SlideShare ist ein Scribd-Unternehmen logo
1 von 11
Downloaden Sie, um offline zu lesen
Additional Mathematics Module Form 4
Chapter 3- Quadratic Functions SMK Agama Arau, Perlis
Page | 30
CHAPTER 3- QUADRATIC FUNCTIONS
3.1 INTRODUCTION
The general form of a quadratic function is cbxaxxf ++= 2
)( ; a, b, c are constants and a ≠ 0
Similarities and differences between Quadratic Functions and Quadratic Equations
Quadratic Functions Quadratic Equations
General form is cbxaxxf ++= 2
)( General form is 02
=++ cbxax
a, b, c are constants a, b, c are constants
x is independent variable while )(xf is
dependent variable
x is unknown
The highest power of the x is 2 The highest power of the x is 2
Involves one variable only Involves one variable only
When 0)( =xf , quadratic functions quadratic equations
3.1.1 Recognizing a quadratic function
(i) 432)( 2
−+= xxxf is a quadratic function because the highest power of the x is 2 and Involves one
variable only.
(ii) 23)( += xxf is not a quadratic function because the highest power of the x is 1, not 2.
(iii) 243)( 2
−+= yxxf is a not quadratic function because it involves two variables.
* Note: The proper way to denote a quadratic function is
cbxaxxf ++→ 2
: . cbxaxxf ++= 2
)( is actually the value (or image) f for a given value of x.
3.2 MINIMUM VALUE AND MAXIMUM VALUE OF A QUADRATIC FUNCTION
1. Do you know that a non-zero number when squared will be always positive.
2. So the minimum value of squared number is 0.
So, what is the minimum value when we find the square of a number?
Minimum value of x2
is 0.This is obtained when x = 0.
For example 4)1()( 2
−−= xxf .
The minimum value for )(xf is 4−
when 01 =−x
1=x .
The minimum value of a squared number is
zero. When 0(........)2
= , we would know
the minimum value for the function.
Additional Mathematics Module Form 4
Chapter 3- Quadratic Functions SMK Agama Arau, Perlis
Page | 31
The minimum value of x2
+ 3 is 0 + 3 = 3
the minimum value of x2
– 8 is 0 – 8 = – 8
the minimum value of x2
+ 100 is 0 + 100 = 100
The minimum value of x2
is 0,
It means 02
≥x
So,
02
≤− x
Hence the maximum value of – x2
is 0
the maximum value of -x2
+ 5 is -0 + 5=5
the maximum value of –x2
– 3 is -0 + 3 =– 3.
For example 4)1()( 2
−−−= xxf .
The maximum value for )(xf is 4−
when 01 =−x
1=x .
We can state the minimum value of a quadratic function in the form f(x) = a (x + p)2
+ q , a > 0. From
that,
We can also state the Maximum Value of a Quadratic Function in the form
f(x) = a (x + p)2
+ q , a < 0
Example 1:
Express 43)( 2
−−= xxxf in form f(x) = a (x + p)2
+ q. Hence, find the coordinates of the turning point
of the graph.
43)( 2
−−= xxxf
4)
2
3
()
2
3
(3 222
−−−−+−= xx
4
4
9
)
2
3
( 2
−−−= x
4
25
)
2
3
( 2
−−= x
The minimum value for )(xf is
4
25
−
when 0
2
3
=−x (
2
3
,
4
25
− )
2
3
=x
When 0(........)2
= , we would know the
minimum or maximum value for the
function. The minimum value of a squared
number is zero.
This is in the form a (x + p)2
+ q. The value
of a is 1.
The coordinates of the turning point means
the coordinates of the minimum of maximum
point for the function. For this question, it is
minimum point because a > 0
f(x) is the value for y. This is because f(x) is
the y-axis.
The minimum value of a squared number is
zero. When 0(........)2
= , we would know
the minimum value for the function.
If the value of a of a quadratic function is greater than zero, then
the function has a minimum point.
If the value of a of a quadratic function is less than zero, then the
function has a maximum point.
Additional Mathematics Module Form 4
Chapter 3- Quadratic Functions SMK Agama Arau, Perlis
Page | 32
Example 2:
Express 1482)( 2
−+−= xxxf in form f(x) = a (x + p)2
+ q. Hence, find the coordinates of the turning
point of the graph.
1482)( 2
−+−= xxxf
]7)2()2(4[2 222
+−−−+−−= xx
]74)2[(2 2
+−−−= x
]3)2[(2 2
+−−= x
6)2(2 2
−−−= x
The maximum value for 6)( −=xf
when 02 =−x ( 2, -6)
2=x
EXERCISE 3.2
1. State the minimum value of the following function and the corresponding value of x
(a) 8)1()( 2
−+= xxf
(b) 152)( 2
−+= xxxg
2. State the maximum value of the following function and the corresponding value of x
(a) 342)( 2
++−= xxxf
(b) 52)( 2
−+−= xxxg
3. Given that the minimum value of the quadratic function qpxxxf ++= 2
2)( is 1 when 3−=x , find
the value of p and of q.
This is in the form a (x + p)2
+ q. The value
of a is -2 which is less than 0.
The coordinates of the turning point means
the coordinates of the minimum of maximum
point for the function. For this question, it is
maximum point because a < 0
Additional Mathematics Module Form 4
Chapter 3- Quadratic Functions SMK Agama Arau, Perlis
Page | 33
3.3 GRAPH OF QUADRATIC FUNCTIONS
1. To express quadratic function f(x) = ax2
+ bx + c in the form a(x+ p)2
+ q, we have to use completing
the square that we have learned in chapter 2.
2. From the minimum point of a graph, we can know the equation of the axis of symmetry for the graph.
The equation is based on the value of x of the coordinates of the turning point.
3. If the turning point is (2,3), hence the equation of axis of symmetry is 2=x .
3.3.1 Basic Equation of quadratic function and its graph
Example 1:
2
)( xxf =
x -2 -1 0 1 2
f(x) 4 1 0 1 4
Example 2:
2
)( xxf −=
x -2 -1 0 1 2
f(x) -4 -1 0 -1 -4
a = 1, b = 0 and c = 0
a = −1, b = 0 and c = 0
By using the information given,
sketch the graph
By using the information given,
sketch the graph.
Additional Mathematics Module Form 4
Chapter 3- Quadratic Functions SMK Agama Arau, Perlis
Page | 34
Example 3:
Sketch the graph of 34)( 2
+−= xxxf
34)( 2
+−= xxxf
3)2()2(4)( 222
+−−−+−= xxxf
34)2()( 2
+−−= xxf
1)2()( 2
−−= xxf
The minimum value of 3)( =xf
when 02 =−x
2=x
Minimum point is (2,3).
0=x ,
3)0(4)0()0( 2
+−=f
3=
The point is (0,3)
Example 4:
Express the function 2
241)( xxxf −+= in the form of a(x+ p)2
+ q. Hence
(a) state the minimum or maximum point.
(b) the equation of axis 0f symmetry
)
2
1
2(2)( 2
−−−= xxxf
]
2
1
)1()1(2[2 222
−−−−+−−= xx
a = 1, b = −4 and c = 3
a = −2, b = 4 and c = 1
By using the information given,
sketch the graph.
Additional Mathematics Module Form 4
Chapter 3- Quadratic Functions SMK Agama Arau, Perlis
Page | 35
]
2
1
1)1[(2 2
−−−−= x
]
2
1
1)1[(2 2
−−−−= x
]
2
1
1)1[(2 2
−−−−= x
]
2
3
)1[(2 2
−−−= x
3)1[(2 2
+−−= x
The maximum value of 3)( =xf
when 01 =−x
1=x
So, the maximum point is (1, 3).
The equation of axis of symmetry is 1=x .
EXERCISE 3.3
1. Express the quadratic function 13122
+−= xxy in the form of cbxy ++= 2
)( . State the minimum
point and the y-intercept. Hence, sketch the graph of the function y.
2. Express the quadratic function xxxf 42)( 2
−−= in the form of 2
)()( pxqxf +−= . Determine
the maximum point and the y-intercept. Hence, sketch the graph of the function f(x).
3. Given that the curve 2
)2( nxmy +−= has a maximum point (1, 4), find the values of m and of n.
Hence, sketch the curve.
4. For the quadratic function 2
( ) 2 3 2g x x x= − + , find the equation of the axis of symmetry.
3.4 RELATIONSHIP BETWEEN “b2
– 4ac” AND THE POSITION OF GRAPH f(x)= y
1-If 042
>− acb ,the graph cuts x-axis at two different points
f(x) f(x)
x x
a < 0, so it is maximum value
a > 0 a < 0
Additional Mathematics Module Form 4
Chapter 3- Quadratic Functions SMK Agama Arau, Perlis
Page | 36
1-If 042
=− acb ,the graph touches the x-axis
f(x) f(x)
x
x
1-If 042
<− acb ,the graph does not touch the x-axis
f(x) f(x)
x
x
3.4 QUADRATIC INEQUALITIES
In Form Three, we have learned about linear inequalities. For example when 01 >−x , 1>x .
Example:
Given 01 >−x . Find the range of values of x.
01≥−x
1≥x
•
1
From the line graph, we know the range of values of x.
a > 0 a < 0
a > 0 a < 0
Curve lies below the x- axis
because f(x) is always negative
Curve lies above the x-axis
because f(x) is always positive.
Additional Mathematics Module Form 4
Chapter 3- Quadratic Functions SMK Agama Arau, Perlis
Page | 37
To solve the quadratic inequality for example 0)3)(1( >−+ xx , we use the graph sketching method.
If f(x) > 0, the range of values of x:
f(x)
x
If f(x) < 0, the range of values of x:
f(x)
x
Example 1:
Find the range of x if 0364 2
>−m
Solution:
0364 2
>−m
092
>−m
Let
092
=−m
92
=m
3±=m
y
-3 3 m
If 092
>−m , the range of values of m is 3−<m , 3>m .
Additional Mathematics Module Form 4
Chapter 3- Quadratic Functions SMK Agama Arau, Perlis
Page | 38
Example 2:
Find the range of the values of k if the equation 06522
=−−+ kkxx has two real roots.
Solution:
two real roots also means two different roots:
042
>− acb
0)65)(1(4)2( 2
>−−− kk
0)65(44 2
>−−− kk
024204 2
>++ kk
0652
>++ kk
Let
0652
=++ kk
0)3)(2( =++ kk
02 =+k or 03 =+k
2−=k or 3−=k
y
-3 -2 k
If 0652
>++ kk , the range of values of k is 3−<k , 2−>k .
Example 3:
Find the range of the values of x for which if the equation 15)2( ≤+xx
Solution:
15)2( ≤+xx
01522
≤−+ xx
Let
01522
=−+ xx
0)3)(5( =−+ xx
05 =+x or 03 =−x
5−=k or 3=x
652
++= kky
Additional Mathematics Module Form 4
Chapter 3- Quadratic Functions SMK Agama Arau, Perlis
Page | 39
y
-5 -2 x
If 01522
≤−+ xx , the range of values of x is 35 ≤≤− x .
EXERCISE 3.3
1. Find the range of values of x for each of the following inequalities.
(a) 20)1( <+xx
(b) xxx 232
<−
(c) 2)57( >− xx
2. Given that xxy 32 2
+= , find the range of values of x for which y > 9.
3. Find the range of values of k given that 02)1(2
=++−+ kxkx has two different roots.
4. If the straight line ky = , where k is a constant, does not intersect the curve 562 2
+−= xxy , show
that
2
1
<k .
CHAPTER REVIEW EXERCISE
1. The graph of the function 2
( ) 2( )f x p q x= − − has a maximum point at
1 5
,
2 2
 
− 
 
. Find the value
of p and q.
2. Given the quadratic function 362 2
−+−= xxy , express f(x) in the form rqxp ++ 2
)( , where p, q
and r are constants. Hence, sketch the graph of the function y.
3 Given that the straight line nxy −= 2 cuts the curve 22
−+= nxxy at two points, find the range of
the values of n.
4. The quadratic equation 542
−=− pxpx , where 0≠p , has real and different roots. Find the range
of values of p.
5. By expressing the function 563)( 2
+−= xxxf in the form qpxa +− 2
)( , or otherwise, find the
minimum value of f(x).
6. Given that the quadratic function qxpxxf −+= 4)( 2
, where p and q are constants .Given that the
curve )(xfy = has a maximum point (-1, 5).State the values of p and q.
1522
−+= xxy
Additional Mathematics Module Form 4
Chapter 3- Quadratic Functions SMK Agama Arau, Perlis
Page | 40
7. Diagram shows the graph of a quadratic function )(xfy = . The straight line 9−=y is tangent to
the curve )(xfy = .
(a) Write the equation of the axis of symmetry of the curve.
(b) Express f(x) in the form qpx ++ 2
)( , where p and q are constants.
8. Diagram below shows the graph of the function qxxpy ++−= 2)1( 2
.
(a) State the value of q.
(b) Find the range of values of p.
9. Find the range of values of k given that the straight line 1=+ yx does not intersect the curve
kyx =+ 22
.
y
x
0
2−
qxxpy ++−= 2)1( 2
0 x
y
1 7
9−=y

Weitere ähnliche Inhalte

Was ist angesagt?

Chapter 4 simultaneous equations
Chapter 4  simultaneous equationsChapter 4  simultaneous equations
Chapter 4 simultaneous equationsatiqah ayie
 
Notes and Formulae Mathematics SPM
Notes and Formulae Mathematics SPM Notes and Formulae Mathematics SPM
Notes and Formulae Mathematics SPM Zhang Ewe
 
Matematik tambahan kertas 2
Matematik tambahan kertas 2Matematik tambahan kertas 2
Matematik tambahan kertas 2Nasran Syahiran
 
Chapter 9 differentiation
Chapter 9  differentiationChapter 9  differentiation
Chapter 9 differentiationatiqah ayie
 
Matematik tambahan tingkatan 4 fungsi kuadratik {add math form 4 - quadract...
Matematik tambahan tingkatan 4   fungsi kuadratik {add math form 4 - quadract...Matematik tambahan tingkatan 4   fungsi kuadratik {add math form 4 - quadract...
Matematik tambahan tingkatan 4 fungsi kuadratik {add math form 4 - quadract...Hafidz Sa
 
Chapter 11 index number
Chapter 11  index numberChapter 11  index number
Chapter 11 index numberatiqah ayie
 
Spm Add Maths Formula List Form4
Spm Add Maths Formula List Form4Spm Add Maths Formula List Form4
Spm Add Maths Formula List Form4guest76f49d
 
Spm physics-formula-list-form4
Spm physics-formula-list-form4Spm physics-formula-list-form4
Spm physics-formula-list-form4Salty Tay Xian
 
Spm chemistry formula list form 4
Spm chemistry formula list form 4Spm chemistry formula list form 4
Spm chemistry formula list form 4Zhang Ewe
 
Format peperiksaan spm add math
Format peperiksaan spm add mathFormat peperiksaan spm add math
Format peperiksaan spm add mathSAADIAHNOR
 
Rumus matematik-tambahan
Rumus matematik-tambahanRumus matematik-tambahan
Rumus matematik-tambahanShuYe Lee
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Fatini Adnan
 
Chemistry Note Form 4 & 5
Chemistry Note Form 4 & 5Chemistry Note Form 4 & 5
Chemistry Note Form 4 & 5Rossita Radzak
 
F4 ADD MATH MODULE 2021.pdf
F4 ADD MATH MODULE 2021.pdfF4 ADD MATH MODULE 2021.pdf
F4 ADD MATH MODULE 2021.pdfSalmiahSamsudin
 
NOTE MATH FORM 3 - INDICES
NOTE MATH FORM 3 - INDICESNOTE MATH FORM 3 - INDICES
NOTE MATH FORM 3 - INDICESNad0209
 
Chapter 10 solution of triangles
Chapter 10  solution of trianglesChapter 10  solution of triangles
Chapter 10 solution of trianglesatiqah ayie
 
Asas pembezaan
Asas pembezaanAsas pembezaan
Asas pembezaandxsuki
 
MT T4 (Bab 3: Fungsi Kuadratik)
MT T4 (Bab 3: Fungsi Kuadratik)MT T4 (Bab 3: Fungsi Kuadratik)
MT T4 (Bab 3: Fungsi Kuadratik)hasnulslides
 

Was ist angesagt? (20)

Chapter 4 simultaneous equations
Chapter 4  simultaneous equationsChapter 4  simultaneous equations
Chapter 4 simultaneous equations
 
Notes and Formulae Mathematics SPM
Notes and Formulae Mathematics SPM Notes and Formulae Mathematics SPM
Notes and Formulae Mathematics SPM
 
Matematik tambahan kertas 2
Matematik tambahan kertas 2Matematik tambahan kertas 2
Matematik tambahan kertas 2
 
Chapter 9 differentiation
Chapter 9  differentiationChapter 9  differentiation
Chapter 9 differentiation
 
Matematik tambahan tingkatan 4 fungsi kuadratik {add math form 4 - quadract...
Matematik tambahan tingkatan 4   fungsi kuadratik {add math form 4 - quadract...Matematik tambahan tingkatan 4   fungsi kuadratik {add math form 4 - quadract...
Matematik tambahan tingkatan 4 fungsi kuadratik {add math form 4 - quadract...
 
Chapter 11 index number
Chapter 11  index numberChapter 11  index number
Chapter 11 index number
 
Spm Add Maths Formula List Form4
Spm Add Maths Formula List Form4Spm Add Maths Formula List Form4
Spm Add Maths Formula List Form4
 
Spm physics-formula-list-form4
Spm physics-formula-list-form4Spm physics-formula-list-form4
Spm physics-formula-list-form4
 
Linear law
Linear lawLinear law
Linear law
 
Spm chemistry formula list form 4
Spm chemistry formula list form 4Spm chemistry formula list form 4
Spm chemistry formula list form 4
 
Format peperiksaan spm add math
Format peperiksaan spm add mathFormat peperiksaan spm add math
Format peperiksaan spm add math
 
Rumus matematik-tambahan
Rumus matematik-tambahanRumus matematik-tambahan
Rumus matematik-tambahan
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)
 
Chemistry Note Form 4 & 5
Chemistry Note Form 4 & 5Chemistry Note Form 4 & 5
Chemistry Note Form 4 & 5
 
Skills In Add Maths
Skills In Add MathsSkills In Add Maths
Skills In Add Maths
 
F4 ADD MATH MODULE 2021.pdf
F4 ADD MATH MODULE 2021.pdfF4 ADD MATH MODULE 2021.pdf
F4 ADD MATH MODULE 2021.pdf
 
NOTE MATH FORM 3 - INDICES
NOTE MATH FORM 3 - INDICESNOTE MATH FORM 3 - INDICES
NOTE MATH FORM 3 - INDICES
 
Chapter 10 solution of triangles
Chapter 10  solution of trianglesChapter 10  solution of triangles
Chapter 10 solution of triangles
 
Asas pembezaan
Asas pembezaanAsas pembezaan
Asas pembezaan
 
MT T4 (Bab 3: Fungsi Kuadratik)
MT T4 (Bab 3: Fungsi Kuadratik)MT T4 (Bab 3: Fungsi Kuadratik)
MT T4 (Bab 3: Fungsi Kuadratik)
 

Ähnlich wie Chapter 3 quadratc functions

Module 3 quadratic functions
Module 3   quadratic functionsModule 3   quadratic functions
Module 3 quadratic functionsdionesioable
 
Quadraticfunctionpresentation 100127142417-phpapp02
Quadraticfunctionpresentation 100127142417-phpapp02Quadraticfunctionpresentation 100127142417-phpapp02
Quadraticfunctionpresentation 100127142417-phpapp02Vine Gonzales
 
Form 4 Add Maths Note
Form 4 Add Maths NoteForm 4 Add Maths Note
Form 4 Add Maths NoteChek Wei Tan
 
Form 4-add-maths-note
Form 4-add-maths-noteForm 4-add-maths-note
Form 4-add-maths-notejacey tan
 
Quadratic Function Presentation
Quadratic Function PresentationQuadratic Function Presentation
Quadratic Function PresentationRyanWatt
 
Modul 3 quadratic function
Modul 3 quadratic functionModul 3 quadratic function
Modul 3 quadratic functionHafidz Mukhtar
 
graphs of functions 2
 graphs of functions 2 graphs of functions 2
graphs of functions 2larasati06
 
Mathematics 9 Quadratic Functions (Module 1)
Mathematics 9 Quadratic Functions (Module 1)Mathematics 9 Quadratic Functions (Module 1)
Mathematics 9 Quadratic Functions (Module 1)Juan Miguel Palero
 
Assignment chapters 3 to 7
Assignment chapters 3 to 7Assignment chapters 3 to 7
Assignment chapters 3 to 7KarunaGupta1982
 
Module 2 linear functions
Module 2   linear functionsModule 2   linear functions
Module 2 linear functionsdionesioable
 
Module 1 quadratic functions
Module 1   quadratic functionsModule 1   quadratic functions
Module 1 quadratic functionsdionesioable
 
Lesson 2_Eval Functions.pptx
Lesson 2_Eval Functions.pptxLesson 2_Eval Functions.pptx
Lesson 2_Eval Functions.pptxAlfredoLabador
 
20200830230859_PPT4-Lines, Parabolas and Systems.pptx
20200830230859_PPT4-Lines, Parabolas and Systems.pptx20200830230859_PPT4-Lines, Parabolas and Systems.pptx
20200830230859_PPT4-Lines, Parabolas and Systems.pptxConanEdogawaShinichi
 
How to graph Functions
How to graph FunctionsHow to graph Functions
How to graph Functionscoolhanddav
 

Ähnlich wie Chapter 3 quadratc functions (20)

Module 3 quadratic functions
Module 3   quadratic functionsModule 3   quadratic functions
Module 3 quadratic functions
 
Quadraticfunctionpresentation 100127142417-phpapp02
Quadraticfunctionpresentation 100127142417-phpapp02Quadraticfunctionpresentation 100127142417-phpapp02
Quadraticfunctionpresentation 100127142417-phpapp02
 
Grph quad fncts
Grph quad fnctsGrph quad fncts
Grph quad fncts
 
Function
FunctionFunction
Function
 
Quadratic
QuadraticQuadratic
Quadratic
 
Form 4 Add Maths Note
Form 4 Add Maths NoteForm 4 Add Maths Note
Form 4 Add Maths Note
 
Form 4-add-maths-note
Form 4-add-maths-noteForm 4-add-maths-note
Form 4-add-maths-note
 
Quadratic Function Presentation
Quadratic Function PresentationQuadratic Function Presentation
Quadratic Function Presentation
 
Modul 3 quadratic function
Modul 3 quadratic functionModul 3 quadratic function
Modul 3 quadratic function
 
graphs of functions 2
 graphs of functions 2 graphs of functions 2
graphs of functions 2
 
Mathematics 9 Quadratic Functions (Module 1)
Mathematics 9 Quadratic Functions (Module 1)Mathematics 9 Quadratic Functions (Module 1)
Mathematics 9 Quadratic Functions (Module 1)
 
Assignment chapters 3 to 7
Assignment chapters 3 to 7Assignment chapters 3 to 7
Assignment chapters 3 to 7
 
Module 2 linear functions
Module 2   linear functionsModule 2   linear functions
Module 2 linear functions
 
Module 1 quadratic functions
Module 1   quadratic functionsModule 1   quadratic functions
Module 1 quadratic functions
 
QUADRATIC FUNCTIONS
QUADRATIC FUNCTIONSQUADRATIC FUNCTIONS
QUADRATIC FUNCTIONS
 
Quadratic function
Quadratic functionQuadratic function
Quadratic function
 
Lesson 2_Eval Functions.pptx
Lesson 2_Eval Functions.pptxLesson 2_Eval Functions.pptx
Lesson 2_Eval Functions.pptx
 
Modeling quadratic fxns
Modeling quadratic fxnsModeling quadratic fxns
Modeling quadratic fxns
 
20200830230859_PPT4-Lines, Parabolas and Systems.pptx
20200830230859_PPT4-Lines, Parabolas and Systems.pptx20200830230859_PPT4-Lines, Parabolas and Systems.pptx
20200830230859_PPT4-Lines, Parabolas and Systems.pptx
 
How to graph Functions
How to graph FunctionsHow to graph Functions
How to graph Functions
 

Chapter 3 quadratc functions

  • 1. Additional Mathematics Module Form 4 Chapter 3- Quadratic Functions SMK Agama Arau, Perlis Page | 30 CHAPTER 3- QUADRATIC FUNCTIONS 3.1 INTRODUCTION The general form of a quadratic function is cbxaxxf ++= 2 )( ; a, b, c are constants and a ≠ 0 Similarities and differences between Quadratic Functions and Quadratic Equations Quadratic Functions Quadratic Equations General form is cbxaxxf ++= 2 )( General form is 02 =++ cbxax a, b, c are constants a, b, c are constants x is independent variable while )(xf is dependent variable x is unknown The highest power of the x is 2 The highest power of the x is 2 Involves one variable only Involves one variable only When 0)( =xf , quadratic functions quadratic equations 3.1.1 Recognizing a quadratic function (i) 432)( 2 −+= xxxf is a quadratic function because the highest power of the x is 2 and Involves one variable only. (ii) 23)( += xxf is not a quadratic function because the highest power of the x is 1, not 2. (iii) 243)( 2 −+= yxxf is a not quadratic function because it involves two variables. * Note: The proper way to denote a quadratic function is cbxaxxf ++→ 2 : . cbxaxxf ++= 2 )( is actually the value (or image) f for a given value of x. 3.2 MINIMUM VALUE AND MAXIMUM VALUE OF A QUADRATIC FUNCTION 1. Do you know that a non-zero number when squared will be always positive. 2. So the minimum value of squared number is 0. So, what is the minimum value when we find the square of a number? Minimum value of x2 is 0.This is obtained when x = 0. For example 4)1()( 2 −−= xxf . The minimum value for )(xf is 4− when 01 =−x 1=x . The minimum value of a squared number is zero. When 0(........)2 = , we would know the minimum value for the function.
  • 2. Additional Mathematics Module Form 4 Chapter 3- Quadratic Functions SMK Agama Arau, Perlis Page | 31 The minimum value of x2 + 3 is 0 + 3 = 3 the minimum value of x2 – 8 is 0 – 8 = – 8 the minimum value of x2 + 100 is 0 + 100 = 100 The minimum value of x2 is 0, It means 02 ≥x So, 02 ≤− x Hence the maximum value of – x2 is 0 the maximum value of -x2 + 5 is -0 + 5=5 the maximum value of –x2 – 3 is -0 + 3 =– 3. For example 4)1()( 2 −−−= xxf . The maximum value for )(xf is 4− when 01 =−x 1=x . We can state the minimum value of a quadratic function in the form f(x) = a (x + p)2 + q , a > 0. From that, We can also state the Maximum Value of a Quadratic Function in the form f(x) = a (x + p)2 + q , a < 0 Example 1: Express 43)( 2 −−= xxxf in form f(x) = a (x + p)2 + q. Hence, find the coordinates of the turning point of the graph. 43)( 2 −−= xxxf 4) 2 3 () 2 3 (3 222 −−−−+−= xx 4 4 9 ) 2 3 ( 2 −−−= x 4 25 ) 2 3 ( 2 −−= x The minimum value for )(xf is 4 25 − when 0 2 3 =−x ( 2 3 , 4 25 − ) 2 3 =x When 0(........)2 = , we would know the minimum or maximum value for the function. The minimum value of a squared number is zero. This is in the form a (x + p)2 + q. The value of a is 1. The coordinates of the turning point means the coordinates of the minimum of maximum point for the function. For this question, it is minimum point because a > 0 f(x) is the value for y. This is because f(x) is the y-axis. The minimum value of a squared number is zero. When 0(........)2 = , we would know the minimum value for the function. If the value of a of a quadratic function is greater than zero, then the function has a minimum point. If the value of a of a quadratic function is less than zero, then the function has a maximum point.
  • 3. Additional Mathematics Module Form 4 Chapter 3- Quadratic Functions SMK Agama Arau, Perlis Page | 32 Example 2: Express 1482)( 2 −+−= xxxf in form f(x) = a (x + p)2 + q. Hence, find the coordinates of the turning point of the graph. 1482)( 2 −+−= xxxf ]7)2()2(4[2 222 +−−−+−−= xx ]74)2[(2 2 +−−−= x ]3)2[(2 2 +−−= x 6)2(2 2 −−−= x The maximum value for 6)( −=xf when 02 =−x ( 2, -6) 2=x EXERCISE 3.2 1. State the minimum value of the following function and the corresponding value of x (a) 8)1()( 2 −+= xxf (b) 152)( 2 −+= xxxg 2. State the maximum value of the following function and the corresponding value of x (a) 342)( 2 ++−= xxxf (b) 52)( 2 −+−= xxxg 3. Given that the minimum value of the quadratic function qpxxxf ++= 2 2)( is 1 when 3−=x , find the value of p and of q. This is in the form a (x + p)2 + q. The value of a is -2 which is less than 0. The coordinates of the turning point means the coordinates of the minimum of maximum point for the function. For this question, it is maximum point because a < 0
  • 4. Additional Mathematics Module Form 4 Chapter 3- Quadratic Functions SMK Agama Arau, Perlis Page | 33 3.3 GRAPH OF QUADRATIC FUNCTIONS 1. To express quadratic function f(x) = ax2 + bx + c in the form a(x+ p)2 + q, we have to use completing the square that we have learned in chapter 2. 2. From the minimum point of a graph, we can know the equation of the axis of symmetry for the graph. The equation is based on the value of x of the coordinates of the turning point. 3. If the turning point is (2,3), hence the equation of axis of symmetry is 2=x . 3.3.1 Basic Equation of quadratic function and its graph Example 1: 2 )( xxf = x -2 -1 0 1 2 f(x) 4 1 0 1 4 Example 2: 2 )( xxf −= x -2 -1 0 1 2 f(x) -4 -1 0 -1 -4 a = 1, b = 0 and c = 0 a = −1, b = 0 and c = 0 By using the information given, sketch the graph By using the information given, sketch the graph.
  • 5. Additional Mathematics Module Form 4 Chapter 3- Quadratic Functions SMK Agama Arau, Perlis Page | 34 Example 3: Sketch the graph of 34)( 2 +−= xxxf 34)( 2 +−= xxxf 3)2()2(4)( 222 +−−−+−= xxxf 34)2()( 2 +−−= xxf 1)2()( 2 −−= xxf The minimum value of 3)( =xf when 02 =−x 2=x Minimum point is (2,3). 0=x , 3)0(4)0()0( 2 +−=f 3= The point is (0,3) Example 4: Express the function 2 241)( xxxf −+= in the form of a(x+ p)2 + q. Hence (a) state the minimum or maximum point. (b) the equation of axis 0f symmetry ) 2 1 2(2)( 2 −−−= xxxf ] 2 1 )1()1(2[2 222 −−−−+−−= xx a = 1, b = −4 and c = 3 a = −2, b = 4 and c = 1 By using the information given, sketch the graph.
  • 6. Additional Mathematics Module Form 4 Chapter 3- Quadratic Functions SMK Agama Arau, Perlis Page | 35 ] 2 1 1)1[(2 2 −−−−= x ] 2 1 1)1[(2 2 −−−−= x ] 2 1 1)1[(2 2 −−−−= x ] 2 3 )1[(2 2 −−−= x 3)1[(2 2 +−−= x The maximum value of 3)( =xf when 01 =−x 1=x So, the maximum point is (1, 3). The equation of axis of symmetry is 1=x . EXERCISE 3.3 1. Express the quadratic function 13122 +−= xxy in the form of cbxy ++= 2 )( . State the minimum point and the y-intercept. Hence, sketch the graph of the function y. 2. Express the quadratic function xxxf 42)( 2 −−= in the form of 2 )()( pxqxf +−= . Determine the maximum point and the y-intercept. Hence, sketch the graph of the function f(x). 3. Given that the curve 2 )2( nxmy +−= has a maximum point (1, 4), find the values of m and of n. Hence, sketch the curve. 4. For the quadratic function 2 ( ) 2 3 2g x x x= − + , find the equation of the axis of symmetry. 3.4 RELATIONSHIP BETWEEN “b2 – 4ac” AND THE POSITION OF GRAPH f(x)= y 1-If 042 >− acb ,the graph cuts x-axis at two different points f(x) f(x) x x a < 0, so it is maximum value a > 0 a < 0
  • 7. Additional Mathematics Module Form 4 Chapter 3- Quadratic Functions SMK Agama Arau, Perlis Page | 36 1-If 042 =− acb ,the graph touches the x-axis f(x) f(x) x x 1-If 042 <− acb ,the graph does not touch the x-axis f(x) f(x) x x 3.4 QUADRATIC INEQUALITIES In Form Three, we have learned about linear inequalities. For example when 01 >−x , 1>x . Example: Given 01 >−x . Find the range of values of x. 01≥−x 1≥x • 1 From the line graph, we know the range of values of x. a > 0 a < 0 a > 0 a < 0 Curve lies below the x- axis because f(x) is always negative Curve lies above the x-axis because f(x) is always positive.
  • 8. Additional Mathematics Module Form 4 Chapter 3- Quadratic Functions SMK Agama Arau, Perlis Page | 37 To solve the quadratic inequality for example 0)3)(1( >−+ xx , we use the graph sketching method. If f(x) > 0, the range of values of x: f(x) x If f(x) < 0, the range of values of x: f(x) x Example 1: Find the range of x if 0364 2 >−m Solution: 0364 2 >−m 092 >−m Let 092 =−m 92 =m 3±=m y -3 3 m If 092 >−m , the range of values of m is 3−<m , 3>m .
  • 9. Additional Mathematics Module Form 4 Chapter 3- Quadratic Functions SMK Agama Arau, Perlis Page | 38 Example 2: Find the range of the values of k if the equation 06522 =−−+ kkxx has two real roots. Solution: two real roots also means two different roots: 042 >− acb 0)65)(1(4)2( 2 >−−− kk 0)65(44 2 >−−− kk 024204 2 >++ kk 0652 >++ kk Let 0652 =++ kk 0)3)(2( =++ kk 02 =+k or 03 =+k 2−=k or 3−=k y -3 -2 k If 0652 >++ kk , the range of values of k is 3−<k , 2−>k . Example 3: Find the range of the values of x for which if the equation 15)2( ≤+xx Solution: 15)2( ≤+xx 01522 ≤−+ xx Let 01522 =−+ xx 0)3)(5( =−+ xx 05 =+x or 03 =−x 5−=k or 3=x 652 ++= kky
  • 10. Additional Mathematics Module Form 4 Chapter 3- Quadratic Functions SMK Agama Arau, Perlis Page | 39 y -5 -2 x If 01522 ≤−+ xx , the range of values of x is 35 ≤≤− x . EXERCISE 3.3 1. Find the range of values of x for each of the following inequalities. (a) 20)1( <+xx (b) xxx 232 <− (c) 2)57( >− xx 2. Given that xxy 32 2 += , find the range of values of x for which y > 9. 3. Find the range of values of k given that 02)1(2 =++−+ kxkx has two different roots. 4. If the straight line ky = , where k is a constant, does not intersect the curve 562 2 +−= xxy , show that 2 1 <k . CHAPTER REVIEW EXERCISE 1. The graph of the function 2 ( ) 2( )f x p q x= − − has a maximum point at 1 5 , 2 2   −    . Find the value of p and q. 2. Given the quadratic function 362 2 −+−= xxy , express f(x) in the form rqxp ++ 2 )( , where p, q and r are constants. Hence, sketch the graph of the function y. 3 Given that the straight line nxy −= 2 cuts the curve 22 −+= nxxy at two points, find the range of the values of n. 4. The quadratic equation 542 −=− pxpx , where 0≠p , has real and different roots. Find the range of values of p. 5. By expressing the function 563)( 2 +−= xxxf in the form qpxa +− 2 )( , or otherwise, find the minimum value of f(x). 6. Given that the quadratic function qxpxxf −+= 4)( 2 , where p and q are constants .Given that the curve )(xfy = has a maximum point (-1, 5).State the values of p and q. 1522 −+= xxy
  • 11. Additional Mathematics Module Form 4 Chapter 3- Quadratic Functions SMK Agama Arau, Perlis Page | 40 7. Diagram shows the graph of a quadratic function )(xfy = . The straight line 9−=y is tangent to the curve )(xfy = . (a) Write the equation of the axis of symmetry of the curve. (b) Express f(x) in the form qpx ++ 2 )( , where p and q are constants. 8. Diagram below shows the graph of the function qxxpy ++−= 2)1( 2 . (a) State the value of q. (b) Find the range of values of p. 9. Find the range of values of k given that the straight line 1=+ yx does not intersect the curve kyx =+ 22 . y x 0 2− qxxpy ++−= 2)1( 2 0 x y 1 7 9−=y