SlideShare a Scribd company logo
1 of 16
Searching techniques Searching :  It is a process to find whether a particular value with specified properties is present or not among a collection of items. If the value is present in the collection, then searching is said to be successful, and it returns the location of the value in the array. Otherwise, if the value is not present in the array, the searching process displays the appropriate message and in this case searching is said to be unsuccessful. 1) Linear  or Sequential Searching  2) Binary Searching  Linear_Search (A[ ], N, val , pos ) Step 1 : Set pos = -1 and k = 0 Step 2 : Repeat  while k < N Begin Step 3 :  if A[ k ] = val  Set pos = k print pos Goto step 5 End while Step 4 : print “Value is not present” Step 5 : Exit   int main( ) { int arr [ 50 ] , num , i , n , pos = -1; printf (&quot;How many elements to sort : &quot;); scanf (&quot;%d&quot;, &n); printf (&quot; Enter the elements : &quot;); for( i = 0; i < n; i++ )  { printf (“arr [%d ]  : “ , i ); scanf( &quot;%d&quot;, &arr[ i ] ); } printf(“Enter the number to be searched : “); scanf(“%d”,&num); for(i=0;i<n;i++) if( arr [ i ] == num ) { pos = i ; break; } if ( pos == -1 )  printf(“ %d does not exist ”,num); else printf(“ %d is found at location : %d”, num , pos);  Searches --  for each item one by one in the list from the first, until the match is found. Efficiency of  Linear search  : --  Executes in O ( n ) times where n is the number of elements in the list.
Binary_Search (A [ ], U_bound, VAL) Step 1 : set BEG = 0 , END = U_bound , POS = -1 Step 2 : Repeat while (BEG <= END ) Step 3 :  set MID = ( BEG + END ) / 2 Step 4 :  if  A [ MID ] == VAL then  POS = MID  print  VAL “ is available at “, POS GoTo Step 6 End if if A [ MID ] > VAL then set END = MID – 1 Else set BEG = MID + 1 End if End while Step 5 :  if POS = -1 then print  VAL “ is not present “ End if Step 6 : EXIT  void binary_serch ( int a [], int n, int val ) { int end = n - 1, beg = 0, pos = -1; while( beg <= end )  { mid = ( beg + end ) / 2; if ( val == a [ mid ] ) { pos = mid; printf(“%d is available at %d”,val, pos ); break; } if ( a [ mid ] > val ) end = mid – 1; else  beg = mid + 1; } if ( pos = - 1)  printf( “%d does not exist “, val ); }  Binary Searching ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Sorting is a technique to rearrange the elements of a list in ascending or descending order, which can be numerical, lexicographical, or any user-defined order.  Ranking of students is the process of sorting in descending order. EMCET Ranking is an example for sorting with user-defined order. EMCET Ranking is done with the following priorities. i) First priority is marks obtained in EMCET. ii) If  marks are same, the ranking will be done with comparing marks obtained in the Mathematics subject. iii) If marks in Mathematics subject are  also same, then the date of births will be compared.  Sorting ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Internal Sorting : If all the data that is to be sorted can be accommodated at a time in memory is called internal sorting. External Sorting :  It is applied to Huge amount of data that cannot be accommodated in memory all at a time. So data in disk or file is loaded into memory part by part. Each part that is loaded is sorted separately, and stored in an intermediate file and all parts are merged into one single sorted list.
Bubble Sort  Unsorted   Sorted   Bubbles up the highest   After Pass 1 After  Pass 2 After Pass 3 After Pass 4 After Pass 5 Bubble_Sort ( A [ ] , N ) Step 1 : Repeat  For  P  = 1  to N – 1 Begin Step 2 :  Repeat  For J = 1 to  N – P Begin Step 3 :  If ( A [ J ]  < A [ J – 1 ] ) Swap ( A [ J ] , A [ J – 1 ] ) End  For End For Step 4 : Exit   Complexity of Bubble_Sort The complexity of sorting algorithm is depends upon the number of comparisons that are made. Total comparisons in Bubble sort is n ( n – 1) / 2  ≈  n  2  – n  Complexity = O ( n  2  ) Original List 10 47 12 54 19 23 54 10 47 12 23 19 54 47 10 23 12 19 54 47 23 10 19 12 54 47 23 19 10 12 54 47 23 19 12 10
void print_array (int a[ ], int n) { int i; for (i=0;I < n ; i++) printf(&quot;%5d&quot;,a[ i ]); } void bubble_sort ( int arr [ ], int n) { int pass, current, temp; for ( pass=1;(pass < n) ;pass++)  { for ( current=1;current <= n – pass ; current++)  { if ( arr[ current - 1 ] > arr[ current ] )  {   temp = arr[ current - 1 ];   arr[ current - 1 ] = arr[ current ];   arr[ current ] = temp; }  } } } int main()  { int count,num[50],i ; printf (&quot;How many elements to be sorted : &quot;); scanf (&quot;%d&quot;, &count); printf(&quot; Enter the elements : &quot;); for ( i = 0; i < count; i++) { printf (&quot;num [%d]  : &quot;, i ); scanf( &quot;%d&quot;, &num[ i ] ); } printf(&quot; Array Before Sorting : &quot;); print_array ( num, count ); bubble_sort ( num, count); printf(&quot; Array  After Sorting : &quot;); print_array ( num, count ); } Bubble Sort For pass = 1 to N - 1 For J = 1 to N - pass A [ J – 1 ] > A [ J ] Temp = A [ J – 1 ] A [ J – 1 ] = A [ J ] A [ J ] = Temp T F Return
Insertion Sort  TEMP Insertion_Sort ( A [ ] , N ) Step 1 : Repeat  For  K  = 1  to N – 1 Begin Step 2 :  Set Temp  =  A [ K ] Step 3 :  Set  J  =  K – 1  Step 4 :  Repeat while Temp < A [ J ] AND J >= 0 Begin Set  A [ J + 1 ]  =  A [ J ] Set  J  =  J  - 1  End  While Step 5 :  Set  A [ J + 1 ]  = Temp End For Step 4 : Exit   insertion_sort ( int A[ ] , int n ) { int k , j , temp ; for ( k = 1 ; k < n ; k++ )  { temp = A [ k ] ; j  =  k  -  1; while ( ( temp < A [ j ] ) && ( j >= 0 ) ) { A [ j + 1 ]  = A [ j ] ; j - - ; } A [ j + 1 ]  =  temp ; } } Complexity of Insertion Sort Best Case : O ( n ) Average Case : O ( n 2  ) Worst Case : O ( n 2  )  78 23 45 8 32 36 23 78 45 8 32 36 23 23 45 78 8 32 36 8 23 45 78 32 36 8 23 32 45 78 36 45 8 8 23 32 36 45 78 32 36
Selection Sort ( Select the smallest and Exchange ) Smallest Selection_Sort ( A [ ] , N ) Step 1 : Repeat  For  K  =  0  to N –  2 Begin Step 2 :  Set  POS = K  Step 3 :  Repeat for J = K + 1 to N –  1  Begin If A[ J ] < A [ POS ]  Set  POS  =  J  End  For Step 5 :  Swap  A [ K ]  with A [ POS ] End For Step 6 : Exit   selection_sort ( int A[ ] , int n ) { int k , j , pos , temp ; for ( k = 0 ; k < n - 1 ; k++ ) { pos =  k ;  for ( j = k + 1 ; j <= n ; j ++ ) { if ( A [ j ] < A [ pos ] ) pos = j ; } temp = A [ k ] ; A [ k ] = A [ pos ] ; A [ pos ] = temp ; } } Complexity of Selection Sort Best Case : O ( n 2  ) Average Case : O ( n 2  ) Worst Case : O ( n 2  )  23 78 45 8 32 56 8 78 45 23 32 56 8 23 45 78 32 56 8 23 32 78 45 56 8 23 32 45 78 56 8 23 32 45 56 78 8 23 32 45 56
Insertion sort k = 1; k < n ; k++ temp = a [ k ]  j = k - 1 temp < a [ j ] && j >= 0 a [ j + 1 ] = a [ j ]  j = j - 1 a [ j + 1 ] = temp return Selection sort k = 0; k < n - 1 ; k++ pos = k j = k + 1 ; j < n ; j++ temp = a[ k ] a [ k ] = a [ pos ] a [ pos ] = temp return a[ j ] < a[ pos ] pos = j
Bubble sort – Insertion sort – Selection sort Bubble Sort : --  very primitive algorithm like linear search, and least efficient . --  No of swappings are more compare with other sorting techniques. --  It is not capable of minimizing the travel through the array like insertion sort. Insertion Sort : --  sorted by considering one item at a time. --  efficient to use on small sets of data. --  twice as fast as the bubble sort. --  40% faster than the selection sort. --  no swapping is required. --  It is said to be online sorting because it continues the sorting a list as and when it receives new elements. --  it does not change the relative order of elements with equal keys. --  reduces unnecessary travel through the array. --  requires low and constant amount of extra memory space. --  less efficient for larger lists. Selection sort : --  No of swappings will be minimized. i.e., one swap on one pass. --  generally used for sorting files with large objects and small keys. --  It is 60% more efficient than bubble sort and 40% less efficient than insertion sort. --  It is preferred over bubble sort for jumbled array as it requires less items to be exchanged. --  uses internal sorting that requires more memory space. --  It cannot recognize sorted list and carryout the sorting from the beginning, when new elements are  added to the list.
Quick Sort – A recursive process of sorting Algorithm for Quick_Sort : -- set the element A [ start_index ]  as pivot. -- rearrange the array so that :  -- all elements which are less than the pivot  come left ( before ) to the pivot. -- all elements which are greater than the pivot  come right ( after ) to the pivot. -- recursively apply quick-sort on the sub-list of  lesser elements. -- recursively apply quick-sort   on the sub-list of  greater elements. -- the base case of the recursion is lists of size  zero or one, which are always sorted. Original-list of 11 elements :  Set list [ 0 ] as pivot :  pivot   pivot   Rearrange ( partition ) the elements  into two sub lists : Sub-list of  lesser elements Sub-list of  greater elements Apply Quick-sort recursively on sub-list Apply Quick-sort recursively on sub-list Complexity of Quick Sort Best Case : O ( n log n ) Average Case : O ( n log n ) Worst Case : O ( n 2  )  8 3 2 11 5 14 0 2 9 4 20 8 3 2 11 5 14 0 2 9 4 20 4 3 2 2 5 0 8 11 9 14 20
9 12 8 16 1 25 10 3 9 12 8 16 1 25 10 3 3 12 8 16 1 25 10 3 8 16 1 25 10 12 3 1 8 16 25 10 12 3 1 8 16 25 10 12 Pivot Partitioning for ‘ One Step of Quick Sort ’
Quick Sort – Program  void quick_sort(int a[ ] , int beg , int end ) { int loc; if ( beg < end ) { loc = partition( a , beg , end ); quick_sort ( a , beg , loc – 1 ); quick_sort ( a , loc + 1 , end ); } } void print_array (int a [ ],int n)  { int i; for ( i = 0 ; I < n ; i++ ) printf( &quot;%5d“ ,a [ i ] ) ; } int main () { int count , num[ 50 ] , i ; printf (&quot;How many elements to sort : &quot;); scanf (&quot;%d&quot;, &count ); printf (&quot; Enter the elements : &quot;); for( i = 0; i < count; i++ )  { printf (&quot;num [%d ]  : “ , i ); scanf( &quot;%d&quot;, &num[ i ] ); } printf (“  Array Before Sorting : “ ); print_array ( num , count ) ; quick_sort ( num ,0 , count-1) ; printf ( &quot; Array  After Sorting : “ ); print_array ( num , count ); } int partition ( int a [ ], int beg, int end ) { int left , right , loc , flag = 0, pivot ; loc = left = beg;  right = end;  pivot = a [ loc ] ;  while ( flag == 0 )  { while( (pivot <= a [ right ] )&&( loc != right ) ) right - - ; if( loc == right )  flag = 1; else {  a  [ loc ] = a [ right ] ; left = loc + 1 ;  loc = right;  }  while ( (pivot  >= a [ left ] ) && ( loc != left ) ) left++; if( loc == left ) flag = 1; else {  a [ loc ] = a  [ left ] ; right = loc - 1;  loc = left;  }  } a [ loc ] = pivot;  return loc;  }
partition ( int a [ ], int beg, int end ) loc = left = beg  flag = 0, right = end  pivot = a [ loc ] Flag == 0 pivot <= a [ right ]  && loc != right right = right  - 1  loc == right a  [ loc ] = a [ right ]  left = loc + 1 ;  loc = right; flag = 1 F T B A B A pivot  >= a [ left ] &&loc != left   left = left  + 1  loc == left a  [ loc ] = a [ left ]  right = loc - 1 ;  loc = left; flag = 1 F T a[ loc ] = pivot  return loc quick_sort ( int a [ ], int beg, int end ) loc == left T loc = partition( a , beg , end ) quick_sort ( a , beg , end ) quick_sort ( a , beg , end ) F return
Merge Sort ( Divide and conquer ) Divide the array Merge the elements to sorted array --  Merge sort technique sorts a given set  of values by combining two sorted  arrays into one larger sorted arrays. --  A small list will take fewer steps to sort  than a large list. --  Fewer steps are required to construct  a sorted list from two sorted lists than  two unsorted lists.  --  You only have to traverse each list  once if they're already sorted . ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Time complexity Worst case - O ( n  log  n )  Best case  - O ( n log n ) typical, O ( n ) natural variant  Average case - O (   n  log  n  ) 39 9 81 45 90 27 72 18 39 9 81 45 90 27 72 18 39 9 81 45 90 27 72 18 39 9 81 45 90 27 72 18 39 9 81 45 90 27 72 18 9 39 45 81 27 90 18 72 9 39 45 81 18 27 72 90 9 18 27 39 45 72 81 90
void merge(int a[ ],int low,int high,int mid){   int i, j, k, c[50];   i=low; j=mid+1; k=low;   while( ( i<=mid )&&( j <= high ) ) {   if( a[ i ]<a[ j ] ){   c[ k ]=a[ i ];  k++;  i++;   }else {   c[ k ]=a[ j ]; k++; j++;   } }   while( i<=mid ) { c[k]=a[ i ]; k++; i++; }  while(j<=high)  { c[k]=a[ j ]; k++; j++; } for(i=low;i<k;i++) a[ i ]=c[ i ]; } void merge_sort(int a[ ], int low, int high){   int mid;   if( low < high) {   mid=(low+high)/2;   merge_sort (a, low, mid);   merge_sort (a, mid+1 ,high);   merge (a, low, high, mid);   } } Merge Sort -  Program void print_array (int a [ ],int n)  { int i; for ( i = 0 ; I < n ; i++ ) printf( &quot;%5d“ ,a [ i ] ) ; } int main () { int count , num[ 50 ] , i ; printf (&quot;How many elements to sort : &quot;); scanf (&quot;%d&quot;, &count ); printf (&quot; Enter the elements : &quot;); for( i = 0; i < count; i++ )  { printf (&quot;num [%d ]  : “ , i ); scanf( &quot;%d&quot;, &num[ i ] ); } printf (“  Array Before Sorting : “ ); print_array ( num , count ) ; merge_sort ( num ,0 , count-1) ; printf ( &quot; Array  After Sorting : “ ); print_array ( num , count ); }
Merge_Sort low < high mid = ( low + high ) / 2  merge_sort (a, low, mid) merge_sort (a, mid, high ) Merge (a, low,high , mid) Return T F merge i =low ; j = mid+1;k = low i <= mid && j <= high a[ i ] < a[ j ] c[ k ] =a [ i ] ; k++ ; i++ c[ k ] =a [ j ] ; k++ ; j++ i <= mid c[ k ] =a [ i ] ; k++ ; i++ j <= high c[ k ] =a [ j ] ; k++ ; j++ i = low ; i < k ; i ++ a[ i ] = c [ i ] return F T

More Related Content

What's hot

Lecture 7 data structures and algorithms
Lecture 7 data structures and algorithmsLecture 7 data structures and algorithms
Lecture 7 data structures and algorithms
Aakash deep Singhal
 

What's hot (20)

Introduction to Data Structures Sorting and searching
Introduction to Data Structures Sorting and searchingIntroduction to Data Structures Sorting and searching
Introduction to Data Structures Sorting and searching
 
Trees (data structure)
Trees (data structure)Trees (data structure)
Trees (data structure)
 
Link List
Link ListLink List
Link List
 
Array operations
Array operationsArray operations
Array operations
 
Data Structures - Lecture 9 [Stack & Queue using Linked List]
 Data Structures - Lecture 9 [Stack & Queue using Linked List] Data Structures - Lecture 9 [Stack & Queue using Linked List]
Data Structures - Lecture 9 [Stack & Queue using Linked List]
 
Trees, Binary Search Tree, AVL Tree in Data Structures
Trees, Binary Search Tree, AVL Tree in Data Structures Trees, Binary Search Tree, AVL Tree in Data Structures
Trees, Binary Search Tree, AVL Tree in Data Structures
 
STACK ( LIFO STRUCTURE) - Data Structure
STACK ( LIFO STRUCTURE) - Data StructureSTACK ( LIFO STRUCTURE) - Data Structure
STACK ( LIFO STRUCTURE) - Data Structure
 
stack presentation
stack presentationstack presentation
stack presentation
 
Stacks IN DATA STRUCTURES
Stacks IN DATA STRUCTURESStacks IN DATA STRUCTURES
Stacks IN DATA STRUCTURES
 
Data Structures - Searching & sorting
Data Structures - Searching & sortingData Structures - Searching & sorting
Data Structures - Searching & sorting
 
Stack project
Stack projectStack project
Stack project
 
Queues
QueuesQueues
Queues
 
Data structures
Data structuresData structures
Data structures
 
Stack
StackStack
Stack
 
Insertion sort
Insertion sortInsertion sort
Insertion sort
 
Lecture 7 data structures and algorithms
Lecture 7 data structures and algorithmsLecture 7 data structures and algorithms
Lecture 7 data structures and algorithms
 
Linked list
Linked listLinked list
Linked list
 
Dsa – data structure and algorithms searching
Dsa – data structure and algorithms   searchingDsa – data structure and algorithms   searching
Dsa – data structure and algorithms searching
 
Quick sort
Quick sortQuick sort
Quick sort
 
Lec3
Lec3Lec3
Lec3
 

Similar to Unit6 C

Unit6 jwfiles
Unit6 jwfilesUnit6 jwfiles
Unit6 jwfiles
mrecedu
 
Insersion & Bubble Sort in Algoritm
Insersion & Bubble Sort in AlgoritmInsersion & Bubble Sort in Algoritm
Insersion & Bubble Sort in Algoritm
Ehsan Ehrari
 

Similar to Unit6 C (20)

searching in data structure.pptx
searching in data structure.pptxsearching in data structure.pptx
searching in data structure.pptx
 
Unit6 jwfiles
Unit6 jwfilesUnit6 jwfiles
Unit6 jwfiles
 
sorting1.pptx
sorting1.pptxsorting1.pptx
sorting1.pptx
 
C Language Unit-6
C Language Unit-6C Language Unit-6
C Language Unit-6
 
Unit 7 sorting
Unit 7   sortingUnit 7   sorting
Unit 7 sorting
 
Daa chapter5
Daa chapter5Daa chapter5
Daa chapter5
 
Sorting pnk
Sorting pnkSorting pnk
Sorting pnk
 
Data structures arrays
Data structures   arraysData structures   arrays
Data structures arrays
 
Lecture 1 sorting insertion &amp; shell sort
Lecture 1 sorting insertion &amp; shell sortLecture 1 sorting insertion &amp; shell sort
Lecture 1 sorting insertion &amp; shell sort
 
Sorting
SortingSorting
Sorting
 
Sorting
SortingSorting
Sorting
 
search_sort.ppt
search_sort.pptsearch_sort.ppt
search_sort.ppt
 
Data Structures 6
Data Structures 6Data Structures 6
Data Structures 6
 
Sorting
SortingSorting
Sorting
 
Dsa – data structure and algorithms sorting
Dsa – data structure and algorithms  sortingDsa – data structure and algorithms  sorting
Dsa – data structure and algorithms sorting
 
PPT.pptx Searching and Sorting Techniques
PPT.pptx Searching and Sorting TechniquesPPT.pptx Searching and Sorting Techniques
PPT.pptx Searching and Sorting Techniques
 
Insersion & Bubble Sort in Algoritm
Insersion & Bubble Sort in AlgoritmInsersion & Bubble Sort in Algoritm
Insersion & Bubble Sort in Algoritm
 
DAA-Divide and Conquer methodology, DAA 2024
DAA-Divide and Conquer methodology, DAA 2024DAA-Divide and Conquer methodology, DAA 2024
DAA-Divide and Conquer methodology, DAA 2024
 
Sorting
SortingSorting
Sorting
 
Sorting
SortingSorting
Sorting
 

More from arnold 7490 (20)

Les14
Les14Les14
Les14
 
Les13
Les13Les13
Les13
 
Les11
Les11Les11
Les11
 
Les10
Les10Les10
Les10
 
Les09
Les09Les09
Les09
 
Les07
Les07Les07
Les07
 
Les06
Les06Les06
Les06
 
Les05
Les05Les05
Les05
 
Les04
Les04Les04
Les04
 
Les03
Les03Les03
Les03
 
Les02
Les02Les02
Les02
 
Les01
Les01Les01
Les01
 
Les12
Les12Les12
Les12
 
Unit 8 Java
Unit 8 JavaUnit 8 Java
Unit 8 Java
 
Unit 6 Java
Unit 6 JavaUnit 6 Java
Unit 6 Java
 
Unit 5 Java
Unit 5 JavaUnit 5 Java
Unit 5 Java
 
Unit 4 Java
Unit 4 JavaUnit 4 Java
Unit 4 Java
 
Unit 3 Java
Unit 3 JavaUnit 3 Java
Unit 3 Java
 
Unit 2 Java
Unit 2 JavaUnit 2 Java
Unit 2 Java
 
Unit 1 Java
Unit 1 JavaUnit 1 Java
Unit 1 Java
 

Recently uploaded

Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
WSO2
 

Recently uploaded (20)

Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 

Unit6 C

  • 1. Searching techniques Searching : It is a process to find whether a particular value with specified properties is present or not among a collection of items. If the value is present in the collection, then searching is said to be successful, and it returns the location of the value in the array. Otherwise, if the value is not present in the array, the searching process displays the appropriate message and in this case searching is said to be unsuccessful. 1) Linear or Sequential Searching 2) Binary Searching Linear_Search (A[ ], N, val , pos ) Step 1 : Set pos = -1 and k = 0 Step 2 : Repeat while k < N Begin Step 3 : if A[ k ] = val Set pos = k print pos Goto step 5 End while Step 4 : print “Value is not present” Step 5 : Exit int main( ) { int arr [ 50 ] , num , i , n , pos = -1; printf (&quot;How many elements to sort : &quot;); scanf (&quot;%d&quot;, &n); printf (&quot; Enter the elements : &quot;); for( i = 0; i < n; i++ ) { printf (“arr [%d ] : “ , i ); scanf( &quot;%d&quot;, &arr[ i ] ); } printf(“Enter the number to be searched : “); scanf(“%d”,&num); for(i=0;i<n;i++) if( arr [ i ] == num ) { pos = i ; break; } if ( pos == -1 ) printf(“ %d does not exist ”,num); else printf(“ %d is found at location : %d”, num , pos); Searches -- for each item one by one in the list from the first, until the match is found. Efficiency of Linear search : -- Executes in O ( n ) times where n is the number of elements in the list.
  • 2.
  • 3.
  • 4. Bubble Sort Unsorted Sorted Bubbles up the highest After Pass 1 After Pass 2 After Pass 3 After Pass 4 After Pass 5 Bubble_Sort ( A [ ] , N ) Step 1 : Repeat For P = 1 to N – 1 Begin Step 2 : Repeat For J = 1 to N – P Begin Step 3 : If ( A [ J ] < A [ J – 1 ] ) Swap ( A [ J ] , A [ J – 1 ] ) End For End For Step 4 : Exit Complexity of Bubble_Sort The complexity of sorting algorithm is depends upon the number of comparisons that are made. Total comparisons in Bubble sort is n ( n – 1) / 2 ≈ n 2 – n Complexity = O ( n 2 ) Original List 10 47 12 54 19 23 54 10 47 12 23 19 54 47 10 23 12 19 54 47 23 10 19 12 54 47 23 19 10 12 54 47 23 19 12 10
  • 5. void print_array (int a[ ], int n) { int i; for (i=0;I < n ; i++) printf(&quot;%5d&quot;,a[ i ]); } void bubble_sort ( int arr [ ], int n) { int pass, current, temp; for ( pass=1;(pass < n) ;pass++) { for ( current=1;current <= n – pass ; current++) { if ( arr[ current - 1 ] > arr[ current ] ) { temp = arr[ current - 1 ]; arr[ current - 1 ] = arr[ current ]; arr[ current ] = temp; } } } } int main() { int count,num[50],i ; printf (&quot;How many elements to be sorted : &quot;); scanf (&quot;%d&quot;, &count); printf(&quot; Enter the elements : &quot;); for ( i = 0; i < count; i++) { printf (&quot;num [%d] : &quot;, i ); scanf( &quot;%d&quot;, &num[ i ] ); } printf(&quot; Array Before Sorting : &quot;); print_array ( num, count ); bubble_sort ( num, count); printf(&quot; Array After Sorting : &quot;); print_array ( num, count ); } Bubble Sort For pass = 1 to N - 1 For J = 1 to N - pass A [ J – 1 ] > A [ J ] Temp = A [ J – 1 ] A [ J – 1 ] = A [ J ] A [ J ] = Temp T F Return
  • 6. Insertion Sort TEMP Insertion_Sort ( A [ ] , N ) Step 1 : Repeat For K = 1 to N – 1 Begin Step 2 : Set Temp = A [ K ] Step 3 : Set J = K – 1 Step 4 : Repeat while Temp < A [ J ] AND J >= 0 Begin Set A [ J + 1 ] = A [ J ] Set J = J - 1 End While Step 5 : Set A [ J + 1 ] = Temp End For Step 4 : Exit insertion_sort ( int A[ ] , int n ) { int k , j , temp ; for ( k = 1 ; k < n ; k++ ) { temp = A [ k ] ; j = k - 1; while ( ( temp < A [ j ] ) && ( j >= 0 ) ) { A [ j + 1 ] = A [ j ] ; j - - ; } A [ j + 1 ] = temp ; } } Complexity of Insertion Sort Best Case : O ( n ) Average Case : O ( n 2 ) Worst Case : O ( n 2 ) 78 23 45 8 32 36 23 78 45 8 32 36 23 23 45 78 8 32 36 8 23 45 78 32 36 8 23 32 45 78 36 45 8 8 23 32 36 45 78 32 36
  • 7. Selection Sort ( Select the smallest and Exchange ) Smallest Selection_Sort ( A [ ] , N ) Step 1 : Repeat For K = 0 to N – 2 Begin Step 2 : Set POS = K Step 3 : Repeat for J = K + 1 to N – 1 Begin If A[ J ] < A [ POS ] Set POS = J End For Step 5 : Swap A [ K ] with A [ POS ] End For Step 6 : Exit selection_sort ( int A[ ] , int n ) { int k , j , pos , temp ; for ( k = 0 ; k < n - 1 ; k++ ) { pos = k ; for ( j = k + 1 ; j <= n ; j ++ ) { if ( A [ j ] < A [ pos ] ) pos = j ; } temp = A [ k ] ; A [ k ] = A [ pos ] ; A [ pos ] = temp ; } } Complexity of Selection Sort Best Case : O ( n 2 ) Average Case : O ( n 2 ) Worst Case : O ( n 2 ) 23 78 45 8 32 56 8 78 45 23 32 56 8 23 45 78 32 56 8 23 32 78 45 56 8 23 32 45 78 56 8 23 32 45 56 78 8 23 32 45 56
  • 8. Insertion sort k = 1; k < n ; k++ temp = a [ k ] j = k - 1 temp < a [ j ] && j >= 0 a [ j + 1 ] = a [ j ] j = j - 1 a [ j + 1 ] = temp return Selection sort k = 0; k < n - 1 ; k++ pos = k j = k + 1 ; j < n ; j++ temp = a[ k ] a [ k ] = a [ pos ] a [ pos ] = temp return a[ j ] < a[ pos ] pos = j
  • 9. Bubble sort – Insertion sort – Selection sort Bubble Sort : -- very primitive algorithm like linear search, and least efficient . -- No of swappings are more compare with other sorting techniques. -- It is not capable of minimizing the travel through the array like insertion sort. Insertion Sort : -- sorted by considering one item at a time. -- efficient to use on small sets of data. -- twice as fast as the bubble sort. -- 40% faster than the selection sort. -- no swapping is required. -- It is said to be online sorting because it continues the sorting a list as and when it receives new elements. -- it does not change the relative order of elements with equal keys. -- reduces unnecessary travel through the array. -- requires low and constant amount of extra memory space. -- less efficient for larger lists. Selection sort : -- No of swappings will be minimized. i.e., one swap on one pass. -- generally used for sorting files with large objects and small keys. -- It is 60% more efficient than bubble sort and 40% less efficient than insertion sort. -- It is preferred over bubble sort for jumbled array as it requires less items to be exchanged. -- uses internal sorting that requires more memory space. -- It cannot recognize sorted list and carryout the sorting from the beginning, when new elements are added to the list.
  • 10. Quick Sort – A recursive process of sorting Algorithm for Quick_Sort : -- set the element A [ start_index ] as pivot. -- rearrange the array so that : -- all elements which are less than the pivot come left ( before ) to the pivot. -- all elements which are greater than the pivot come right ( after ) to the pivot. -- recursively apply quick-sort on the sub-list of lesser elements. -- recursively apply quick-sort on the sub-list of greater elements. -- the base case of the recursion is lists of size zero or one, which are always sorted. Original-list of 11 elements : Set list [ 0 ] as pivot : pivot pivot Rearrange ( partition ) the elements into two sub lists : Sub-list of lesser elements Sub-list of greater elements Apply Quick-sort recursively on sub-list Apply Quick-sort recursively on sub-list Complexity of Quick Sort Best Case : O ( n log n ) Average Case : O ( n log n ) Worst Case : O ( n 2 ) 8 3 2 11 5 14 0 2 9 4 20 8 3 2 11 5 14 0 2 9 4 20 4 3 2 2 5 0 8 11 9 14 20
  • 11. 9 12 8 16 1 25 10 3 9 12 8 16 1 25 10 3 3 12 8 16 1 25 10 3 8 16 1 25 10 12 3 1 8 16 25 10 12 3 1 8 16 25 10 12 Pivot Partitioning for ‘ One Step of Quick Sort ’
  • 12. Quick Sort – Program void quick_sort(int a[ ] , int beg , int end ) { int loc; if ( beg < end ) { loc = partition( a , beg , end ); quick_sort ( a , beg , loc – 1 ); quick_sort ( a , loc + 1 , end ); } } void print_array (int a [ ],int n) { int i; for ( i = 0 ; I < n ; i++ ) printf( &quot;%5d“ ,a [ i ] ) ; } int main () { int count , num[ 50 ] , i ; printf (&quot;How many elements to sort : &quot;); scanf (&quot;%d&quot;, &count ); printf (&quot; Enter the elements : &quot;); for( i = 0; i < count; i++ ) { printf (&quot;num [%d ] : “ , i ); scanf( &quot;%d&quot;, &num[ i ] ); } printf (“ Array Before Sorting : “ ); print_array ( num , count ) ; quick_sort ( num ,0 , count-1) ; printf ( &quot; Array After Sorting : “ ); print_array ( num , count ); } int partition ( int a [ ], int beg, int end ) { int left , right , loc , flag = 0, pivot ; loc = left = beg; right = end; pivot = a [ loc ] ; while ( flag == 0 ) { while( (pivot <= a [ right ] )&&( loc != right ) ) right - - ; if( loc == right ) flag = 1; else { a [ loc ] = a [ right ] ; left = loc + 1 ; loc = right; } while ( (pivot >= a [ left ] ) && ( loc != left ) ) left++; if( loc == left ) flag = 1; else { a [ loc ] = a [ left ] ; right = loc - 1; loc = left; } } a [ loc ] = pivot; return loc; }
  • 13. partition ( int a [ ], int beg, int end ) loc = left = beg flag = 0, right = end pivot = a [ loc ] Flag == 0 pivot <= a [ right ] && loc != right right = right - 1 loc == right a [ loc ] = a [ right ] left = loc + 1 ; loc = right; flag = 1 F T B A B A pivot >= a [ left ] &&loc != left left = left + 1 loc == left a [ loc ] = a [ left ] right = loc - 1 ; loc = left; flag = 1 F T a[ loc ] = pivot return loc quick_sort ( int a [ ], int beg, int end ) loc == left T loc = partition( a , beg , end ) quick_sort ( a , beg , end ) quick_sort ( a , beg , end ) F return
  • 14.
  • 15. void merge(int a[ ],int low,int high,int mid){ int i, j, k, c[50]; i=low; j=mid+1; k=low; while( ( i<=mid )&&( j <= high ) ) { if( a[ i ]<a[ j ] ){ c[ k ]=a[ i ]; k++; i++; }else { c[ k ]=a[ j ]; k++; j++; } } while( i<=mid ) { c[k]=a[ i ]; k++; i++; } while(j<=high) { c[k]=a[ j ]; k++; j++; } for(i=low;i<k;i++) a[ i ]=c[ i ]; } void merge_sort(int a[ ], int low, int high){ int mid; if( low < high) { mid=(low+high)/2; merge_sort (a, low, mid); merge_sort (a, mid+1 ,high); merge (a, low, high, mid); } } Merge Sort - Program void print_array (int a [ ],int n) { int i; for ( i = 0 ; I < n ; i++ ) printf( &quot;%5d“ ,a [ i ] ) ; } int main () { int count , num[ 50 ] , i ; printf (&quot;How many elements to sort : &quot;); scanf (&quot;%d&quot;, &count ); printf (&quot; Enter the elements : &quot;); for( i = 0; i < count; i++ ) { printf (&quot;num [%d ] : “ , i ); scanf( &quot;%d&quot;, &num[ i ] ); } printf (“ Array Before Sorting : “ ); print_array ( num , count ) ; merge_sort ( num ,0 , count-1) ; printf ( &quot; Array After Sorting : “ ); print_array ( num , count ); }
  • 16. Merge_Sort low < high mid = ( low + high ) / 2 merge_sort (a, low, mid) merge_sort (a, mid, high ) Merge (a, low,high , mid) Return T F merge i =low ; j = mid+1;k = low i <= mid && j <= high a[ i ] < a[ j ] c[ k ] =a [ i ] ; k++ ; i++ c[ k ] =a [ j ] ; k++ ; j++ i <= mid c[ k ] =a [ i ] ; k++ ; i++ j <= high c[ k ] =a [ j ] ; k++ ; j++ i = low ; i < k ; i ++ a[ i ] = c [ i ] return F T

Editor's Notes

  1. ADITYA ENGINEERING COLLEGES