografia - Formação Conjunta 2010-2011
Topografia - Formação Conjunta 2010-2011
 
Altimetria perfis e_curvas_de_nivel
Altimetria perfis e_curvas_de_nivelAltimetria perfis e_curvas_de_nivel
Altimetria perfis e_curvas_de_nivel
 
Apostila de topografia ii boa
Apostila de topografia ii boaApostila de topografia ii boa
Apostila de topografia ii boa
 
Apostila2 Topografia
Apostila2 TopografiaApostila2 Topografia
Apostila2 Topografia
 
Topografia - Nivelamento e Sistematização de Terrenos
Topografia - Nivelamento e Sistematização de TerrenosTopografia - Nivelamento e Sistematização de Terrenos
Topografia - Nivelamento e Sistematização de Terrenos
 
Aula de Topografia
Aula de TopografiaAula de Topografia
Aula de Topografia
 
Calculo de rumos e azimutes2
Calculo de rumos e azimutes2Calculo de rumos e azimutes2
Calculo de rumos e azimutes2
 
Compilação de exercicios topografia altimetria
Compilação de exercicios topografia altimetriaCompilação de exercicios topografia altimetria
Compilação de exercicios topografia altimetria
 
Curvas de nível
Curvas de nívelCurvas de nível
Curvas de nível
 
Topografia básica
Topografia básicaTopografia básica
Topografia básica
 
5. distancias y curvas de nivel
5.   distancias y curvas de nivel5.   distancias y curvas de nivel
5. distancias y curvas de nivel
 
CURVAS DE NIVEL
CURVAS DE NIVELCURVAS DE NIVEL
CURVAS DE NIVEL
 
Caderno de exercícios resolvidos
Caderno de exercícios resolvidosCaderno de exercícios resolvidos
Caderno de exercícios resolvidos
 
Apostila de topografia
Apostila de topografiaApostila de topografia
Apostila de topografia
 
Portafolio unidad 2
Portafolio unidad 2Portafolio unidad 2
Portafolio unidad 2
 

Ähnlich wie Acad 5_06_topografia_11

CONCEITOS E DIVISÃO
CONCEITOS E DIVISÃO CONCEITOS E DIVISÃO
CONCEITOS E DIVISÃO andrikazi
 
TOPOGRAFIA_II_APOSTILA.pdf
TOPOGRAFIA_II_APOSTILA.pdfTOPOGRAFIA_II_APOSTILA.pdf
TOPOGRAFIA_II_APOSTILA.pdfJR agrimensura
 
Apostila ufmg
Apostila ufmgApostila ufmg
Apostila ufmgmorti22
 
Topografia e Mapeamento, Introdução ao estudo da topografia: Conceitos básico...
Topografia e Mapeamento, Introdução ao estudo da topografia: Conceitos básico...Topografia e Mapeamento, Introdução ao estudo da topografia: Conceitos básico...
Topografia e Mapeamento, Introdução ao estudo da topografia: Conceitos básico...agnercio
 
CAPITULO_1_INTRODUÇÃO À TOPOGRAFIA, ESTUDO DE AZIMUTES , RUMO
CAPITULO_1_INTRODUÇÃO À TOPOGRAFIA, ESTUDO DE AZIMUTES , RUMOCAPITULO_1_INTRODUÇÃO À TOPOGRAFIA, ESTUDO DE AZIMUTES , RUMO
CAPITULO_1_INTRODUÇÃO À TOPOGRAFIA, ESTUDO DE AZIMUTES , RUMOFelicioErnesto
 
Topografia geral o livro
Topografia geral  o livroTopografia geral  o livro
Topografia geral o livroArtur Campos
 
1_Introdução_TOPOGRAFIA-AULA01_2016_1.pdf
1_Introdução_TOPOGRAFIA-AULA01_2016_1.pdf1_Introdução_TOPOGRAFIA-AULA01_2016_1.pdf
1_Introdução_TOPOGRAFIA-AULA01_2016_1.pdfdmy7st55rz
 

Ähnlich wie Acad 5_06_topografia_11 (20)

CONCEITOS E DIVISÃO
CONCEITOS E DIVISÃO CONCEITOS E DIVISÃO
CONCEITOS E DIVISÃO
 
Topografia1
Topografia1Topografia1
Topografia1
 
Apostila topografia Unama
Apostila topografia UnamaApostila topografia Unama
Apostila topografia Unama
 
Apostila topografia fasb 2010
Apostila topografia fasb 2010Apostila topografia fasb 2010
Apostila topografia fasb 2010
 
TOPOGRAFIA_II_APOSTILA.pdf
TOPOGRAFIA_II_APOSTILA.pdfTOPOGRAFIA_II_APOSTILA.pdf
TOPOGRAFIA_II_APOSTILA.pdf
 
Apostila ufmg
Apostila ufmgApostila ufmg
Apostila ufmg
 
Apostila top1
Apostila top1Apostila top1
Apostila top1
 
Caoacitacio topografia y locacion
Caoacitacio topografia y locacionCaoacitacio topografia y locacion
Caoacitacio topografia y locacion
 
Projeções cartográficas
Projeções cartográficasProjeções cartográficas
Projeções cartográficas
 
Grupo do hidrisi
Grupo do hidrisiGrupo do hidrisi
Grupo do hidrisi
 
Projeções cartográficas
Projeções cartográficasProjeções cartográficas
Projeções cartográficas
 
Unidade 01 topografia
Unidade 01   topografiaUnidade 01   topografia
Unidade 01 topografia
 
Topografia e Mapeamento, Introdução ao estudo da topografia: Conceitos básico...
Topografia e Mapeamento, Introdução ao estudo da topografia: Conceitos básico...Topografia e Mapeamento, Introdução ao estudo da topografia: Conceitos básico...
Topografia e Mapeamento, Introdução ao estudo da topografia: Conceitos básico...
 
CAPITULO_1_INTRODUÇÃO À TOPOGRAFIA, ESTUDO DE AZIMUTES , RUMO
CAPITULO_1_INTRODUÇÃO À TOPOGRAFIA, ESTUDO DE AZIMUTES , RUMOCAPITULO_1_INTRODUÇÃO À TOPOGRAFIA, ESTUDO DE AZIMUTES , RUMO
CAPITULO_1_INTRODUÇÃO À TOPOGRAFIA, ESTUDO DE AZIMUTES , RUMO
 
Topografia modulo ii
Topografia modulo iiTopografia modulo ii
Topografia modulo ii
 
Topografia geral o livro
Topografia geral  o livroTopografia geral  o livro
Topografia geral o livro
 
Topografia geral
Topografia geralTopografia geral
Topografia geral
 
1_Introdução_TOPOGRAFIA-AULA01_2016_1.pdf
1_Introdução_TOPOGRAFIA-AULA01_2016_1.pdf1_Introdução_TOPOGRAFIA-AULA01_2016_1.pdf
1_Introdução_TOPOGRAFIA-AULA01_2016_1.pdf
 
Apostila topografia nova
Apostila topografia novaApostila topografia nova
Apostila topografia nova
 
Apostila 1 topografia
Apostila 1 topografiaApostila 1 topografia
Apostila 1 topografia
 

Kürzlich hochgeladen

UFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdfUFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdfManuais Formação
 
Época Realista y la obra de Madame Bovary.
Época Realista y la obra de Madame Bovary.Época Realista y la obra de Madame Bovary.
Época Realista y la obra de Madame Bovary.keislayyovera123
 
Educação São Paulo centro de mídias da SP
Educação São Paulo centro de mídias da SPEducação São Paulo centro de mídias da SP
Educação São Paulo centro de mídias da SPanandatss1
 
cartilha-pdi-plano-de-desenvolvimento-individual-do-estudante.pdf
cartilha-pdi-plano-de-desenvolvimento-individual-do-estudante.pdfcartilha-pdi-plano-de-desenvolvimento-individual-do-estudante.pdf
cartilha-pdi-plano-de-desenvolvimento-individual-do-estudante.pdfIedaGoethe
 
Modelos de Desenvolvimento Motor - Gallahue, Newell e Tani
Modelos de Desenvolvimento Motor - Gallahue, Newell e TaniModelos de Desenvolvimento Motor - Gallahue, Newell e Tani
Modelos de Desenvolvimento Motor - Gallahue, Newell e TaniCassio Meira Jr.
 
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptxSlides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptxLuizHenriquedeAlmeid6
 
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptxSlides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptxLuizHenriquedeAlmeid6
 
Investimentos. EDUCAÇÃO FINANCEIRA 8º ANO
Investimentos. EDUCAÇÃO FINANCEIRA 8º ANOInvestimentos. EDUCAÇÃO FINANCEIRA 8º ANO
Investimentos. EDUCAÇÃO FINANCEIRA 8º ANOMarcosViniciusLemesL
 
O Universo Cuckold - Compartilhando a Esposas Com Amigo.pdf
O Universo Cuckold - Compartilhando a Esposas Com Amigo.pdfO Universo Cuckold - Compartilhando a Esposas Com Amigo.pdf
O Universo Cuckold - Compartilhando a Esposas Com Amigo.pdfPastor Robson Colaço
 
Simulado 1 Etapa - 2024 Proximo Passo.pdf
Simulado 1 Etapa - 2024 Proximo Passo.pdfSimulado 1 Etapa - 2024 Proximo Passo.pdf
Simulado 1 Etapa - 2024 Proximo Passo.pdfEditoraEnovus
 
trabalho wanda rocha ditadura
trabalho wanda rocha ditaduratrabalho wanda rocha ditadura
trabalho wanda rocha ditaduraAdryan Luiz
 
Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Centro Jacques Delors
 
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptx
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptxATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptx
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptxOsnilReis1
 
02. Informática - Windows 10 apostila completa.pdf
02. Informática - Windows 10 apostila completa.pdf02. Informática - Windows 10 apostila completa.pdf
02. Informática - Windows 10 apostila completa.pdfJorge Andrade
 
activIDADES CUENTO lobo esta CUENTO CUARTO GRADO
activIDADES CUENTO  lobo esta  CUENTO CUARTO GRADOactivIDADES CUENTO  lobo esta  CUENTO CUARTO GRADO
activIDADES CUENTO lobo esta CUENTO CUARTO GRADOcarolinacespedes23
 
Gerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalGerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalJacqueline Cerqueira
 
ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresLilianPiola
 
Cultura e Sociedade - Texto de Apoio.pdf
Cultura e Sociedade - Texto de Apoio.pdfCultura e Sociedade - Texto de Apoio.pdf
Cultura e Sociedade - Texto de Apoio.pdfaulasgege
 

Kürzlich hochgeladen (20)

UFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdfUFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdf
 
Época Realista y la obra de Madame Bovary.
Época Realista y la obra de Madame Bovary.Época Realista y la obra de Madame Bovary.
Época Realista y la obra de Madame Bovary.
 
Educação São Paulo centro de mídias da SP
Educação São Paulo centro de mídias da SPEducação São Paulo centro de mídias da SP
Educação São Paulo centro de mídias da SP
 
cartilha-pdi-plano-de-desenvolvimento-individual-do-estudante.pdf
cartilha-pdi-plano-de-desenvolvimento-individual-do-estudante.pdfcartilha-pdi-plano-de-desenvolvimento-individual-do-estudante.pdf
cartilha-pdi-plano-de-desenvolvimento-individual-do-estudante.pdf
 
Modelos de Desenvolvimento Motor - Gallahue, Newell e Tani
Modelos de Desenvolvimento Motor - Gallahue, Newell e TaniModelos de Desenvolvimento Motor - Gallahue, Newell e Tani
Modelos de Desenvolvimento Motor - Gallahue, Newell e Tani
 
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptxSlides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
 
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptxSlides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
 
Investimentos. EDUCAÇÃO FINANCEIRA 8º ANO
Investimentos. EDUCAÇÃO FINANCEIRA 8º ANOInvestimentos. EDUCAÇÃO FINANCEIRA 8º ANO
Investimentos. EDUCAÇÃO FINANCEIRA 8º ANO
 
O Universo Cuckold - Compartilhando a Esposas Com Amigo.pdf
O Universo Cuckold - Compartilhando a Esposas Com Amigo.pdfO Universo Cuckold - Compartilhando a Esposas Com Amigo.pdf
O Universo Cuckold - Compartilhando a Esposas Com Amigo.pdf
 
Simulado 1 Etapa - 2024 Proximo Passo.pdf
Simulado 1 Etapa - 2024 Proximo Passo.pdfSimulado 1 Etapa - 2024 Proximo Passo.pdf
Simulado 1 Etapa - 2024 Proximo Passo.pdf
 
trabalho wanda rocha ditadura
trabalho wanda rocha ditaduratrabalho wanda rocha ditadura
trabalho wanda rocha ditadura
 
Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029
 
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptx
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptxATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptx
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptx
 
02. Informática - Windows 10 apostila completa.pdf
02. Informática - Windows 10 apostila completa.pdf02. Informática - Windows 10 apostila completa.pdf
02. Informática - Windows 10 apostila completa.pdf
 
Em tempo de Quaresma .
Em tempo de Quaresma                            .Em tempo de Quaresma                            .
Em tempo de Quaresma .
 
activIDADES CUENTO lobo esta CUENTO CUARTO GRADO
activIDADES CUENTO  lobo esta  CUENTO CUARTO GRADOactivIDADES CUENTO  lobo esta  CUENTO CUARTO GRADO
activIDADES CUENTO lobo esta CUENTO CUARTO GRADO
 
Gerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalGerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem Organizacional
 
ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
 
Cultura e Sociedade - Texto de Apoio.pdf
Cultura e Sociedade - Texto de Apoio.pdfCultura e Sociedade - Texto de Apoio.pdf
Cultura e Sociedade - Texto de Apoio.pdf
 
Orientação Técnico-Pedagógica EMBcae Nº 001, de 16 de abril de 2024
Orientação Técnico-Pedagógica EMBcae Nº 001, de 16 de abril de 2024Orientação Técnico-Pedagógica EMBcae Nº 001, de 16 de abril de 2024
Orientação Técnico-Pedagógica EMBcae Nº 001, de 16 de abril de 2024
 

Acad 5_06_topografia_11

  • 2. TOPOGRAFIA ÍNDICE 1 Conceitos fundamentais ...................................................................... 3 1.1 Definições ............................................................................................ 3 1.2 Divisão ................................................................................................. 3 2 Planimetria .......................................................................................... . 5 2.1 Medição de distâncias ......................................................................... 5 2.2 Medida direta de distâncias ................................................................. 5 2.3 Erros .................................................................................................... 6 2.4 Medida indireta de distâncias .............................................................. 6 2.5 Taqueometria ...................................................................................... 7 2.6 Ângulos ................................................................................................ 7 2.7 Distâncias verticais ou diferença de nível ........................................... 10 2.8 Caderneta de campo ........................................................................... 11 2.9 Medida eletrônica de distâncias .......................................................... 11 3 Avaliação de áreas .............................................................................. 13 3.1 Processos geométricos ....................................................................... 13 3.2 Método analítico (dupla distância meridiana) ...................................... 14 3.3 Planilha de cálculo analítico ................................................................ 15 4 Altimetria .............................................................................................. 18 4.1 Nivelamento geométrico ...................................................................... 18 4.2 Nivelamento trigonométrico ................................................................. 19 4.3 Nivelamento barométrico ..................................................................... 20 5 Estudo da planta topográfica ............................................................... 21 5.1 Denominações e definições topológicas de algumas formas do terreno 21 5.2 Curvas de nível .................................................................................... 22 6 Terraplenagem .................................................................................... 26 6.1 Cálculo da cota final pela média ponderada ....................................... 26 6.2 Cálculo de volumes ............................................................................. 28 7 Equipamentos de medição, unidades de medidas e escalas .............. 31 7.1 Equipamentos de medição angular ..................................................... 31 7.2 Generalidades ..................................................................................... 31 7.3 Unidades de superfície ........................................................................ 31 7.4 Unidades de medidas .......................................................................... 31 7.5 Escalas usadas em topografia ............................................................ 31 7.6 Sistemas e unidades ........................................................................... 31 7.7 Procedimento para estacionar equip. topográficos com prumo ótico .. 32 8 Aerofotogrametria ................................................................................ 34 8.1 Execução das fotos aéreas ................................................................. 34 8.2 Recobrimento da área ......................................................................... 35 8.3 Mapa-índice e foto-índice .................................................................... 36 9 Cadastro imobiliário e registros públicos ............................................. 37 9.1 Cadastro imobiliário municipal ............................................................. 37 9.2 Cadastro técnico municipal ................................................................. 37 9.3 Origem das imprecisões entre áreas mapeadas ................................ 39 9.4 Métodos para o correto cadastramento técnico de imóveis rurais ...... 40 L U I S M A R C I O F A L E I R O S T O P O G R A F I A 2
  • 3. 10 Exercícios resolvidos 41 Bibliografia 45 NOTAS DE AULA (Topografia) ENGENHARIA CIVIL / ARQUITETURA Prof. Luís Márcio Faleiros Franca, 1999/2010 1 CONCEITOS FUNDAMENTAIS 1.1 DEFINIÇÕES Topografia tem por finalidade determinar o contorno, dimensão e posição relativa de uma porção limitada da superfície terrestre, sem levar em conta a curvatura resultante da esfericidade terrestre. Geodésia é a ciência que estuda a superfície da Terra com a finalidade de conhecer sua forma quanto ao contorno e ao relevo e sua orientação, levando em consideração a curvatura da terra. Geoprocessamento é a ciência que estuda a produção de mapas com informações referentes a ele, tudo num só produto e em meio digital. Geotecnia estuda a composição, disposição e condição do solo como produto para utilização em obras. A topografia determina e posiciona os solos de acordo com sua localização na superfície da terra. Croqui: esboço gráfico sem escala, em breves traços a mão livre, que facilite a identificação de detalhes topográficos. Caderneta de Campo: planilha utilizada em campo para anotar os dados coletados (distâncias, ângulos e informações). Planta: representação gráfica de uma parte limitada da superfície terrestre, sobre um plano de referência horizontal, para fins específicos, na qual não se considera a curvatura da Terra. As escalas normalmente são grandes. Carta ou Mapa: representação gráfica sobre uma superfície plana, dos detalhes físicos, naturais e artificiais, de parte ou toda a superfície terrestre. Esta representação leva em consideração a curvatura terrestre. As escalas normalmente são pequenas. 1.2 DIVISÃO L U I S M A R C I O F A L E I R O S T O P O G R A F I A 3
  • 4.               otopograficDesenho riaFotogramet iaTaqueometr iaTopo Altimetria aPlanimetri Topometria Topografia log Planimetria: conjunto de métodos e técnicas que visam detalhar a superfície terrestre sobre um plano horizontal de referência. Trata apenas das distâncias horizontais e ângulos horizontais. Altimetria: conjunto de métodos e técnicas que visam detalhar a superfície terrestre sobre um plano vertical de referência. Planialtimetria: conjunto de métodos e técnicas que visam detalhar a superfície terrestre sobre um plano horizontal de referência com dados referenciados a um plano vertical de referência. Topologia: é a parte da topografia que estuda as formas do relevo. Ela estuda as formas exteriores da superfície terrestre no sentido planialtimétrico. Topometria: conjunto dos métodos empregados para colher os dados necessários para o traçado da planta. Subdivide em: Planimetria e Altimetria. Planimetria é a representação em projeção horizontal dos detalhes existentes na superfície. As medidas, tanto lineares como angulares, são efetuadas em planos horizontais, obtendo-se ângulos azimutais e distâncias horizontais. Altimetria: determina as cotas ou distâncias verticais de um certo número de pontos referidos ao plano horizontal de projeção. As medidas são efetuadas na vertical ou num plano vertical, obtendo-se as distâncias verticais ou diferenças de nível Topologia: complemento indispensável da topometria, tem por objeto de estudo as formas exteriores da superfície terrestre e as leis a que deve obedecer seu modelado. Sua aplicação principal é na representação cartográfica do terreno pelas curvas de nível. Taqueometria: tem por finalidade o levantamento de pontos do terreno, pela resolução de triângulos retângulos aptos a representá-los, tanto plani como altimetricamente, ou, dando origem a plantas cotadas ou com curvas de nível (Planialtimétricas). Fotogrametria: utiliza medidas feitas em fotografias orientadas (fotogramas) para definir a forma e as dimensões dos objetos nelas contidos. Desenho topográfico: constitui a representação em escala reduzida, por meio de sinais convencionais (Convenções topográficas), da forma do terreno levantado. Segundo a escala, grau de precisão, detalhes e amplitude, tal desenho denomina-se esboço, planta ou mapa topográfico, carta geodésica, geográfica ou corográfica. As plantas topográficas devem ser sempre acompanhadas das cadernetas de campo, planilha dos cálculos e memoriais descritivos. L U I S M A R C I O F A L E I R O S T O P O G R A F I A 4
  • 5. 2 PLANIMETRIA 2.1 MEDIÇÃO DE DISTÂNCIAS Na Topografia, a distância D entre dois pontos A e B será sempre a distância horizontal entre eles, mesmo que o terreno seja inclinado. Se o trecho a ser medido não for plano, não permitindo medida direta de A até B, procede-se da mesma forma, porém em segmentos sucessivos, obtendo-se a distância horizontal D, pela soma dos valores das distâncias horizontais desses segmentos sucessivos. L U I S M A R C I O F A L E I R O S T O P O G R A F I A 5 A B h D d1 d2 d3 D
  • 6. 2.2 MEDIÇÃO DIRETA DE DISTÂNCIAS O processo de medida de distância é direto, quando se percorre a grandeza em questão, comparando-a com uma grandeza padrão. Os padrões de medida direta são denominados diastímetros. Tipos de diastímetros flexiveis: Trena: fitas de aço ou lona geralmente usadas nos trabalhos de engenharia e arquitetura. Comprimento: 1m, 3m, 5m, 10m, 20m, 50m Precisão: 1cm em 100m (média precisão). Diastimetros rígidos: metro, duplo metro, régua, etc. Existe uma série de acessórios utilizados na medida direta de distância: Baliza: vara de ferro ou madeira, de 2m de comprimento, pintada geralmente de branco e vermelho, para que sejam vistas com facilidade a distância. Tem a função de facilitar a localização dos pontos do terreno. Piquetes e estacas: peças de madeira que são cravadas no terreno para a determinação dos pontos visados. Fio de prumo: constituído por um fio que sustém na extremidade inferior um peso de forma cônica, destinado a determinar a direção da vertical, no ponto considerado. Nível de mangueira: constituído de uma mangueira d'água transparente, onde o nível da água nas duas extremidades permite a determinação de pontos com o mesmo nível em posições relativamente afastadas. 2.3 ERROS Nas medições com fitas deve-se ter conhecimento das causas da ocorrência de erros, e da influência que esses erros podem causar na medida da grandeza. L U I S M A R C I O F A L E I R O S T O P O G R A F I A 6 Piquete Estaca
  • 7. Erros grosseiros:        anotações fitadagraduaçãodesentido fitadazerodoajuste trenadenúmeronoengano Erros sistemáticos:           tensão atemperatur oalinhament extremospontososentredesníveldocorreção catenaria fitadaocompriment 2.4 MEDIDA INDIRETA DE DISTÂNCIA O processo de medida é indireto quando a distância é calculada em função da medida de outras grandezas, não havendo, portanto, necessidade de percorrer a distância para compará-la com a grandeza padrão. Na estadimetria, a distância é geralmente obtida através de um triângulo retângulo ou um triângulo isósceles, utilizando-se semelhança de triângulos (teorema de Tales). ab ABd D ab AB d D × =∴= Sendo d e ab constantes, w também é constante. 2.5 TAQUEOMETRIA A taqueometria compreende uma série de operações que constituem um processo rápido e econômico para se obter o relevo de um terreno. Estuda os processos de levantamentos planimétricos realizados com o taqueômetro (teodolito e mira). 2.6 ÂNGULOS 2.6.1 AZIMUTES L U I S M A R C I O F A L E I R O S T O P O G R A F I A 7 A B MO a b m m d D
  • 8. Azimute é o ângulo formado entre uma direção do terreno e a direção norte-sul. O azimute varia de 0° a 360°, com origem no norte e sentido NESW (direita). O primeiro azimute é lido astronomicamente (com auxilio da bússola), os demais são calculados pela fórmula: o nnn AiAzAz 1801 ±±= − Az = azimute Ai = angulo interno n = número do vértice + Ain ⇒ caminhamento à direita - Ain ⇒ caminhamento à esquerda nn AiAz ±−1 < ⇒o 180 soma-se 180° nn AiAz ±−1 > ⇒o 180 subtrai-se 180° Nos problemas topográficos, também é comum a medida do azimute em quadrantes (variando de 0° a 90°), com origem no norte, nos sentidos NW e NE e, com origem no sul, nos sentidos SW e SE; nestes casos, o azimute recebe o nome particular de RUMO. 1º Quadrante (NE) - R = Az 2º Quadrante (SE) - R = 180° - Az 3º Quadrante (NE) - R = Az - 180° 4º Quadrante (NE) - R = 360° - Az 2.6.2 ANGULOS HORIZONTAIS Dadas duas direções quaisquer, a medida angular horizontal entre elas é feita através da medida do ângulo diedro formado por dois planos verticais que contêm respectivamente as direções em questão. Ai = ângulo interno L U I S M A R C I O F A L E I R O S T O P O G R A F I A 8 N Az A B A B Ai EW S N R = Az R Az R Az R Az 1 Q 2 Q3 Q 4 Qo o oo
  • 9. Os terrenos normalmente são definidos por poligonais compostas de vértices, distâncias e ângulos internos. Exercício: Calcular azimutes e rumos: vértice angulo interno azimute rumo angulo quadrante 1 88.59 135.05 2 111.87 3 34.00 4 235.11 5 70.43 total 540.00 Caminhamento à direita Podemos classificar as poligonais como: Poligonais fechadas Poligonais apoiadas Poligonais abertas 2.6.3 ANGULOS VERTICAIS O ângulo de inclinação (α), com origem no horizonte, varia de 0° a 90°, positivamente para as retas ascendentes e negativamente para as retas descendentes. L U I S M A R C I O F A L E I R O S T O P O G R A F I A 9 Ai1 Ai2 Ai3 Ai4 Ai5 Ai6 1 2 3 4 5 6 D1 D2 D3 D4 D5 D6 1 2 3 4 5 1 2 3 4 5 6 Z Z' C a+ a- B B 1 2 3 4 5 6
  • 10. 2.6.4 DISTÂNCIAS HORIZONTAIS Os taqueômetros são teodolitos munidos de fios chamados estadimétricos e que, além da função de medir ângulos, podem efetuar medidas indiretas de distância. A luneta dos taqueômetros é munida de um retículo, destinado á medida indireta de distância. Os distanciômetros de luneta são constituídos por uma objetiva munida de tres fios estadimétricos a, m e b equidistantes e a ocular por onde o observador pode visualizar aqueles fios e uma régua graduada (mira). f - distância local entre pínulas (constante do aparelho) ab - espaçamento entre dois fios estadimétricos extremos (constante do aparelho) Para medir uma distância com o teodolito, coloca-se o teodolito num dos extremos e a mira no outro, em posição vertical; observando-se o intervalo abrangido na mira pelos raios visuais que passam pelos fios estadimétricos extremos, calcula-se a distância D: ab BA Om OM BAOab '' '' =∴ ∆≈∆ mas, fOm = logo ab f BAOM ×= '' (1) Como ω é muito pequeno, geralmente da ordem de 35º, podemos considerar MB'B = 90º, de onde se conclui que: L U I S M A R C I O F A L E I R O S T O P O G R A F I A 10 m b a v v - fio vertical m - fio nivelador a e b - fios estadimétricos A B M O a b m D H m A ' B ' f a a
  • 11. αcos'' ABBA = substituindo-se em (1) temos: αcosAB ab f OM ×= mas, αcosOMD = , temos que: α2 cosAB ab f D ×= como f e ab são constantes, podemos escrever f/ab = K onde K é uma constante da estadia, geralmente com valor 100. Fazendo-se AB = G (número gerador) temos: α2 cos100GD = D = distância G = número gerador (leitura fio superior - leitura fio inferior) α = ângulo vertical 2.7 DISTÂNCIAS VERTICAIS OU DIFERENÇA DE NÍVEL MGsenhN −±= α250 N = distância vertical ou diferença de nível h = altura do aparelho G = número gerador (leitura fio superior - leitura fio inferior) α = ângulo vertical M = leitura do fio médio Exercício: Calcular distâncias horizontais e verticais: estação ponto visado altura do aparelho angulo vertical retículo superior retículo médio reticulo inferior distância horizontal distância vertical 1 2 1.47 4.754 2.33 1.84 0.99 2 3 1.50 4.400 2.52 1.76 1.52 3 4 1.48 -7.550 1.98 1.49 0.98 4 5 1.51 4,600 1.70 1.35 0.70 5 1 1.46 -5,390 1.80 1.22 1.17 L U I S M A R C I O F A L E I R O S T O P O G R A F I A 11 A B M a b m D A' B' f a a m Nh
  • 12. 2.8 CADERNETA DE CAMPO LEVANTAMENTO TAQUEOMÉTRICO DE : ................................................................................. DADOS DE CAMPO ESTAÇÀO PONTO VISADO ALTURA INSTR. ÂNGULOS HORIZONTAIS ÂNGULOS VERTICAIS LEITURAS NA MIRA CROQUIS E OBSERVAÇÕE S s m i A B 1.43 0,000° +3,645° 3.12 2.54 1.96 Azf = 92,500° 1 102,376° +6,365° 1.53 1.36 1.19 2 165,975° -2,870° 3.27 1.64 1.00 3 253,164° -2,239° 3.89 2.455 1.02 B 4 1.52 47,584° -7,763° 2.37 1.465 0.56 5 127,385° +0,087° 2.58 2.02 1.46 5 6 1.48 34,986° +1,851° 3.12 2.06 1.00 6 7 1.51 158,604° -3,098° 2.14 1.685 1.23 2.9 MEDIDA ELETRONICA DE DISTÂNCIA Os distanciômetros eletrônicos DME medem a distância usando como padrão de medida o comprimento de onda do espectro eletromagnético, de valor rigorosamente conhecido, nas gamas de luz ou microondas. A distância é conhecida pela comparação de fase entre uma "amostra" da onda emitida, com a fase da onda recebida, após ter ela percorrido a distância a ser medida e refletida de volta ou retransmitida no ponto de retorno. Os DME são constituídos de: - gerador de luz ou microondas que produz a onda portadora; - oscilador que gera frequência precisa e estável, necessária à modulação da onda portadora; - modulador para transformar a onda portadora em onda modulada (ampliação de zero até um máximo) no mesmo ritmo da frequência gerada pelo oscilador; - emissor do feixe de ondas moduladas; - receptor de ondas e amplificador; - comparador de fase das ondas emitidas e recebidas e - dispositivo de leitura de fase ou da distância A = λ' / 2 B = λ / 2 C = Ke sendo: L U I S M A R C I O F A L E I R O S T O P O G R A F I A 12 gerador da onda portadora oscilador de quartzo comparador de fase leituras modulador amplificador centro do instrumento emissor receptor A B C D
  • 13. φ = diferença de fase entre a onda recebida e a emitida; λ = comprimento da onda modulada; N = número inteiro de meias ondas. L U I S M A R C I O F A L E I R O S T O P O G R A F I A 13
  • 14. 3 AVALIAÇÃO DE ÁREAS Podemos classificar os processos topográficos de avaliação de áreas em três tipos: geométrico, analítico e mecânico. 3.1 PROCESSOS GEOMÉTRICOS 3.1.1 DECOMPOSIÇÃO DO POLÍGONO EM FIGURAS GEOMÉTRICAS SIMPLES Seja o polígono ABCDEFG; para efeito de avaliação de sua área, foi decomposto em três triângulos e um trapézio. 3.1.2 REDUÇÃO OU QUIVALÊNCIA GEOMÉTRICA Consiste o processo na transformação da superfície de um polígono qualquer na de um triângulo da mesma área, utilizando-se construções gráficas. 3.1.3 PROCESSOS PARA AVALIAÇÃO DAS ÁREAS EXTRAPOLIGONAIS Seja a área extrapoligonal ABPQ, que se deseja avaliar. L U I S M A R C I O F A L E I R O S T O P O G R A F I A 14 A B C D E F G h1 h2 h3 h4 S1 S2 S3 S4 A B C D E N MQ P h A B Q P b1 b2 b3 b4 b5 bn-1 bn bn+1 SSn-1 n h h h h h h h S1 S2 S3 S4 S5
  • 15. 3.2 MÉTODO ANALÍTICO (DUPLA DISTÂNCIA MERIDIANA) Seja a poligonal cujos vértices são: 1(x1,y1); 2(x2,y2); 3(x3,y3); 4(x4,y4) e 5(x5,y5). x1 x2 x3x4x5 y1y5 y2y3y4 1 2 3 4 5 N L1 L2 L3 L4 L5 L= distância meridiana Multiplicando p/ 2: 2 1 1 x L = 112 xL = 22 21 12 xx LL ++= 2112 22 xxLL ++= 22 32 23 xx LL −+= 3223 22 xxLL −+= 22 43 34 xx LL −−= 4334 22 xxLL −+= 22 54 45 xx LL −−= 5445 22 xxLL −−= ∴ nnnn xxLL ±±= −− 1122 Para calcularmos a área interna à poligonal 12345 podemos considerar os triângulos e trapézios formados por cada lado da poligonal, com pontos correspondentes às abcissas dos respectivos vértices. 2 )2()2()2()2()2( 5544332211 yLyLyLyLyL A ×+×+×+×+× = 2 ∑ ∑+ = sulprodnorteprod A 2 2∑ × =∴ nn yL A L U I S M A R C I O F A L E I R O S T O P O G R A F I A 15
  • 16. Exercício: Calcular a área do terreno: x y 2Ln 2Ln x y 1 68.80 70.30 2 138.20 62.70 3 95.40 18.10 4 30.70 67.20 5 80.90 77.70 Área: 3.3 PLANILHA DE CÁLCULO ANALÍTICO 3.3.1 DADOS DE CAMPO E DE ESCRITÓRIO V é rt ic e s Estacas ELEMENTOS ANGULARES Distâncias medidas Funções angulares dos rumos Ângulos internos Azimutes Rumos ® sen cos Lidos Compensados ângulos Q a b c d e f g h i j 1 45+ 9.35 59°19' 25 " 59°19' 25 " 81°00' 00 " 81°00' 00 " NE 439.20 0.98766 0.15643 2 8+ 39.20 211°49' 00 " 211°48' 55 " 112°48' 45 " 67°11' 15 " SE 219.80 0.92178 0.38772 3 13+ 9.00 74°42' 45 " 74°42' 35 " 7°31' 20 " 7°31' 20 " NE 351.10 0.13091 0.99140 4 20+10.10 198°11' 15 " 198°10' 55 " 25°42' 15 " 25°42' 15 " NE 192.75 0.43373 0.90105 5 24+ 2.85 60°50' 00 " 60°49' 50 " 266°32' 05 " 86°32' 05 " SW 303.80 0.99817 0.06045 6 30+ 6.65 169°49' 15 " 169°49' 20 " 256°21' 25 " 76°21' 25 " SW 305.90 0.97178 0.23587 7 36+12.55 125°19' 15 " 125°19' 15 " 201°40' 35 " 21°40' 35 " SW 446.80 0.36937 0.92929 SOMAS 900°01' 15 " 900°00' 00 " 2 259.35 Verifica- ções Erro angular total: εt = + 1' 15" Erro por ângulo: ε = εt/n = + 75"/7 = + 10" 7 ( ∑l ) Distribuição prática  l > 400m - 2 x 5° l > 300m - 3 x 10° = 75" l > 200m - 1 x 15° l< 200m - 1 x 20° a) Vértices ou estações do instrumento. b) O estaqueamento dos alinhamentos, sempre que houver levantamento altimétrico, será de 20, 25 ou de 50 em 50 m. c/d) A soma dos ângulos internos é verificada por: ∑ −= )2(180 nA O I n = número de vértices εt = ε √ n εt = erro total ε = menor aproximação do teodolito e) Azimutes: pag. 7; f/g) Rumos: pag. 8; h) Distâncias: distâncias medidas no terreno (l) L U I S M A R C I O F A L E I R O S T O P O G R A F I A 16
  • 17. Sl = perímetro i/j) Linhas trigonométrica: funções naturais de ângulos 3.3.2 PROJEÇÕES NATURAIS E COMPENSADAS PROJEÇÕES NATURAIS Correções PROJEÇÕES COMPENSADAS Sobre o eixo X Sobre o eixo Y ( x'= l . sen R ) ( y'= l . cos R ) Cx Cy Eixo X (x) Eixo Y (y) E+ W- N+ S- E+; W- N+; S- k l m n o q r s 433.793 68.704 + 81 - 94 + 433.712 + 68.798 202.608 85.221 + 42 - 47 + 202.566 - 85.174 45.963 348.081 + 65 - 76 + 45.898 + 348.157 83.601 173.677 + 36 - 40 + 83.565 + 173.717 306.244 18.365 + 56 - 65 - 303.300 - 18.300 297.268 72.153 + 57 - 66 - 297.325 - 72.087 165.034 415.207 + 82 - 96 - 165.116 - 415.111 765.965 765.546 590.462 590.946 + 419 - 484 ± 765.741 ± 590.672 765.546 590.462 (∑x) (∑y) ∑(x) = 0 ∑(y) = 0 + 0.419 (∑x) - 0.484 (∑y) e' = x/∑l = 0.00019 m; e" = y/∑l = 0.00021 m k/l/n/m) Projeções naturais: Rsenlx ×=' Rly cos' ×= Se as medidas forem rigorosamente exatas, a soma das projeções E, seria igual a das projeções W e ∑(±x) = 0; e, também, ∑(±y) = 0 Na prática, ∑x = ± ∆x e ∑y = ± ∆y e o erro de fechamento do perímetro é dado por ∑∑ += 22 yxE o/q) Correções: ∑ ∑ ∑ ∑ × = × = l yl Cy l xl Cx r/s) Projeções compensadas: (±x) = (±x') - (±Cx) e (±y) = (±y') - (±Cy) 3.3.3 COORDENADAS E ÁREA COODENADAS SOMA DAS DUPLAS ÁREAS Abscissas Ordenadas Abscissas Ordenadas ∑X ∑Y ∑X.y ∑Y.x X Y (Xn+X n+1) (Yn+Yn+1) A somar (+) A subtrair (-) t u v x y z 000.000 000.000 + 433.712 + 68.798 + 29 838.518 176 + 29 838.518 176 + 433.712 + 68.798 + 1 069.990 + 54.422 - 91 135.328 260 + 10 618.914 852 + 636.278 - 16.376 + 1 318.454 + 315.405 + 459 028.989 278 + 14 476.458 690 + 682.176 + 331.781 + 1 447.917 + 837.279 + 251 527.797 489 + 69 9767.219 635 + 765.741 + 505.498 + 1 228.182 + 992.696 - 22 475.730 600 - 301 084.696 800 + 462.441 + 487.198 + 627.557 + 902.309 - 45 238.701 459 - 268 279.023 425 + 165.116 + 415.111 + 165.116 + 415.111 - 68 541.467 876 - 68 541.467 876 + 3 145.464 + 1 792.010 + 6 290.928 + 3 584.020 + 740 395.304 943 + 124 901.111 353 x 2 x 2 - 227 391.228 195 - 637 905.188 101 + 6 290.928 + 3 584.020 + 513 004.076 748 - 513 004.076 748 Área = 513 004.076 748 = 256 502,04 m2 2 Área = 25,6502 Ha L U I S M A R C I O F A L E I R O S T O P O G R A F I A 17
  • 18. t/u) Coordenadas: As primeiras coordenadas são iguais a zero, as coordenadas dos segundos vértices são iguais as projeções do primeiro alinhamento. As coordenadas do terceiro, quarto, etc. vértices são iguais a dos vértices anteriores, somadas algebricamente às projeções dos segundos, terceiros, etc. As ultimas coordenadas são iguais as primeiras projeções com sinal contrário. v/x) Somatória de coordenadas: a primeira somatória é igual à soma das primeiras e segundas coordenadas, a segunda somatória é igual à soma das segundas e terceiras coordenadas, a ultima somatória é igual à ultima coordenada. y/z) Duplas áreas: somatórias x projeções ( ∑X . y ) ou ( ∑Y . x ) A verificação é feita determinando a somatória de Y e área dupla de Y. Área: 2 ∑ × = yX S ( ) ( ) ( ) ( )[ ] 2 0332221110 nn yxxyxxyxxyxx S +++++++ = ( ) ( ) ( ) ( )[ ] 2 0332221110 nn xyyxyyxyyxyy S +++++++ = Exercício: Calcular á área do terreno: Azimute fundamental = o 000,111 Caminhamento à direita vértices Ângulos internos distancias 1 59,324 439.20 2 211,817 219.80 3 74,713 351.10 4 198,188 192.75 5 60,833 303.80 6 169,821 305.90 7 125,321 446.80 L U I S M A R C I O F A L E I R O S T O P O G R A F I A 18
  • 19. 4 ALTIMETRIA A altimetria tem por fim a medida da distância vertical ou diferença de nível entre diversos pontos. Dá-se o nome de nivelamento á determinação do relevo de um terreno, obtendo-se, através de processos específicos, as altitudes (referidas à superfície média dos mares), as cotas (referem a uma superfície de nível fictícia, situada acima ou abaixo das superfície dos mares) ou as diferenças de altitudes ou de cotas, dos diversos pontos desse terreno. A diferença de nível pode ser determinada por três processos: nivelamento geométrico nivelamento trigonométrico nivelamento barométrico 4.1 NIVELAMENTO GEOMÉTRICO 4.1.1 APARELHOS DE NIVELAMENTO • Nível - para determinar um plano horizontal • Mira - para medida das linhas retas verticais • Nível de pedreiro • Nível d'água (mangueira) 4.1.2 NIVELAMENTO SIMPLES vr HHH −= vHhH −= ba HHH −= L U I S M A R C I O F A L E I R O S T O P O G R A F I A 19 A B Hr Hv H A B Hv H h A B H Ha Hb
  • 20. 4.1.3 NIVELAMENTO COMPOSTO 654321 HHHHHHH −+−+−= ( ) ( )642531 HHHHHHH ++−++= 4.2 NIVELAMENTO TRIGONOMÉTRICO Este método baseia-se na resolução de um triângulo retângulo ABC, conhecendo a base AB = D e o ângulo de inclinação α. α 4.2.1 VISANDO UM PONTO DA MIRA COLOCADA À MESMA ALTURA ACIMA DO SOLO α 4.2.2 VISANDO UM PONTO QUALQUER NA MIRA α L U I S M A R C I O F A L E I R O S T O P O G R A F I A 20 A B H1 H2 H3 H4 H5 H6 H7 H8 H A B C O C B E F D i h A O C B E F D h = i i A
  • 21. 4.2.3 CADERNETA PARA NIVELAMENTO TRIGONOMÉTRICO ESTAÇÃO PONTO VISADO DISTÂNCIAS ÂNGULOS VERTICAIS LEITURA MIRA ALTURA INSTR. DIFERENÇA DE NÍVEL COTAS A 1 47,30m 8° 30" solo 1,43m + 8,50m 8,50m 2 73,10 10° 26" 1,87 1,27 + 12,86 21,36 3 23,80 -5° 18" solo 1,18 - 1,03 20,33 4 52,90 7° 21" 2,02 1,15 + 5,98 26,31 4.3 NIVELAMENTO BAROMÉTRICO O nivelamento barométrico é baseado na relação que existe entre altitude e pressão atmosférica. L U I S M A R C I O F A L E I R O S T O P O G R A F I A 21
  • 22. 5 ESTUDO DA PLANTA TOPOGRÁFICA Existem vários métodos para a representação do relevo de um terreno, sendo de uso corrente o método das curvas de nível, que consiste em seccionar o terreno por um conjunto de planos horizontais equidistantes, que interceptam a superfície do local, determinando linhas fechadas que recebem o nome de "curvas de nível". Para maior facilidade de leitura, representamos com traços mais fortes as curvas mestras que são, geralmente de 5 ou de 10 metros. A união de pontos notáveis da mesma categoria dá origem às linhas notáveis, que se classificam em: a) linhas de cumiada, de espigão ou divisórias de água: são as linhas formadas pela sucessão de pontos notáveis mais altos. As águas das chuvas que caem sobre uma linha de cumiada se dividem, caindo uma parte em cada uma das superfícies laterais, chamadas vertentes das águas. b) linhas de talvegue: são as linhas formadas pela sucessão dos pontos notáveis mais baixos. Ao longo das linhas de talvegue se reúnem as águas das vertentes, formando os cursos d'água. 5.1 DENOMINAÇÕES E DEFINIÇÕES TOPOLÓGICAS DE ALGUMAS FORMAS DO TERRENO Cordilheira: cadeia de montanhas de grandes altitudes. Contraforte: montanha alongada que se destaca da cordilheira, formando uma cadeia de segunda ordem. L U I S M A R C I O F A L E I R O S T O P O G R A F I A 22 10095 100 100 105 100
  • 23. Espigão: contraforte secundário. Serra: cadeia de montanhas de forma alongada, cuja parte elevada aparenta dentes de serra. Montanha: grande elevação de terra, de altura superior a 400m. Vértice ou cimo: ponto culminante da montanha; pode ser arredondado (pico) ou pontia- gudo (agulha). Maciço: conjunto de montanhas agrupadas em torno de um ponto culminante. Morro: pequena elevação. Colina: pequena elevação, de 200m a 400m de altura, com declives pouco pronunciados. Planaltos: superfícies regulares, mais ou menos extensas, situadas a grande altitude. Planícies: superfícies regulares, mais ou menos extensas, situadas a pequena altitude. Vertentes: superfícies inclinadas que vem do cimo até a base das montanhas. Dorso ou divisor de águas: superfícies convexa formada pelo encontro de duas vertentes. Vale: superfícies côncava formada pelo conjunto de duas vertentes opostas; os vales po- dem ter fundo côncavo, fundo de ravina ou fundo chato. Garganta ou selado: lugar do terreno onde a superfície sobe para dois lados opostos e desce para outros dois lados opostos; a garganta é o ponto mais baixo de um divisor de águas e o ponto mais alto dos dois talvegues que aí nascem. Se a profundidade for muito grande recebe o nome de canion. 5.2 CURVAS DE NÍVEL É a interseção da superfície do solo com um plano horizontal de cota conhecida e relacionada a um referencial básico, “RN”, chamado referência de nível. A COTA é um valor relativo podendo ser positiva, quando corresponde a um valor situado acima do plano referencial básico, RN, e negativa, quando situada abaixo dele. O lugar geométrico dos pontos da mesma cota é um plano paralelo ou plano de comparação, que se denomina plano de nível. • As curvas de nível espaçadas significam uma inclinação mais suave. • Quando excessivamente espaçadas indicam terreno quase plano. • Com pouco espaçamento indicam maiores inclinações. • As curvas de nível não se cruzam. • As curvas de nível formam linhas fechadas em torno das elevações e depressões. L U I S M A R C I O F A L E I R O S T O P O G R A F I A 23 1 0234 -1 -2 1 0 2 3 4 -1 -2 43210-1 0 1 2 3 40 -1 -2-1 0 1 A B C D E F A1 B1 C1 D1 F1 E1 O O O O A2 B2 C2 E2 O E3 D2 cotas positivas dos planos paralelos cotas negativas RN ouplano referencialdenível cota 0 FERFIL PLANTA
  • 24. Por meio destas curvas, podemos representar com precisão o relevo do solo de qualquer terreno e, levantar todos os dados que interessam. NOTAS • As curvas de nível espaçadas significam uma inclinação mais suave. • Quando excessivamente espaçadas indicam terreno quase plano. • Com pouco espaçamento indicam maiores inclinações. • As curvas de nível não se cruzam. • As curvas de nível formam linhas fechadas em torno das elevações e depressões. • Os cortes no terreno, para fins de implantação e estudo preliminar, são feitos no sentido perpendicular às curvas de nível. Tais cortes, geralmente, são em número de dois. A A 0.50 1.00 1.50 2.00 2.50 3.00 BB 0.50 0.80 1.30 1.80 2.30 2.80 12.00m 25.00m 0.00 PERFIL LONGITUDINAL A - A 0.00 +1.30 +0.80 +0.50 +1.80 +2.30 +3.10 PLANTA PERFIL LONGITUDINAL B - B +0.50 +1.00 +1.50 +2.00 +2.50 +3.00 NOTA L U I S M A R C I O F A L E I R O S T O P O G R A F I A 24
  • 25. • Quando a elevação é pequena , procura-se locar em posição que não haja muito movimento de terra para não onerar a obra. 5.2.1 DIVISÃO DO SEGMENTO EM PARTES PROPORCIONAIS Sejam A e B dois pontos da planta de cotas 25,30m e 31,75m. Marca-se sobre a planta, a partir de A, um segmento que forme um ângulo qualquer em relação a AB; sobre esse novo segmento marcam-se, numa escala qualquer, pontos graduados de números inteiros a partir do valor da cota do ponto A(25,30), terminado no ponto P correspondente ao valor da cota B(31,75). 5.2.2 PERFIL DE UMA SEÇÃO DO TERRENO Perfil de uma seção do terreno é o desenho do relevo esse terreno, ao longo da seção, que é representada na planta por uma linha (reta, quebrada, curva, etc.). 5.2.3 PLATAFORMAS As plataformas são obras projetadas e executadas com a finalidade de tornar plana a superfície irregular de um terreno; elas tanto podem ser horizontais como inclinadas. Com relação ao tipo de movimento de terra utilizado, podem ser classificadas em: a) Plataformas em corte b) Plataformas em aterro L U I S M A R C I O F A L E I R O S T O P O G R A F I A 25 25 26 27 28 29 30 31 31.75 P A(25,30) B(31,75) talude corte saia aterro
  • 26. c) Plataforma em corte e aterro ou mista 5.2.4. TERRENO MODIFICADO PELA IMPLANTAÇÃO DA PLATAFORMA L U I S M A R C I O F A L E I R O S T O P O G R A F I A 26 saia talude corte aterro 105100 95 105 100 95 110 90 105100 95 105 100 95 110
  • 27. 6 TERRAPLENAGEM 6.1 CÁLCULO DE COTA FINAL PELA MÉDIA PONDERADA. A B C D 1 2 3 4 8.0 6.0 7.0 9.06.0 7.0 8.0 8.4 9.0 6.8 8.2 8.6 9.3 5.9 7.0 7.6 8.2 5.2 6.5 7.1 7.720.00 20.00 20.00 20.0020.0020.00 12.7 10.0 11.0 12.0 10.0 11.0 12.0 Obs.: os valores nos vértices dos quadrados são as cotas, em metros. 6.1.1 CÁLCULO DA COTA FINAL DO PLANO HORIZONTAL QUE RESULTE EM VOLUMES DE CORTE E ATERRO IGUAIS. L U I S M A R C I O F A L E I R O S T O P O G R A F I A 27
  • 28. x2x1 x3 x4 a) p = 1 p = 2 p = 3 p = 4 246.4 = 7.7 m 5.2 5.9 8.2 7.0 32 7.0 6.8 8.6 7.6 8.4 9.3 16.8 14.6 a) cota final que resulta em 9.0 8.2 x3 x4 12.7 7.1 50.4 58.4 Vc = Va = 7.7 m 7.7 6.5 50.0 43.8 50.0 x2 87.6 87.6 50.4 58.4 246.4 b) 51,7 00,5 00,20 88,1 54,13 00,5 00,20 38,3 63,14 00,5 00,20 66,3 3 3 2 2 1 1 =∴==∴==∴= x x x x x x L U I S M A R C I O F A L E I R O S T O P O G R A F I A 28
  • 29. A B C D 1 2 3 4 8.0 6.0 7.0 9.06.0 7.0 7.6 8.0 8.4 9.0 6.8 8.2 8.6 9.3 5.9 7.0 7.6 8.2 5.2 6.5 7.1 7.7 7.51 13.54 14.63 20.00 20.00 20.00 20.0020.0020.00 ATERRO CO RTE 12.7 10.0 11.0 12.0 10.0 11.0 12.0 7.7 1.40 1.35 10.20 6.2 CÁLCULO DE VOLUMES L U I S M A R C I O F A L E I R O S T O P O G R A F I A 29
  • 30. A B C D 1 2 3 4 7.51 13.54 14.63 5.0 7.0 9.0 5.0 7.0 9.0 5.0 7.0 9.0 5.0 7.0 9.0 0.0 11.0 13.0 -1.5 -1.2 -0.6 0.0+0.5 -1.8 -0.7 -0.9 +0.5 +0.9 +1.6 -0.7 +0.7 +1.3 +5.0 Aa=-37.0 m 2 Aa=-18.0 m 2 Aa=-4.4 m 2 Ac=0.0 m 2 Aa=-25.0 m 2 Va=-620.0 m 3 Aa=-8.0 m 2 Ac=4.0 m 2 Va=-43.9 m 3 Va=-260.0 m 3 Vc=40.0 m 3 Aa=-6.1 m 2 Ac=14.0 m 2 Ac=1.6 m 2 Ac=25.0 m 2 Ac=63.0 m 2 Vc=250.0 m 3 Va=-310.0 m 3 Vc=8.1 m 3 V a=-20.0 m 3 Vc=105.0 m 3 Aa=-2.6 m 2 Ac=4.4 m 2 V a=-87.2 m 3 V c=59.9 m 3 Vc=880.0 m 3 5,2 -2,5 -2,5 -1,2 -0,6 14,6 0,0 6,5 -1,2 -37,0 -18,0 -4,4 7,1 -0,6 0,0 7,7 0,0 -620,0 -260,0 -43,9 40,0 5,9 -1,8 -1,8 -0,7 -0,1 0,5 7,0 -0,7 -25,0 -8,0 4,0 L U I S M A R C I O F A L E I R O S T O P O G R A F I A 30
  • 31. 7,6 -0,1 -310,9 -20,0 250,0 8,2 0,5 8,1 105,0 -0,9 13,5 0,5 0,9 1,6 6,8 -0,9 -6,1 14,0 25,0 8,2 0,5 1,6 8,6 0,9 -87,2 880,0 9,3 1,6 59,9 -0,7 7,5 0,7 1,3 5,0 7,0 -0,7 -2,6 63,0 8,4 0,7 4,4 9,0 1,3 12,7 5,0 -620,0 40,0 -260,0 8,1 -43,9 105,0 -310,9 250,0 -20,0 59,9 -87,2 0,0 880,0 ATERRO CORTE -1342,0 m3 1342,9 m3 0,9 A inclinação dos planos de contenção depende do ângulo de atrito do material do solo, no estado de agregação em que se encontra; o ângulo de atrito (ϕ) é o maior ângulo no qual o cone de atrito desse solo é estável. ϕ A interseção entre um talude de corte e o terreno original recebe o nome de linha de off-set de corte; a interseção entre uma saia de aterro e o terreno original recebe o nome de linha de off-set de aterro. Exercício: • Traçar curvas de nível de 1 em 1 m. • Calcular cota de compensação. • Traçar perfis 1-2, 6-3, 5-4 • Calcular volumes de corte e aterro. L U I S M A R C I O F A L E I R O S T O P O G R A F I A 31 1(98.30) 2(101.00)3(102.36)4(102.45) 5(98.38)6(98.64) 10.00 20.00 98 99 100 101 102 103 98 99 100 101 102 103 98 99 100 101 102 103 1 m ESCALA
  • 32. Exercício: • Calcular cota de compensação • Calcular volumes de corte • Calcular volumes de aterro L U I S M A R C I O F A L E I R O S T O P O G R A F I A 32
  • 33. est pv D N X Y Cotas 1 2 14.39 -2.17 0.00 0.00 2 3 11.97 -3.70 14.39 0.00 3 4 4.73 0.34 14.39 11.97 4 5 5.00 -0.47 10.00 10.00 5 6 10.22 3.72 10.00 15.00 6 7 5.36 0.96 0.00 13.20 7 1 7.84 1.32 0.00 7.84 14.39m 11.97m 7.84m 13.20m 1 (100.00) 2 (97.83) 4 (94.47) 5 (94.00) 3 (94.13) 6 (97.72) 7 (98.68) 99 98 97 96 95 99.12 97.42 96.30 96.4298.22 95.87 95.75 99.24 98.46 10.00m 15.00m 10.00m 14.39 11.97 4.73 5.00 7.845.36 10.22 SEÇÕES TRANSVERSAIS A-A 100 99 98 97 96 95 94 93 L U I S M A R C I O F A L E I R O S T O P O G R A F I A 33
  • 34. 92 91 B-B 100 99 98 97 96 95 94 93 92 91 C-C 100 99 98 97 96 95 94 93 92 91 D-D 100 99 98 97 96 95 94 93 92 91 CÁLCULO DE COTA DE COMPENSAÇÃO x1 x2 x3 x4 7 EQUIPAMENTOS DE MEDIÇÃO, UNIDADES DE MEDIDAS E ESCALAS 7.1 EQUIPAMENTOS DE MEDIÇÃO ANGULAR L U I S M A R C I O F A L E I R O S T O P O G R A F I A 34
  • 35. • Teodolito: Equipamento utilizado para medir ângulos horizontais e verticais com precisão. Os teodolitos atuais são todos eletrônicos, mas ainda é muito comum os teodolitos ótico-mecânico. • Estação Total: Assim como o teodolito, a estação total também mede ângulos horizontais e verticais. O que as difere dos teodolitos, é que elas também medem distâncias. Todas as estações totais são eletrônicas e possibilitam o armazenamento automático das informações. 7.2 GENERALIDADES A unidade que mais representa um espaço a ser ocupado, é sem dúvida as medidas de área (duas dimensões). De acordo com a ABNT, a medida padrão utilizada em topografia, é o metro quadrado (m2 ). 7.3 UNIDADES DE SUPERFÍCIE Ainda hoje se utilizam alguns tipos de áreas para facilitar a leitura e dimensão. Qualquer unidade linear elevada ao quadrado, pode virar também unidade de área. Uma outra unidade que se utiliza é o hectare (ha), que é igual a 10000m2 . Para a conversão de outras unidades, poderemos utilizar a tabela a seguir: 7.4 UNIDADES DE MEDIDAS Lineares m (metro) Superficiais m2 (metro quadrado) Ha (hectare - 10.000 m2) Angulares º (graus) 7.5 ESCALAS USADAS EM TOPOGRAFIA Escala - Relação entre duas dimensões MD = E. MO MD = Medida no desenho MO = Medida no terreno E = Escala Principais escalas para plantas e cartas topográficas ESCALA EQUIVALÊNCIA Emprego1 Km (terreno) 1 cm (desenho) Desenho Terreno 1/100 1/200 1/250 10 m 5 m 4 m 1 m 2 m 2,50 m Detalhe de edifícios; terraplenagem, etc L U I S M A R C I O F A L E I R O S T O P O G R A F I A 35
  • 36. 1/500 1/1 000 1/2 000 2 m 1 m 0,50 m 5 m 10 m 20 m Planta de uma fazenda; Planta de uma vila; Planta de uma cadastral 1/5 000 1/10 000 0,20 m 0,10 m 50 m 100 m Planta pequena cidade; Planta grande propriedade 1/50 000 1/100 000 1/200 000 0,02 m 0,01 m 0,005 m 500 m 1 000 m 2 000 m Carta de diversos países e Estados; Cartas (grande país) Cartas aeronáuticas 1/500 000 0,002 m 5 000 m Carta reduzida (grande país) 1/1 000 000 0,001 m 10 000 m Carta internacional do mundo 7.6 SISTEMAS DE UNIDADES Assim como a medida linear, temos várias unidades angulares. As unidades angulares são de acordo com a divisão de um círculo. • Grau: Um círculo dividido, a partir de seu centro, em 360 partes. Cada parte desta, é chamada de grau. Cada grau por sua vez, é dividido em 60 partes, chamada de minuto. Cada minuto é divido em mais 60 partes, chamada de segundo, e cada segundo assume as divisões decimais. Este sistema é chamado de Sexagesimal. • Grado: Um círculo dividido, a partir de seu centro, em 400 partes. Cada parte desta, é chamada de grado. Cada grado segue a divisão decimal. Este sistema é chamado de Centesimal. • Radiano: Um radiano é representado pelo ângulo formado quando o valor do comprimento do arco da circunferência é igual ao seu raio. Uma circunferência total, possui 2π radianos. 7.7 PROCEDIMENTOS PARA ESTACIONAR EQUIPAMENTOS TOPOGRÁFICOS COM PRUMO ÓTICO 1. Posicione o tripé do instrumento aproximadamente na vertical do ponto topográfico. Se a superfície topográfica for irregular, posicione apenas uma perna na parte mais alta e utilize o fio de prumo para auxiliar na detecção da vertical. Procure adaptar a altura do tripé para a sua altura, não deixando de considerar a irregularidade da superfície e nem a altura do instrumento. Aproveite este momento para deixar a mesa do tripé aproximadamente nivelada e crave uma das pernas no solo (de preferência a que estiver na parte mais alta do terreno). 2. Retire o instrumento de seu estojo conforme o item 4 do manual “CUIDADOS COM EQUIPAMENTOS TOPOGRÁFICOS” e coloque-o sobre o tripé conforme o item 5 do referido manual. Posicione os três calantes numa mesma altura (de preferência num ponto intermediário do recurso total do calante). Normalmente os instrumentos possuem marcas fiduciais como anéis pintados ou parafusos de fixação de seu eixo que podem servir de referência. 3. Posicione a marca central do prumo ótico sobre o ponto topográfico utilizando as duas pernas do tripé que ainda não estão cravadas. Quando a marca estiver perfeitamente sobre o ponto topográfico, crave as pernas soltas e inicie o nivelamento da bolha circular utilizando as três pernas. Preste muita atenção na direção formada pela bolha e o círculo. Esta direção irá definir com qual perna você deverá subir ou abaixar a mesa. Conforme as ilustrações ao lado, a perna que deverá baixar a mesa é a perna 1, pois a bolha circular está na sua direção para o seu lado. L U I S M A R C I O F A L E I R O S T O P O G R A F I A 36 perna 2
  • 37. vista superior da bolha circular vista superior do tripé 4. Com a bolha perfeitamente dentro do círculo (automaticamente a mesa estará nivelada, pois os calantes estão numa mesma altura), verifique se a marca central do prumo ótico saiu da vertical do ponto. Caso tenha saído afrouxe o instrumento do tripé e posicione novamente a marca sobre o ponto topográfico. 5. Inicie então o nivelamento da bolha tubular utilizando o “Método dos Três Calantes” ou o “Método do Calante Perpendicular”(ambos descrito a seguir). Independente de qual método você optar, deverá ser feito duas vezes. Após feito, verifique se a marca central do prumo ótico saiu do ponto. Caso tenha saído volte ao passo 4. Método dos Três Calantes: Deixe a bolha tubular paralela aos calantes 1-2 e nivele-a utilizando somente estes dois calantes. O movimento dos calantes deverão ser sempre em sentidos opostos (quando um for girado no sentido horário o outro deverá ser girado no anti-horário). Em seguida posicione a bolha tubular paralela aos calantes 2-3 e use estes calantes para nivelar a bolha. Não esqueça que os calantes devem giram em sentidos opostos. Finalmente deixe a bolha paralela aos calantes 3-1 e nivele-a também. Método do Calante Perpendicular: Deixe a bolha paralela aos calantes 1-2 e nivele-a utilizando somente estes dois calantes. O movimento dos calantes deverão ser sempre em sentidos opostos (quando um for girado no sentido horário o outro deverá ser girado no anti-horário). Em seguida posicione a bolha tubular perpendicular aos calantes 1-2 e use somente o calante 3 para nivelar a bolha. Movimento do calantes 8 AEROFOTOGRAMETRIA 8.1 EXECUÇÃO DAS FOTOS AÉREAS L U I S M A R C I O F A L E I R O S T O P O G R A F I A 37 retículosbolha circular direção mesa perna 1 perna 3 direção perna 2 1 2 3
  • 38. 8.1.1 CÂMARA FOTOGRÁFICA • Nivelamento em vôo (parafusos). • Série de fotos numeradas. • Correção do eixo longitudinal da câmera em relação à linha de vôo (devido a ventos de través) 8.1.2 CONDIÇÕES ATMOSFÉRICAS Principal característica do “dia aerofotogramétrico”: boa visibilidade. 8.1.3 POSIÇÃO DO SOL Sombras excessivas: promovem perda de nitidez (ideal: 9:30 hs às 15:00 hs). Pouca sombra: acarreta perda do contraste entre os objetos. 8.1.4 ERROS E DISTORÇÕES: • Linha de vôo não retilínea devido a movimentações verticais e horizontais. • Desnivelamento da aeronave e da câmera. L U I S M A R C I O F A L E I R O S T O P O G R A F I A 38 VENTOS PREDOMINANTES LINHA DE VÔO A B REGIÃODE SOMBRAS
  • 39. • Distorções devidas ao relevo. 8.2 RECOBRIMENTO DA ÁREA Promove o aparecimento de pontos comuns em fotos consecutivas ou laterais. Recobrimento longitudinal: necessário para permitir a observação de um par estéreofotogramétrico e para amarração. Recobrimento lateral: para amarrar as sequências fotográficas. A : afastamento das linhas de vôo. B : base (distância entre verticais da foto) L : dimensão da área abrangida pela foto (quadrado) L U I S M A R C I O F A L E I R O S T O P O G R A F I A 39 L 30% 60% LINHA DE VÔO A recobrimento longitudinal recobrimento transversal A B
  • 40. 8.3 MAPA-ÍNDICE E FOTO-ÍNDICE Permitem a observação da área através das fotos e reconhecer a posição de cada foto na área levantada. Deve-se observar as bandas das fotos na posição invertida e os reconhecimentos. 9 CADASTRO IMOBILIÁRIO E REGISTROS PÚBLICOS 9.1 CADASTRO IMOBILIÁRIO MUNICIPAL L U I S M A R C I O F A L E I R O S T O P O G R A F I A 40 128 129 130 131 132 133 176 177 178 179 180 181 209 210 211 212 213 214
  • 41. 9.1.1 ESTRUTURA Planta de Referência Cadastral, em escala 1: 5.000 / 1: 10.000 com codificação de quadras para amarração das Plantas de Quadra. Planta de Valores de Terreno na mesma escala da Planta de Referência Cadastral, onde vem lançado o valor da terra, atualizado e aprovado por lei anualmente. Planta de Equipamentos Urbanos, na mesma escala da Referência Cadastral, onde são lançados os elementos de infra estrutura que significam valor agregado aos terrenos. Em geral separam-se em três plantas: a de água e esgoto, a de luz, força e telefonia e a de esgoto pluvial, pavimentação, iluminação e edificação. Planta de quadra em escala 1: 500 / 1: 1.000 onde estão lançados os lotes, as projeções das edificações, as medidas dos lotes, a numeração (emplacamento) da edificação e o nome da rua. Boletim de Informações Cadastrais - BIC, onde vem indicado o nome e endereço do proprietário, a tipo de título de propriedade, as característica do lote, da edificação e dos equipamentos além de croquis do lote e da edificação. 9.1.2. FINALIDADE A finalidade técnica da grande maioria dos cadastros é fiscal, ou seja, a cobrança do IPTU (Imposto Predial Territorial Urbano), do ISS (Imposto Sobre Serviços), do ITBI (Imposto de Transmissão de Bens Imóveis) e do ITR (Imposto Territorial Rural). 9.2. CADASTRO TÉCNICO MUNICIPAL 9.2.1. ESTRUTURA BÁSICA DO CADASTRO TÉCNICO MUNICIPAL Carta topográfica em escala 1: 50.000 do IBGE, destinada a compreender o relevo geral do Município, sistema de drenagem geral, sistema viário básico e as relações desses elementos com os municípios vizinhos. Carta topográfica 1: 10.000 ou 1: 5.000 dependendo da densidade de informações, como carta básica para a construção das demais cartas nessas escalas e para planejamento de bairro, macro planejamento de saneamento, redes elétricas, telefônicas, disposição de lixo, etc.,... e carta para cadastro fundiário rural. Rede de referência Cadastral Municipal composta de rede de marcos materializando vértices planimétricos e Referências de nível que referenciarão os serviços de levantamentos topográficos e aerofotogramétricos. Os vértices planimétricos deverão ser em densidade de 1 a cada 3 Km2 na área urbana e 1 a cada 16 Km2 a 1 a cada 50 Km2 na área rural dependendo da densidade de ocupação, Planta de Referência Cadastral, Planta Genérica de Valores e Plantas Indicativas de Equipamentos Urbanos, todos em escala 1: 5.000 ou 1: 10.000, dependendo da carta básica. Planta Cadastral da Área Urbanizada em escala 1: 1.000, básica para a produção das plantas de quadras e par o cadastro de toda a infra estrutura como: rede de água, rede de esgotos sanitários, rede elétrica, de telefone, de esgoto pluvial, iluminação pública, arborização, controle das áreas de proteção ambiental e controle do sistema fundiário, inclusive do patrimônio público. Planta de quadra em escala 1: 1.000. L U I S M A R C I O F A L E I R O S T O P O G R A F I A 41
  • 42. Boletim de Informações Cadastrais - BIC que além de informções sobre o terreno e a edificação deve conter dados pedológicos, informações sócio-econômicas necessárias à decisões dos investimentos públicos. Cadastro de Produtores. Cadastro de Prestadores de Serviços. Cadastro de Usuários de Serviços Públicos, quando de competência Municipal e em forma conveniada quando não. Outros elementos dependendo de Município. 9.2.2. ALGUMAS POSSIBILIDADES DE UTILIZAÇÃO Planejamento e controle do uso do solo. Controle do parcelamento da terra. Controle de novas edificações. Controle e uso das edificações. Planejamento Controle Lançamento de impostos e taxas. Controle da arrecadação e da cobrança da dívida. Avaliação da política tributária. Controle dos cadastros de infra-estrutura como subsídios a projetos . Planejamento de obras públicas. Planejamento e controle de: - serviços urbanos e equipamentos urbanos sociais - transporte, circulação, armazenagem - transporte coletivo - transporte e estacionamento - política urbana Integração de atuação com os registros de imóveis. 9.2.3. ATUALIZAÇÃO A atualização deve ser permanente, com o estabelecimento de procedimentos técnicos administrativos de intercâmbio de informações rotineiras dos atos administrativos que resultam em alterações nos imóveis cadastrados, tais como: venda do imóvel, pedidos de ligação de água, luz ou telefone, aprovação de construções, pedidos de licença de uso, etc. 9.3 ORIGEM DAS IMPRECISÕES RELATIVAS AO CONFRONTO ENTRE ÁREAS MAPEADAS DE PROPRIEDADES RURAIS E SEU TÍTULO DE DOMÍNIO L U I S M A R C I O F A L E I R O S T O P O G R A F I A 42
  • 43. Pode-se considerar como fundamentais, para entender os problemas correntes, três fatores: A forma como eram descritos os perímetros que deram origem aos primeiros registros de imóveis, contendo vários elementos de imprecisões; A técnica frequentemente adotada para os levantamentos topográficos até períodos recentes; A dificuldade para retificação de registros de imóveis. 9.3.1. DESCRIÇÕES ORIGINAIS IMPRECISAS Exemplos: a) “O braço de Pescaria tem uma légua de comprimento com outro tanto de quadra, compreendendo as divisões seguintes: para a parte de cima principia em um córrego seco ao correr da margem faz divisas em matas virgens, em largura divide-se em um cume de morro pertencente ao Braço da mesma Pescaria, à margem do Rio fica dividido com terras de Jerônimo Xavier Moura, tudo de acordo com registro Paroquial junto, feito no ano de 1856”. Nome do Adquirente: Coronel Antônio Avelino Cunha. Nome do Transmitente: José Mendes de Lima. b) “Aos dezenove de novembro de mil oitocentos e cinquenta e cinco nesta Freguesia de Iporanga, me foram apresentadas dois exemplares ambos do teor seguinte. Terras que possui Jerônimo Xavier Moura, nesta Freguesia de Iporanga: Eu Jerônimo Xavier Moura sou possuidor das terras seguintes nesta Freguesia: uma posse de terras lavradias no Bairro da Pescaria cujas medidas não conheço, mas julgo que terá umas mil e quinhentas braças de testada, confina com as terras de Salvador Henrique, indo desta Freguesia, e do Rio abaixo confina do Salto em um Córrego Seco e de fundo suponho ter três mil braças, estes terrenos foi por mim apossados em mil oitocentos e quarenta e nove”. São elementos como estes, extraídos de processos reais, apenas para exemplificar, que se defronta no dia a dia em trabalhos de regularização fundiária, tanto no Estado de São Paulo, quanto em mais de 40 projetos analisados no Nordeste brasileiro. 9.3.2. TÉCNICAS ADOTADAS NOS LEVANTAMENTOS Até recentemente, a técnica adotada para o levantamento Topográfico de glebas, era a de levantamento por poligonação medida com taqueômetro de leitura angular de 1 minuto sexagesimal e distâncias medidas em mira, com orientação em Norte Magnético, sem qualquer amarração à rede Geodésica brasileira. Como consequência tem-se: Erro transversal (angular) equivalente a 30 cm por quilômetro, considerado pequeno quando comparado a erro linear. Erro longitudinal (distância) equivalente a 2 m por quilômetro quando adotada a boa técnica, chegando a 3 m por quilômetro, na forma mais frequentemente utilizada. Erro de rotação em relação ao Norte Geográfico (orientação) com variáveis até 2° pelo uso de agulha magnética com correção pela declinação magnética, o que significa em apenas um quilômetro o desvio de cerca de 35 m em direção. Amarrações de origem em elementos construídos em substituição à rede Geodésica. L U I S M A R C I O F A L E I R O S T O P O G R A F I A 43
  • 44. A grande maioria dos profissionais que atuavam e atuam na área são práticos e não profissionais habilitados. 9.4 MÉTODOS PARA O CORRETO CADASTRAMENTO TÉCNICO DE IMÓVEIS RURAIS 9.4.1. MÉTODO MISTO Procedimento: Vôo em escala 1: 25.000, recobrimento longitudinal de 60% e lateral de 30%, câmera métrica focal de 150 mm. Rede de apoio, amarrado à rede Geodésica brasileira, com densidade de 1 vértice a cada 16 a 50 Km2, medido com G.P.S. (Global Positioning System). Apoio foto planejado para ajuste em bloco e medido com G.P.S. Restituição planimétrica em escala 1 : 5.000, digital dos detalhes visíveis nas fotos e necessários para a identificação de limites de propriedade e edificação. Reambulação de campo, utilizando-se fotos ampliadas na escala de 1: 5.000, sobre as quais se identificam limites das propriedades, tipo de materializados e no caso de limites não materializados, cravam-se marcos nos locais acordados pelos confrontantes, para posterior levantamento topográfico. Simultaneamente com a reambulação são levantados os dados do ocupante, de sua família e de sua titulação (domínio ou posse). Edição, via computador, compatibilizando-se os dados reambulados e levantados em campo por topografia com os dados levantados via aerofotogrametria. Plotagem de planta geral e codificação dos lotes. Produção do memorial descritivo de propriedades individualizadas, indicando-se: as coordenadas de todos os pontos de divisa em sistema único; os azimutes e distâncias de cada lado; sua materializaçãoe confrontante; a área abrangida; o nome do titular; o código do lote. L U I S M A R C I O F A L E I R O S T O P O G R A F I A 44
  • 45. 10 EXERCÍCIOS RESOLVIDOS 1) No desenho, indicar as medidas a serem feita para levantamentos de todos os detalhes, usando apenas trena ao medir AB. A B 10m 20m 40m 60m 80m 50m 70m POSTE CONSTRUÇÃO A resposta aparece em negrito a) quando se quer amarrar pontos usam-se triângulos. b) para amarrar detalhes que acompanham a linha medida pode-se usar perpendiculares tiradas sem aparelho. ______________________________________________________________________________ 2) Calcular azimutes e rumos: vértice angulo interno azimute rumo angulo quadrante 1 88.590 135.050 44.950 SE 2 111.870 66.920 66.920 NE 3 34.000 280.920 79.080 NW 4 235.110 336.030 23.970 NW 5 70.430 226.460 46.460 SW total 540.000 Caminhamento à direita _______________________________________________________________________________ 3) Calcular a área do polígono pelo método das duplas distâncias meridianas com origem no ponto mais oeste. Linha Coord. parciais Duplas distâncias meridianas produtos Norte Produtos Sul x Y E W N S 0-1 5 40 55 + 55 + 5 = 115 40 x 115 = 4.600 1-2 10 10 115 + 5 + 10 = 130 10 x 30 = 1.300 2-3 10 80 130 + 10 + 10 = 150 80 x 150 = 12.000 3-4 20 5 150 + 10 - 20 = 140 5 x 140 = 700 4-5 40 30 140 – 20 - 40 = 80 30 x 80 = 2.400 5-6 20 10 80 – 40 - 20 = 20 10 x 20 = 200 6-0 55 45 0 + 0 + 55 = 55 45 x 55 =2.475 80 80 110 110 ∑pN = 14.400 ∑pS = 9.275 L U I S M A R C I O F A L E I R O S T O P O G R A F I A 45
  • 46. estaca X Procura do ponto mais oeste 0 0 +5 1 +5 +10 2 +15 +10 3 +25 -20 4 +5 -40 5 -35 -20 O ponto mais oeste é a estaca 6 porque apresenta o maior valor 6 -55 +55 Área = 14.400 – 9275 = 2.525.50 m2 2 negativo 0 0 ______________________________________________________________________________ 4) Calcular a área do polígono pelo sistema de coordenadas. estaca s Rumos Dist. Coordenadas parciais Coord. parciais corrigidas Duplas distância s meridian as Produtos Norte Produtos SulÂng. Q x y x Y E+ W- Cx N+ S- Cy E+ W- N+ S- 1 33° 07’ NE 60.672 33.148 22 50.816 63 33.126 50.753 54.694 2.775,885 2 80° 44’ SE 58.511 57.747 39 -9.422 -12 57.708 -9.434 145.528 1.372,911 3 58° 47’ NE 43.340 37.065 25 22.462 28 37.040 22.434 240.276 5.390,352 4 71° 37’ SE 90.464 85.847 58 -28.530 -35 85.789 -8.565 363.105 10.372,094 5 2° 06’ SW 99.404 -3.643 -2 -99.337 -123 -3.645 -99.460 445.249 44.284,466 6 66° 47’ SW 63.609 -58.458 -39 -25.075 -31 -58.497 -25.106 383.107 9.618,284 7 44° 39’ SW 143.22 - 100.656 -68 -101.894 -127 -100.724 -102.021 223.886 22.841,064 8 38° 27’ NW 98.965 -64.540 -41 77.505 96 -61.581 77.409 61.581 4.766,924 9 21° 02’ NE 30.067 10.791 7 28.064 35 10.784 28.029 10.789 302,265 10 0° 0’ N 86.068 0.0 86.068 107 0 85.961 21.568 1.854,007 774.32 7 0.301 0.657 15.089,431 88.488,829 A = 88.488,829 = 36.699,699 m2 15.089,431 ________________________________________________________________________________________________ 5) A escala e os nônios pertencem a um teodolito. Fazer a leitura na escala horária (explicando como leu) e também na escala anti horária. 20 15 10 5 0 5 10 15 20 130 230 140 220 120 240 110 250 100 260 CONINCIDÊNCIA (11' 20") CONINCIDÊNCIA (8' 40") L U I S M A R C I O F A L E I R O S T O P O G R A F I A 46
  • 47. Resposta: 123° 00’ 11’ 20” 123° 11’ 40” (escala horária) 236° 40’ 8’ 40” 236° 48’ 40” (escala anti-horária) ______________________________________________________________________________ 6) Compor a tabela de nivelamento geométrico, calculando as cotas dos pontos visados. 0.520 3.8162.4040.398 3.1230.4443.711 0.857 3.8022.841 RN - 1 (cota 105.215) estaca V Ré AI V Vante Cota Intermed. Mudança RN - 1 105.215 0.520 105.735 2 2.841 102.894 3 3.802 101.933 4 0.857 104.878 3.711 108.589 5 0.444 108.145 6 3.123 105.466 0.398 105.864 7 2.404 103.460 8 3.816 102.048 Soma 4.629 7.796 Prova do cálculo: Cota final = cota inicial + ∑ V Ré - ∑ V Mud 105,215 + 4.629 109.844 - 7.796 102.049 ___________________________________________________________________________ 7) Calcular a distância horizontal entre A e B e a cota de B. L U I S M A R C I O F A L E I R O S T O P O G R A F I A 47
  • 48. Estaca Ponto visado Mira Ângulo vertical D dist. horiz N dist. vert Cotasup. méd. inf. A 1.42 B 0.81 0.57 0.32 + 5° 45’ 48.51 + 3.293 100.00 105.678 2 D = 100 G cos α D = 100 (0.81-0.32) 0.990025 = 48.51 m N = h ± 50 G sen 2α - m N = 1.42 + 50(0.81-0.32) sen11.5° - 0.57 = + 3.293 m __________________________________________________________________________ 8) Determinar os pontos de cota inteira e traçar as curvas de nível 13, 14, 15, 16 e 17, com interpolação gráfica. 12.2 15.6 17.2 16.4 10 11 12 13 14 15 16 17 13 14 1510 11 12 13 14 15 16 17 16 17 ______________________________________________________________________________ 9) Calcular o volume de corte quando o projeto exigir uma plataforma horizontal na cota 3. Área de corte: Ac = 10 (1,4 + 2 x 2,1 + 2,6) = 41 m2 2 Bc = 10 (0,2 + 2 x 1,0 + 1,8) = 20 m2 2 Volume pela fórmula de prisma: 2 30510 2 2041 mxV = ++ = L U I S M A R C I O F A L E I R O S T O P O G R A F I A 48
  • 49. Volume pela fórmula de tronco de pirâmide: 2 77,29810 3 20412041 mx x V = ++ = 10.00 m 10.00 m 10.00m 4.4 5.1 5.6 3.2 4.0 4.8 A B PLANTA 10.00 m 10.00 m 10.00 m 10.00 m 4.4 5.1 5.6 1.4 2.1 2.6 3.2 4.0 4.8 0.2 1.0 1.8 SEÇÃO A SEÇÃO B 3.003.00 BIBLIOGRAFIA DOMINGUES, Felipe Augusto Aranha, Topografia e astronomia de posição: para engenheiros e arquitetos. ESPARTEL, Lélis, Curso de topografia. ESPARTEL, Lélis, Caderneta de campo. FONSECA, Rômulo Soares, Elementos de desenho topográfico. BORGES, Alberto de Campos, Topografia, 1921. L U I S M A R C I O F A L E I R O S T O P O G R A F I A 49
  • 50. L U I S M A R C I O F A L E I R O S T O P O G R A F I A 50