SlideShare a Scribd company logo
1 of 315
PHYSICS 2
ELECTROMAGNETISM ,[object Object]
History of Electromagnetism ,[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],History
Electric Charge ,[object Object],[object Object]
Two kind of Electric charge ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
+ + + + + + + + + + + + + + + + + + F F F Repulsion Attraction F
Charged Particles ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Quantization of charge ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Q =  n  e ,[object Object],[object Object],[object Object],[object Object]
Sample problem: ,[object Object],[object Object]
CHARGING There are different ways of making an object positively and negatively charged.
Charging by Friction ,[object Object]
Charging by Contact ,[object Object]
Charging by Induction ,[object Object]
Electricity conduction ,[object Object]
[object Object],[object Object],[object Object],[object Object],Every materials can be classified accordingly:
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object]
State that the Force between two charges is proportional to the product of the charges and is inversely proportional to the square of the distance between them. COULOMB’ S LAW
[object Object],[object Object],[object Object],[object Object],[object Object]
Sample Problem: ,[object Object]
[object Object],- + F r Q 1 Q 2 Electrical & Static Force
BOHR RADIUS
Notation of Electrostatic Force ,[object Object],+ - + - - + r r r F F F F F F
Sample problem: ,[object Object],+ + - 0.2 m 0.3 m Q 1 = 1.0 nC Q 2 = 3.0 nC Q 3 = 2.0 nC
[object Object],[object Object],[object Object],[object Object],Problem solving: Q 1 = +3µC Q 1 = -5µC Q 1 = +8µC 20 mm 35 mm
ELECTRIC FIELDS
Force at a Distance ,[object Object],[object Object],[object Object]
Law of Gravitation ,[object Object]
Equations: ,[object Object],[object Object],[object Object],[object Object]
Electric Field ,[object Object],[object Object],[object Object]
+ +Charge Electric Fields
Where:   E = Electric field Q = Charge   r = radius of the field k = proportionality constant Electric field equation
[object Object],[object Object],[object Object],+Q -Q P P
Drawing Electric Field Lines ,[object Object],[object Object],[object Object]
[object Object],+ 2+
Sample Problem: ,[object Object],[object Object]
GAUSS’ LAW ,[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Electric Flux ( Φ )
GAUSS’ LAW ,[object Object],E A
[object Object],A E
[object Object],A E
Sample problem: ,[object Object]
Gaussian surface ,[object Object],[object Object],[object Object],[object Object]
Net flux ,[object Object],[object Object],[object Object],[object Object],[object Object]
No enclosed charge (Zero flux) Positive charge enclosed (Positive flux) Negative charge enclosed (Negative flux)
Sample problem: ,[object Object],- - - + + Q 1 Q 2 Q 3 Q 4 Q 5
ELECTRIC POTENTIAL ENERGY ,[object Object],[object Object],[object Object]
Work done in Electric Field ,[object Object],[object Object]
Conclusion: ,[object Object],[object Object]
ELECTRIC POTENTIAL ,[object Object],[object Object]
[object Object],[object Object]
[object Object],[object Object],[object Object]
SAMPLE PROBLEM: ,[object Object]
Electric Potential and Electric Field ,[object Object],[object Object]
SAMPLE PROBLEM: ,[object Object],[object Object]
POTENTIAL DIFFERENCE ,[object Object],[object Object]
[object Object],[object Object]
Potential Difference ( ∆V) ,[object Object],[object Object],[object Object],[object Object]
SAMPLE PROBLEM: ,[object Object]
POTENTIAL FOR MULTIPLE CHARGES ,[object Object],[object Object],[object Object]
SAMPLE PROBLEM: ,[object Object],[object Object],[object Object],[object Object]
CAPACITOR
[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],Plates
CAPACITANCE ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object]
Capacitance for parallel plates capacitors ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],+ Q - Q A r
Sample problem: ,[object Object]
DIELECTRIC ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Dielectric Constant ,[object Object],Where: k   = dielectric constant C  = Capacitance if there is dielectric C 0   = capacitance without dielectric
[object Object],[object Object],Where: k   = dielectric constant ε   = Capacitance if there is  dielectric ε 0   = capacitance without  dielectric = 8.85 x 10 -12  C 2 /Nm 2
Dielectric Materials PLATE PLATE + -
Sample problem: ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
EQUIVALENT CAPACITANCE ,[object Object],C T V T C 1 C 3 C 2 V T
Capacitors in Series Connection ,[object Object],C 1 C 3 C 2 V T
[object Object]
Capacitors in Parallel connection ,[object Object],C 1 C 2 C 3 V T
[object Object]
SAMPLE PROBLEM: ,[object Object],[object Object]
[object Object],5mF 4mF 18mF
ELECTRIC CURRENT A flow of charge from one place to another. The unit is  Ampere , which equal to a flow of 1 coulomb per second.
Moving charges as a current ,[object Object],[object Object],[object Object]
When moving charges is not a current ,[object Object],[object Object],[object Object],[object Object]
Electric current in a conductor ,[object Object],Isolated conductor charges
[object Object],Battery + - Conductor Charges Direction of charges
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
- - - - - - t = t 0 t = t 0  + 1 s plane plane
[object Object],a b c a’ b’ c’ I I
Sample problem: ,[object Object]
Current is a scalar quantity ,[object Object],[object Object]
I 0 I 1 I 2 I 0  = I 1  + I 2
DIRECTION OF CURRENT ,[object Object],[object Object]
[object Object],[object Object]
Drift Speed ,[object Object],Where: I = electric current (A) n = charge concentration v d  = drift velocity (m/s) e  = charge of electron A = cross-sectional area  of conductor(m 2 ) ,[object Object],I in I in A
Current Density ,[object Object],[object Object],Where: I  = electric current (A) J  = current density (A/m 2 ) n = charge concentration v d  = drift velocity (m/s) e  = charge of electron A = cross-sectional area  of conductor(m 2 )
Sample Problem: ,[object Object]
Types of Current ,[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],Alternating Current I (A) t (s) I (A) t (s)
ELECTRIC RESISTANCE
Electric Resistance ,[object Object],[object Object],Where: R = Resistance (Ohm,  Ω ) ρ  = resistivity ( Ω m) L   = Length of the wire (m) A = cross-sectional area  of a wire(m 2 )
0.0038 1.6 x  10-8 Silver 0.0036 11 x  10-8 Platinum 0.00088 98 x  10-8 Mercury 0.0043 21 x  10-8 Lead 0.005 12 x  10-8 Iron 0.0039 1.7 x  10-8 Copper  0.0039 2.6 x  10-8 Aluminum α (k -1 ) ρ (Ω.m) Substance and their temperature coefficient. Approximate resistivities (at 20 0 C)
Sample Problem: ,[object Object],ρ L A
Resistivity & Conductivity ,[object Object],[object Object],[object Object],Conducting material Electric field
[object Object],[object Object],Where: ρ   = resistivity ( Ω m) E  = electric field (N/c) J  = current density (A/m 2 )
[object Object],[object Object],[object Object]
Variation of  Resistivity with Temperature ,[object Object],400 200 0 1200 1400 2 8 0 4 6 10 600 800 1000 Resistivity 10 -8   Ω m Room temperature Temperature (Kelvin)
Variation of Resistivity with Temperature ,[object Object],Where: ρ   = resistivity ( Ω m) ρ 0  = resistivity at room temperature ( Ω m) T  = temperature (Kelvin,K) T 0  = room temperature (K) α   = coefficient of resistivity (K -1 )
[object Object],[object Object]
Sample Problem: ,[object Object]
Ohm’s Law ,[object Object]
[object Object],[object Object]
Current Potential Difference graph of a  1000 W resistor , an  Ohmic  device. -4 -2 0 +2 +4 -2 +2 0 Current (mA) Potential Difference (V)
Current vs Potential Difference graph of a  pn junction diode , a  non-ohmic  device. -4 -2 0 +2 +4 -2 +2 0 Current (mA) Potential Difference (V)
Single Loop Circuit ,[object Object],[object Object],EMF Device Maintain potential difference. Provides steady flow of charge. EMF stand for  Electromotive force . R EMF I + - + - I
The Resistor ,[object Object],[object Object],[object Object],[object Object],[object Object]
Electromotive Force ,[object Object],[object Object],[object Object],EMF
[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],EMF r i
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Sample Problem: ,[object Object],[object Object],[object Object]
Resistors in Single Loop Circuit
[object Object],Resistors in Series Circuit. R 3 V T I T + - + R 2 + R 1 + - - - R T
Equivalent resistance in a Series Circuit
Sample problem: ,[object Object]
[object Object],R 3 V T I T + - + R 2 + R 1 + - - - R T I 3 I 2 I 1
Equivalent resistance in a Parallel Circuit
Sample problem: ,[object Object]
Resistors in Single Loop Circuit ,[object Object],R 3 V T I T + - + R 2 + R 1 + - - - R T
POWER IN  CIRCUITS
The Power in the Circuits ,[object Object]
[object Object],[object Object],[object Object],Q
[object Object],[object Object],[object Object],[object Object]
[object Object]
Sample Problem: ,[object Object]
MULTILOOP CIRCUIT ,[object Object],[object Object]
What happen when one component in a series circuit was cut-off?
What happen when one component in a multiloop circuit was cut-off?
[object Object],[object Object],[object Object],Junction current
GUSTAV KIRCHHOFF ,[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],KIRCHHOFF’S LAW R 2 + Emf 1 + - R 1 + Emf 2 + - R 3 + Loop 1 Loop 2 I 1 I 2 I 3 -
[object Object],R 2 + ε 1 + - R 1 + ε 2 + - R 3 Junction point I 1 I 3 I 2 +
Sample Problem: ,[object Object],10 Ω + 9v + - 15 Ω + 12v + - 5 Ω I 1 I 3 I 2 +
RC CIRCUIT (Resistor and Capacitor in a circuit)
[object Object],R + - C S 1 S 2 ε + - Where:  ε   = Batteries (Emf)   S 1  &  S 2  = Switches   R  = Resistor   C  = Capacitor Open Close
Charging a capacitor R + - C S 1 S 2 ε + - I I I I I closed open Where: V R  = Potential difference across the resistor. V C  = Potential difference across the capacitor. I
[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object]
[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Sample Problem: ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
MAGNETISM
Introduction to Magnetism ,[object Object],[object Object],[object Object],[object Object],[object Object]
Magnetic field of magnets ,[object Object],[object Object],N S N S N S Bar Magnet Horseshoe Magnet C-shaped Magnet
[object Object],[object Object]
N S Magnetic field Magnetic field
Rules in drawing magnetic field lines ,[object Object],[object Object],[object Object]
Polarity of Magnet ,[object Object],[object Object],[object Object]
N N N S S S N N N S S S REPULSION REPULSION ATTRACTION
Definition of Magnetic Field ,[object Object],[object Object],Where: F = Magnetic force (Newton) q = charge (coulomb) v = velocity (m/s) β  = Magnetic field (Tesla)
[object Object],[object Object],Where: θ  is the angle between velocity and magnetic field.
Right-hand-rule: ,[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object]
Sample Problem: ,[object Object]
Magnetic Force ,[object Object],[object Object],[object Object],Where: F = magnetic force (Newton) I = current (ampere) L = Length of the conductor inside the magnetic field (meter) β  = Magnetic field (Tesla)
[object Object],[object Object],Where: θ  = is the angle between the wire and the magnetic field.
Sample Problem: ,[object Object]
Magnetic field of Earth ,[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object]
Conductors with  Current
Conductors with Current ,[object Object],[object Object],[object Object]
Straight Conductor ,[object Object],β I Conductor
Single-Loop Conductor ,[object Object],[object Object]
[object Object],I β
Solinoid ,[object Object],[object Object],[object Object]
[object Object],C
[object Object],[object Object]
Moving Charged Particles
Moving Charged Particles ,[object Object],[object Object],+ - Positive charge : Use  Right-Hand-Rule Negative charge : Use  Left-Hand-Rule
[object Object],[object Object],[object Object],E 1 E 2 E 3 + + + + + + E 1 E 2 E 3
Calculating the Magnetic Field ,[object Object],[object Object],[object Object],r d β I dl
[object Object],r I dl
[object Object],[object Object],I β r
[object Object],[object Object],R r Outside Inside I β
[object Object],[object Object],I r Ø
Complete circular loop I I r
[object Object],z r I
[object Object],[object Object],[object Object],N
[object Object],[object Object],[object Object],[object Object],[object Object]
Parallel Current ,[object Object],[object Object],[object Object],[object Object]
[object Object],L I a I b d
Sample Problem: ,[object Object],[object Object],[object Object],[object Object]
Magnetic Materials ,[object Object]
[object Object],[object Object],[object Object],+ - I
Types of Magnetic Materials ,[object Object],[object Object],[object Object],Assignment: Research “Types of magnetic materials” Computerized, Short Bond paper. To be submitted next meeting.
Field Symmetry ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],N S
β β β β A A A β β
Conducting loop in a magnetic field ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Note:   Changing magnetic field generates electric field. N S
Law  of  Induction
Faraday’s Law ,[object Object]
[object Object],[object Object],[object Object],[object Object]
Sample Problem: ,[object Object],[object Object],[object Object]
Lenz’s Law ,[object Object]
[object Object],S N β S N β S N β β ind β ind I  = 0 I I  (A) (B) (C) No motion β  increasing in the loop β  decreasing in the loop
Problem Solving: ,[object Object],[object Object],[object Object],[object Object]
Inductance ,[object Object],[object Object],[object Object]
Inductor ,[object Object],[object Object],[object Object]
Problem Solving: ,[object Object]
[object Object],[object Object],[object Object],Self-inductance
[object Object],I I CURRENT DECREASING CURRENT INCREASING ε L ε L ε L ε L
[object Object]
[object Object],Inductance L Inductor If the current is increasing then the voltage Opposing that Change is created By the magnetic Field of the coil.
Mutual-Inductance (M) ,[object Object],[object Object]
[object Object],[object Object]
Sample Problem: ,[object Object],[object Object],[object Object]
Alternating Current ,[object Object],[object Object],I t
[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],Where: W d  = Angle of frequency of the emf t = time ε m  = amplitude of the emf
[object Object]
Oscillating Circuit
Resistive Load ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],R I I ε
Capacitive Load ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],C I I ε
[object Object],[object Object],[object Object]
Inductive Load ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],I I ε L
[object Object],[object Object],[object Object]
RLC Series Circuit ,[object Object],ε L R C I I I I
[object Object],[object Object]
[object Object],[object Object],[object Object]
Sample Problem: ,[object Object],[object Object],[object Object],[object Object],[object Object]
Transformer ,[object Object],[object Object],[object Object]
input output Primary winding Secondary winding core Magnetic flux Transformer
Characteristic of an Ideal Transformer ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Transformation of voltage and current ,[object Object],[object Object]
[object Object],[object Object],[object Object]
[object Object],[object Object]
Problem Solving: ,[object Object]
Nature of Waves
Waves ,[object Object],[object Object],[object Object],[object Object],[object Object]
Types of Waves ,[object Object],[object Object],[object Object]
Wave propagation Wave propagation Wave propagation Particle motion Particle motion Particle motion Undisturbed position Undisturbed position Undisturbed position
[object Object],[object Object],[object Object]
Wave propagation Wave propagation Wave propagation Particle motion Particle motion Particle motion Undisturbed position Undisturbed position Undisturbed position
Properties of Wave ,[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object]
λ λ A A crest trough
m/s v speed Meter (m) A amplitude /s, s -1 Hertz (Hz) f frequency Second (s) T Period Meter (m) λ Wavelength relation unit Symbol Quantity
Problem Solving: ,[object Object]
Behavior of Wave ,[object Object],[object Object],Incident Refracted Medium 1 Medium 2
[object Object],[object Object],Incident Reflected Medium 1 Medium 2
[object Object],[object Object]
[object Object],[object Object],[object Object]
[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],wavefronts slit obstacle Diffracted wave
Electromagnetic Wave ,[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],Electric field Magnetic field Direction Wavelength
Speed in a vacuum Where: c= speed of the electromagnetic waves (m/s) E=electric field (V/m) β = magnetic field (Weber/m 2 ) ε o = permitivity constant μ o = permeability constant
Problem Solving: ,[object Object]
Electromagnetic Spectrum ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Wavelength and frequency ,[object Object],Where: f = frequency of the wave (Hz) c = speed of the EM wave in a vacuum λ = wavelength (m)
Problem Solving: ,[object Object],[object Object]
Visible Light
Visible Light ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Optics ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Reflection of Light ,[object Object]
θ i θ r θ i = 0 θ r  = 0 Mirror A The light is parallel to The plane of mirror. No Reflection. Mirror B Light is reflected  at an angle. θ i =  θ r A B Mirror C Incident and reflected Light are both perpendicular To the plane of mirror. θ i - θ r =0 C
Refraction of Light ,[object Object],Where: θ i = angle of incident ray θ r = angle of refraction ray n i  & n r  = indices of refraction
AIR WATER Incident ray Refracted ray θ i θ r
[object Object],[object Object],[object Object],Where: c = 3.00 x10 8  m/s   light in vacuum. v = speed of light in    the medium.
Sample Problem: ,[object Object]
Mirrors ,[object Object],[object Object]
[object Object],[object Object],[object Object],Plane mirror
[object Object],[object Object],[object Object],[object Object],Concave mirror Convex mirror Principal Axis Principal Axis
Parts of a mirror ,[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Problem Solving: ,[object Object]
Mirrors Image Formation ,[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object]
V Mirror C F For Concave Mirror Principal axis R f Object
V Mirror C F For Convex Mirror Principal axis f Object
Mirror Equation ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
V Mirror C For Concave Mirror Principal axis p f Object q F Image
Ray Diagram Method (RDM) ,[object Object],[object Object],[object Object],[object Object]
RDM V Mirror C Principal axis Y F Image 1 st  Ray 2 nd  Ray 3 rd  Ray Object Concave Mirror
Problem Solving: ,[object Object]
LENSES ,[object Object]
Thin Lens ,[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],Meniscus Piano-convex Double-convex
[object Object],[object Object],Meniscus Piano-concave Double-concave
Parts of Lenses ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object]
Converging lens F 1 F 2 f f Optic axis
[object Object],[object Object],F 2 F 1 f f F 2 F 1 f f Optic axis Optic axis
[object Object],[object Object],[object Object],Image formation by Thin Lenses
Real Image F 1 F 2 Object Image f f p q Optic axis
Virtual Image F 1 Object F 2 f f Image p q Optic axis
Diverging lens F 1 F 2 f f Optic axis
[object Object],[object Object],F 2 F 1 f f F 2 F 1 f f Optic axis Optic axis
Image formation by Thin Lenses F 1 F 2 Object Image f f p q The image formed by a diverging lens is always virtual. Optic axis
Lens Equation Thin Lens equation: Lateral magnification:
Problem Solving: ,[object Object],[object Object],[object Object],[object Object]
Lenses and Mirror ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

More Related Content

What's hot

Electric charges
Electric chargesElectric charges
Electric charges
Zahra
 
Mass and energy
Mass and energyMass and energy
Mass and energy
Dith Jose
 
B.tech sem i engineering physics u ii chapter 1-band theory of solid
B.tech sem i engineering physics u ii chapter 1-band theory of solidB.tech sem i engineering physics u ii chapter 1-band theory of solid
B.tech sem i engineering physics u ii chapter 1-band theory of solid
Rai University
 

What's hot (20)

Electromagnetism
ElectromagnetismElectromagnetism
Electromagnetism
 
Electric Charge and Electric Field Lecture
Electric Charge and Electric Field LectureElectric Charge and Electric Field Lecture
Electric Charge and Electric Field Lecture
 
Determination of charge to mass ratio of an electron
Determination of charge to mass ratio of an electronDetermination of charge to mass ratio of an electron
Determination of charge to mass ratio of an electron
 
Electrostatics
ElectrostaticsElectrostatics
Electrostatics
 
Dielectrics
DielectricsDielectrics
Dielectrics
 
DIELECTRICS PPT
DIELECTRICS PPTDIELECTRICS PPT
DIELECTRICS PPT
 
Electric charges
Electric chargesElectric charges
Electric charges
 
ELECTROSTATIC POTENTIAL ENERGY
ELECTROSTATIC  POTENTIAL ENERGYELECTROSTATIC  POTENTIAL ENERGY
ELECTROSTATIC POTENTIAL ENERGY
 
Coulombs Law
Coulombs LawCoulombs Law
Coulombs Law
 
Magnetism
MagnetismMagnetism
Magnetism
 
Spin of electron and proton
Spin of electron and protonSpin of electron and proton
Spin of electron and proton
 
Electric Fields
Electric FieldsElectric Fields
Electric Fields
 
Power, non conservative and conservative forces
Power, non conservative and conservative forcesPower, non conservative and conservative forces
Power, non conservative and conservative forces
 
Static Electricity
Static ElectricityStatic Electricity
Static Electricity
 
Mass and energy
Mass and energyMass and energy
Mass and energy
 
Transverse waves
Transverse wavesTransverse waves
Transverse waves
 
Semiconductor materials
Semiconductor materialsSemiconductor materials
Semiconductor materials
 
Electric Field Lines | Physics
Electric Field Lines | PhysicsElectric Field Lines | Physics
Electric Field Lines | Physics
 
B.tech sem i engineering physics u ii chapter 1-band theory of solid
B.tech sem i engineering physics u ii chapter 1-band theory of solidB.tech sem i engineering physics u ii chapter 1-band theory of solid
B.tech sem i engineering physics u ii chapter 1-band theory of solid
 
Introduction to Electrostatics
Introduction to ElectrostaticsIntroduction to Electrostatics
Introduction to Electrostatics
 

Viewers also liked

Practico de fisica ii
Practico de fisica iiPractico de fisica ii
Practico de fisica ii
josealdo2
 
C:\Fakepath\Jr
C:\Fakepath\JrC:\Fakepath\Jr
C:\Fakepath\Jr
jose ramon
 
từ-trường-của-dong-điện-khong-đổi
từ-trường-của-dong-điện-khong-đổitừ-trường-của-dong-điện-khong-đổi
từ-trường-của-dong-điện-khong-đổi
Pham van Tang
 
Discrete Structures. Lecture 1
 Discrete Structures. Lecture 1  Discrete Structures. Lecture 1
Discrete Structures. Lecture 1
Ali Usman
 
Discrete math ppt
Discrete math pptDiscrete math ppt
Discrete math ppt
msumerton
 
Solucionario fisica sears vol 2
Solucionario fisica sears vol 2Solucionario fisica sears vol 2
Solucionario fisica sears vol 2
Karl Krieger
 
Discrete Mathematics Lecture
Discrete Mathematics LectureDiscrete Mathematics Lecture
Discrete Mathematics Lecture
Genie Rose Santos
 
Campo electrico problemas resueltos-gonzalo revelo pabon
Campo electrico   problemas resueltos-gonzalo revelo pabonCampo electrico   problemas resueltos-gonzalo revelo pabon
Campo electrico problemas resueltos-gonzalo revelo pabon
GONZALO REVELO PABON . GORETTI
 
electric charge and electric field
electric charge and electric fieldelectric charge and electric field
electric charge and electric field
candice santiago
 

Viewers also liked (20)

P2 unit 3
P2 unit 3P2 unit 3
P2 unit 3
 
Practico n° 1 power point
Practico n° 1 power pointPractico n° 1 power point
Practico n° 1 power point
 
Practico de fisica ii
Practico de fisica iiPractico de fisica ii
Practico de fisica ii
 
Practica dirigida de fisica ii industrial
Practica dirigida de fisica ii industrialPractica dirigida de fisica ii industrial
Practica dirigida de fisica ii industrial
 
C:\Fakepath\Jr
C:\Fakepath\JrC:\Fakepath\Jr
C:\Fakepath\Jr
 
fisica Cap2
fisica Cap2fisica Cap2
fisica Cap2
 
từ-trường-của-dong-điện-khong-đổi
từ-trường-của-dong-điện-khong-đổitừ-trường-của-dong-điện-khong-đổi
từ-trường-của-dong-điện-khong-đổi
 
Ejercicios
EjerciciosEjercicios
Ejercicios
 
Electrostatica resueltos
Electrostatica resueltosElectrostatica resueltos
Electrostatica resueltos
 
GCSE AQA PHYSICS UNIT2
GCSE AQA PHYSICS UNIT2GCSE AQA PHYSICS UNIT2
GCSE AQA PHYSICS UNIT2
 
Physics Unit P2
Physics Unit P2Physics Unit P2
Physics Unit P2
 
Discrete Structures. Lecture 1
 Discrete Structures. Lecture 1  Discrete Structures. Lecture 1
Discrete Structures. Lecture 1
 
Igcse physics revision
Igcse physics revisionIgcse physics revision
Igcse physics revision
 
Discrete math ppt
Discrete math pptDiscrete math ppt
Discrete math ppt
 
មេរៀនៈ Data Structure and Algorithm in C/C++
មេរៀនៈ Data Structure and Algorithm in C/C++មេរៀនៈ Data Structure and Algorithm in C/C++
មេរៀនៈ Data Structure and Algorithm in C/C++
 
TALAMBUHAY NI JOSE RIZAL
TALAMBUHAY NI JOSE RIZALTALAMBUHAY NI JOSE RIZAL
TALAMBUHAY NI JOSE RIZAL
 
Solucionario fisica sears vol 2
Solucionario fisica sears vol 2Solucionario fisica sears vol 2
Solucionario fisica sears vol 2
 
Discrete Mathematics Lecture
Discrete Mathematics LectureDiscrete Mathematics Lecture
Discrete Mathematics Lecture
 
Campo electrico problemas resueltos-gonzalo revelo pabon
Campo electrico   problemas resueltos-gonzalo revelo pabonCampo electrico   problemas resueltos-gonzalo revelo pabon
Campo electrico problemas resueltos-gonzalo revelo pabon
 
electric charge and electric field
electric charge and electric fieldelectric charge and electric field
electric charge and electric field
 

Similar to Physics

Electricity & magnetism
Electricity & magnetismElectricity & magnetism
Electricity & magnetism
christopher_93
 
Electricity & magnetism
Electricity & magnetismElectricity & magnetism
Electricity & magnetism
christopher_93
 
Chapter16 : Electric Force and Field
Chapter16 : Electric Force and FieldChapter16 : Electric Force and Field
Chapter16 : Electric Force and Field
Said Azar
 

Similar to Physics (20)

Electric Fields
Electric FieldsElectric Fields
Electric Fields
 
PHYSICS 2 ELECTRICITY MAGNETISM OPTICS AND MODERN PHYSICS.pdf
PHYSICS 2 ELECTRICITY MAGNETISM OPTICS AND MODERN PHYSICS.pdfPHYSICS 2 ELECTRICITY MAGNETISM OPTICS AND MODERN PHYSICS.pdf
PHYSICS 2 ELECTRICITY MAGNETISM OPTICS AND MODERN PHYSICS.pdf
 
Electricity & magnetism
Electricity & magnetismElectricity & magnetism
Electricity & magnetism
 
1.1 electric charge
1.1 electric charge1.1 electric charge
1.1 electric charge
 
Electricity & magnetism
Electricity & magnetismElectricity & magnetism
Electricity & magnetism
 
Gen Phy 2 Q1L3 Electric Charge and Coulumb's Law.pptx
Gen Phy 2 Q1L3 Electric Charge and Coulumb's Law.pptxGen Phy 2 Q1L3 Electric Charge and Coulumb's Law.pptx
Gen Phy 2 Q1L3 Electric Charge and Coulumb's Law.pptx
 
Lecture 6 3_coulumbs_law
Lecture 6 3_coulumbs_lawLecture 6 3_coulumbs_law
Lecture 6 3_coulumbs_law
 
Electricity.pptx
Electricity.pptxElectricity.pptx
Electricity.pptx
 
Electrostatics - grade 11
Electrostatics - grade 11Electrostatics - grade 11
Electrostatics - grade 11
 
Electrostatics part 2
Electrostatics part 2Electrostatics part 2
Electrostatics part 2
 
L2 electric field, dipoles
L2  electric field, dipolesL2  electric field, dipoles
L2 electric field, dipoles
 
3913479.ppt
3913479.ppt3913479.ppt
3913479.ppt
 
Electrostatics in vacuum
Electrostatics in vacuumElectrostatics in vacuum
Electrostatics in vacuum
 
Electric Charges, Forces and Fields
Electric Charges,Forces and FieldsElectric Charges,Forces and Fields
Electric Charges, Forces and Fields
 
Electrostatics
ElectrostaticsElectrostatics
Electrostatics
 
Chapter16 : Electric Force and Field
Chapter16 : Electric Force and FieldChapter16 : Electric Force and Field
Chapter16 : Electric Force and Field
 
Electricfields
ElectricfieldsElectricfields
Electricfields
 
Physics Chapter Three - Electric Fields and Charges
Physics Chapter Three - Electric Fields and ChargesPhysics Chapter Three - Electric Fields and Charges
Physics Chapter Three - Electric Fields and Charges
 
Chapter-1 ECF.pptx
Chapter-1 ECF.pptxChapter-1 ECF.pptx
Chapter-1 ECF.pptx
 
5.1
5.15.1
5.1
 

Recently uploaded

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 

Recently uploaded (20)

Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Role Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxRole Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptx
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 

Physics

  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7. + + + + + + + + + + + + + + + + + + F F F Repulsion Attraction F
  • 8.
  • 9.
  • 10.
  • 11.
  • 12. CHARGING There are different ways of making an object positively and negatively charged.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20. State that the Force between two charges is proportional to the product of the charges and is inversely proportional to the square of the distance between them. COULOMB’ S LAW
  • 21.
  • 22.
  • 23.
  • 25.
  • 26.
  • 27.
  • 29.
  • 30.
  • 31.
  • 32.
  • 34. Where: E = Electric field Q = Charge r = radius of the field k = proportionality constant Electric field equation
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47. No enclosed charge (Zero flux) Positive charge enclosed (Positive flux) Negative charge enclosed (Negative flux)
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.
  • 74.
  • 76.
  • 77.
  • 78.
  • 79.
  • 80.
  • 81.
  • 82.
  • 83.
  • 84. ELECTRIC CURRENT A flow of charge from one place to another. The unit is Ampere , which equal to a flow of 1 coulomb per second.
  • 85.
  • 86.
  • 87.
  • 88.
  • 89.
  • 90. - - - - - - t = t 0 t = t 0 + 1 s plane plane
  • 91.
  • 92.
  • 93.
  • 94. I 0 I 1 I 2 I 0 = I 1 + I 2
  • 95.
  • 96.
  • 97.
  • 98.
  • 99.
  • 100.
  • 101.
  • 102.
  • 104.
  • 105. 0.0038 1.6 x 10-8 Silver 0.0036 11 x 10-8 Platinum 0.00088 98 x 10-8 Mercury 0.0043 21 x 10-8 Lead 0.005 12 x 10-8 Iron 0.0039 1.7 x 10-8 Copper 0.0039 2.6 x 10-8 Aluminum α (k -1 ) ρ (Ω.m) Substance and their temperature coefficient. Approximate resistivities (at 20 0 C)
  • 106.
  • 107.
  • 108.
  • 109.
  • 110.
  • 111.
  • 112.
  • 113.
  • 114.
  • 115.
  • 116. Current Potential Difference graph of a 1000 W resistor , an Ohmic device. -4 -2 0 +2 +4 -2 +2 0 Current (mA) Potential Difference (V)
  • 117. Current vs Potential Difference graph of a pn junction diode , a non-ohmic device. -4 -2 0 +2 +4 -2 +2 0 Current (mA) Potential Difference (V)
  • 118.
  • 119.
  • 120.
  • 121.
  • 122.
  • 123.
  • 124.
  • 125. Resistors in Single Loop Circuit
  • 126.
  • 127. Equivalent resistance in a Series Circuit
  • 128.
  • 129.
  • 130. Equivalent resistance in a Parallel Circuit
  • 131.
  • 132.
  • 133. POWER IN CIRCUITS
  • 134.
  • 135.
  • 136.
  • 137.
  • 138.
  • 139.
  • 140. What happen when one component in a series circuit was cut-off?
  • 141. What happen when one component in a multiloop circuit was cut-off?
  • 142.
  • 143.
  • 144.
  • 145.
  • 146.
  • 147. RC CIRCUIT (Resistor and Capacitor in a circuit)
  • 148.
  • 149. Charging a capacitor R + - C S 1 S 2 ε + - I I I I I closed open Where: V R = Potential difference across the resistor. V C = Potential difference across the capacitor. I
  • 150.
  • 151.
  • 152.
  • 153.
  • 154.
  • 156.
  • 157.
  • 158.
  • 159. N S Magnetic field Magnetic field
  • 160.
  • 161.
  • 162. N N N S S S N N N S S S REPULSION REPULSION ATTRACTION
  • 163.
  • 164.
  • 165.
  • 166.
  • 167.
  • 168.
  • 169.
  • 170.
  • 171.
  • 172.
  • 173.
  • 174.
  • 175. Conductors with Current
  • 176.
  • 177.
  • 178.
  • 179.
  • 180.
  • 181.
  • 182.
  • 184.
  • 185.
  • 186.
  • 187.
  • 188.
  • 189.
  • 190.
  • 192.
  • 193.
  • 194.
  • 195.
  • 196.
  • 197.
  • 198.
  • 199.
  • 200.
  • 201.
  • 202.
  • 203. β β β β A A A β β
  • 204.
  • 205. Note: Changing magnetic field generates electric field. N S
  • 206. Law of Induction
  • 207.
  • 208.
  • 209.
  • 210.
  • 211.
  • 212.
  • 213.
  • 214.
  • 215.
  • 216.
  • 217.
  • 218.
  • 219.
  • 220.
  • 221.
  • 222.
  • 223.
  • 224.
  • 225.
  • 226.
  • 228.
  • 229.
  • 230.
  • 231.
  • 232.
  • 233.
  • 234.
  • 235.
  • 236.
  • 237.
  • 238. input output Primary winding Secondary winding core Magnetic flux Transformer
  • 239.
  • 240.
  • 241.
  • 242.
  • 243.
  • 245.
  • 246.
  • 247. Wave propagation Wave propagation Wave propagation Particle motion Particle motion Particle motion Undisturbed position Undisturbed position Undisturbed position
  • 248.
  • 249. Wave propagation Wave propagation Wave propagation Particle motion Particle motion Particle motion Undisturbed position Undisturbed position Undisturbed position
  • 250.
  • 251.
  • 252.
  • 253.
  • 254.
  • 255. λ λ A A crest trough
  • 256. m/s v speed Meter (m) A amplitude /s, s -1 Hertz (Hz) f frequency Second (s) T Period Meter (m) λ Wavelength relation unit Symbol Quantity
  • 257.
  • 258.
  • 259.
  • 260.
  • 261.
  • 262.
  • 263.
  • 264.
  • 265.
  • 266.
  • 267. Speed in a vacuum Where: c= speed of the electromagnetic waves (m/s) E=electric field (V/m) β = magnetic field (Weber/m 2 ) ε o = permitivity constant μ o = permeability constant
  • 268.
  • 269.
  • 270.
  • 271.
  • 273.
  • 274.
  • 275.
  • 276. θ i θ r θ i = 0 θ r = 0 Mirror A The light is parallel to The plane of mirror. No Reflection. Mirror B Light is reflected at an angle. θ i = θ r A B Mirror C Incident and reflected Light are both perpendicular To the plane of mirror. θ i - θ r =0 C
  • 277.
  • 278. AIR WATER Incident ray Refracted ray θ i θ r
  • 279.
  • 280.
  • 281.
  • 282.
  • 283.
  • 284.
  • 285.
  • 286.
  • 287.
  • 288.
  • 289.
  • 290.
  • 291.
  • 292. V Mirror C F For Concave Mirror Principal axis R f Object
  • 293. V Mirror C F For Convex Mirror Principal axis f Object
  • 294.
  • 295. V Mirror C For Concave Mirror Principal axis p f Object q F Image
  • 296.
  • 297. RDM V Mirror C Principal axis Y F Image 1 st Ray 2 nd Ray 3 rd Ray Object Concave Mirror
  • 298.
  • 299.
  • 300.
  • 301.
  • 302.
  • 303.
  • 304.
  • 305. Converging lens F 1 F 2 f f Optic axis
  • 306.
  • 307.
  • 308. Real Image F 1 F 2 Object Image f f p q Optic axis
  • 309. Virtual Image F 1 Object F 2 f f Image p q Optic axis
  • 310. Diverging lens F 1 F 2 f f Optic axis
  • 311.
  • 312. Image formation by Thin Lenses F 1 F 2 Object Image f f p q The image formed by a diverging lens is always virtual. Optic axis
  • 313. Lens Equation Thin Lens equation: Lateral magnification:
  • 314.
  • 315.