Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

バイオインフォ分野におけるtidyなデータ解析の最新動向

1.353 Aufrufe

Veröffentlicht am

Mishima.syk#16
https://connpass.com/event/164605/

Veröffentlicht in: Wissenschaft
  • Als Erste(r) kommentieren

バイオインフォ分野におけるtidyなデータ解析の最新動向

  1. 1. for tmp1 <- f(input) tmp2 <- g(tmp1) output <- h(tmp2) for(i in 1:I){ # 1 tmp1 }
 for(j in 1:J){ # 2 tmp2 } for(k in 1:K){ # 3 output } output <- h(g(f(input)))
  2. 2. apply sapply lapply apply apply tmp1 <- apply(input, 1, function(x){ # 1 }) tmp2 <- apply(tmp1, 1, function(x){ # 2 }) output <- apply(tmp2, 1, function(x){ # 3 })
  3. 3. output <- apply(input, 1, function(x){ # 1 apply(x, 1, function(y){ # 2 apply(y, 1, function(z){ # 3 }) }) }) tmp1 <- apply(input, 1, function(x, y){ # 1 }, y=input2)
  4. 4. input %>% f() %>% g() %>% h() -> output tidyverse data.frame tibble

  5. 5. input %>% ... %>% summary()
 input %>% ... %>% ggplot()
 input %>% ... %>% plot_ly()
 input %>% ... %>% save() input %>% ... -> tmp_object for apply filter mutate
  6. 6. tidyverse ggplot2
  7. 7. ❌ ❌ ✅ ✅
  8. 8. tidyr pivot_wider pivot_longer
  9. 9. ✅ ✅ ✅ ❌
  10. 10. ✅ ✅ ❌ ✅
  11. 11. tidyverse readr read_delim tidyr pivot_wider pivot_longer magrittr %>% dplyr select, filter, group_by ungroup, mutate ggplot2 purrr tidyverse apply map/map2
  12. 12. iris > iris
  13. 13. > iris %>% select(Petal.Width, Species) select
  14. 14. > iris %>% select(Petal.Width, Species) %>% filter(Species != "virginica") filter
  15. 15. > iris %>% select(Petal.Width, Species) %>% filter(Species != "virginica") %>% group_by(Species) group_by
  16. 16. > iris %>% select(Petal.Width, Species) %>% filter(Species != "virginica") %>% group_by(Species) %>% mutate(mean=mean(Petal.Width)) mutate
  17. 17. > iris %>% select(Petal.Width, Species) %>% filter(Species != "virginica") %>% group_by(Species) %>% mutate(mean=mean(Petal.Width)) ungroup %>% map(., unique) ungroup map
  18. 18. tibble tibble tibble tibble tibble tibble tibble tibble tibble
  19. 19. tibble tibble tibble tidybulk tibble tidybulk keep_abundant identify_abundant reduce_dimensions tibble
  20. 20. input %>% ... %>% %>% ...
  21. 21. fit <- lm(y ~ x, data) data %>% ... %>% lm(y ~ x, .)
  22. 22. list tidy ... lm(y ~ x, .) %>% ...
  23. 23. iris %>% group_by(Species) %>% nest() %>% mutate(model_lm = map(data, ~lm(Petal.Length ~ Sepal.Width, data = .))) -> res.lm
  24. 24. library(broom) iris %>% group_by(Species) %>% do(tidy(lm(Petal.Length ~ Sepal.Width, data = .))) -> res.lm
  25. 25. tidy()
  26. 26. %>%? %>% %>% %>% %>%?
  27. 27. recipes broom

×