Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×

Candidacy Exam Final Version

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Wird geladen in …3
×

Hier ansehen

1 von 53 Anzeige

Candidacy Exam Final Version

Herunterladen, um offline zu lesen

This is a presentation I gave for my Candidacy for PhD. I present on the possibilities of probing protein-DNA interactions using Optical Tweezers. I discuss simulating force curves from optical tweezers, background information, and the molecular biological preparations involved. Finally I conclude with future applications of the technique that range from analysis of alternative splicing, transcriptional studies, and telomere mapping.

This is a presentation I gave for my Candidacy for PhD. I present on the possibilities of probing protein-DNA interactions using Optical Tweezers. I discuss simulating force curves from optical tweezers, background information, and the molecular biological preparations involved. Finally I conclude with future applications of the technique that range from analysis of alternative splicing, transcriptional studies, and telomere mapping.

Anzeige
Anzeige

Weitere Verwandte Inhalte

Diashows für Sie (20)

Anzeige

Ähnlich wie Candidacy Exam Final Version (20)

Weitere von Anthony Salvagno (20)

Anzeige

Aktuellste (20)

Candidacy Exam Final Version

  1. 1. Shotgun DNA Mapping<br />Anthony <br />Salvagno<br />
  2. 2. Welcome to KochLab!<br />Single Molecule DNA Analysis<br />Kinesin Studies<br />F<br />F<br />Image from Block and adapted by Koch<br />Image by Koch<br />
  3. 3. Kinesin Studies<br />Andy<br />Gliding Motility Assay<br />Surface Passivation<br />Larry<br />Tracking<br />Processivity<br />Brigette<br />Ensemble ATP Hydrolysis<br />Me<br />Bead Motility<br />Making Kinesin<br />60um<br />
  4. 4. Single Molecule DNA Studies<br />What is DNA?<br />What is Shotgun DNA Mapping?<br />What are Optical Tweezers?<br />What is Molecular Biology?<br />
  5. 5. DNA: The Code of Life<br />Double stranded polymer<br />Covalently bonded sugar molecules make up the backbone<br />Hydrogen bonded bases join two strands of DNA<br />There are 4 bases<br />Whyfiles.org<br />
  6. 6. DNA Compaction<br />Lots of DNA in a genome that needs to fit in the nucleus<br />~2m DNA length per cell<br /> ~2nm wide<br />~20um cell diameter<br />~10um nucleus diameter<br />Chromosomes – structure for mitotic cells<br />Chromatin – where everything happens<br />Molecular Biology of the Cell<br />
  7. 7. Nucleosomes<br />DNA wrapped in histone proteins<br />Proteins:<br />H2A<br />H2B<br />H3<br />H4<br />Form octamer<br />Form stable tetramer<br />Wikipedia<br />
  8. 8. From DNA to People<br />DNA to RNA to Proteins<br />Known as gene expression<br />Leads to changes in characteristics between organisms<br />Leads to differentiation amongst cell lines<br />Wikipedia<br />Thinkquest.org<br />
  9. 9. Transcription<br />RNA Polymerase II:<br />Copies single strand of DNA to make RNA <br />Moves with transcription bubble<br />Initiation<br />RNAPII assembly<br />Elongation<br />Active transcription<br />Termination<br />RNAPII disassembly<br />Reassembled Nucleosomes<br />RNA Pol II<br />promoter<br />cryptic<br />promoter<br />Transcription<br />
  10. 10. Points about Gene Expression<br />Mutations can affect many aspects of gene expression<br />Possible changes because of:<br />DNA sequence modifications<br />Deletions, inversions, insertions, and single base changes (SNPs)<br />Post Translational Modifications<br />
  11. 11. Why Single Molecule is Powerful<br />Bulk studies provide general insight<br />Information is average from all molecules in sample<br />Different molecules have different properties<br />Studying DNA one molecule at a time can provide unprecedented understanding of a process<br />
  12. 12. Forces from &lt; 1 pN to 100s pN<br />Length precision ~ 1 nm<br />Thermal energy (kBT) <br />4 pN – nm = 1/40 eV<br />Kinesin 8 nm step, 6 pN stall<br />(molecular motor)<br />RNA Polymerase 0.3 nm step, 25 pN stall<br />DNA Unzipping 15 pN<br />Why Optical Tweezers?<br />
  13. 13. Examples of Single Molecule Analysis<br />Red Line – protein bound to DNA<br />Black Line – naked DNA<br />Black Dotted Line- predictions of protein locations<br />F<br />F<br />Unzipping can detect proteins bound to DNA<br />Koch et al. 2002<br />
  14. 14. Examples of Single Molecule Analysis II<br />Unzipping can detect nucleosomes<br />nucleosome<br />
  15. 15. Shotgun DNA Mapping<br />Want to understand how proteins affect gene expression<br />Need a way to map sequences of DNA to location in genome<br />Library of Simulated Curves<br />Random fragment<br />Experimental Force<br />Endonuclease<br />Genomic DNA<br />Correct Match<br />dsDNA anchor<br />Step 1: Digest genome into fragments<br />Step 2: Unzip fragment and record forces<br />Step 3: Compare experimental forces to a library of simulated curves<br />
  16. 16. Unzipping Library<br />Used Yeast Genome because less complex than human, but can still have Chromatin<br />Simulated digestion with XhoI<br />Over 1300 fragments<br />Simulated unzipping 2000bp before and after recognition sequence<br />Gives us over 2600 unzipping profiles<br />Unzipping Direction<br />
  17. 17. Unzipping Simulation<br />Energy depends on:<br />Energy of ssDNA (FJC)<br />Energy of base-pairing (DNA)<br />In order to get force vs unzipping index curve need:<br />EFJC<br />EDNA<br />
  18. 18. Proof of Principle<br />Simulated unzipping of pBR322 plasmid<br />Simulation info hidden in genomic simulation<br />Old unzipping data (Koch) used for comparison<br />A<br />Correct Match, Score 0.2<br />18<br />Force (pN)<br />12<br />0<br />1500<br />Unzipping fork index (bp)<br />B<br />Mismatch, Score 0.8<br />18<br />Force (pN)<br />12<br />0<br />1500<br />Unzipping fork index (bp)<br />
  19. 19. Match Data<br />32 unzipped plasmid data compared to library <br />Each time the best match score was the plasmid simulated data<br />
  20. 20. How do we get real data?<br />
  21. 21. Optical Tweezers<br />Focused laser light has the ability to trap small particles<br />Simplest trap is composed of just a laser and an objective<br />SM Block<br />
  22. 22. Optical Trap<br />Bead is tiny dielectric sphere<br />Laser focus creates large E-field gradient<br />Bead attracted to center of focus<br />Want High NA for better trapping<br />
  23. 23. Data Collection<br />Refraction of laser from bead moves path<br />QPD tracks motion of beam<br />Force in trap approx. as spring<br />F=-kx<br />La Porta Lab<br />
  24. 24.
  25. 25. Our Tweezers<br />
  26. 26. How do we unzip DNA?<br /><ul><li>Create unzipping construct
  27. 27. Create Shotgun fragment clones for single molecule analysis
  28. 28. Attach pieces together and tether to cover slide</li></li></ul><li>The Unzipping Construct<br />Courtesy of Diego<br />
  29. 29. Restriction Enzymes<br />REs recognize a specific sequence of DNA and cut the DNA at or near the site.<br />
  30. 30. Piece by Piece Construct Creation<br />Anchor<br />Made from PCR of pRL574<br />Has BstXI overhang with known base sequence<br />Beginning of polymer is labeled with dig molecule for specific binding with anti-dig<br />Adapter<br />Short duplex made 2 single-stranded oligos<br />5’ end has phosphate removed creating a nick<br />5’ end has complementary BstXI overhang<br />3’ end has SapI/EarI overhang<br />SapI<br />GCTCTTCNNNNN<br />CGAGAAGNNNNN<br />GCTCTTCN NNNN<br />CGAGAAGNNNN N<br />BstXI<br />CCANNNNNNTGG<br />GGTNNNNNNACC<br />CCANNNNN NTGG<br />GGTN NNNNNACC<br />Recall:<br />
  31. 31. Ligating Construct to unzippable DNA<br />Ligate – attach separate DNA strands into one continuous strand<br />Need to ligate in specific way<br />Limited by genomic DNA<br />Low adapter duplex concentration, but gradually increase during the course of the reaction<br />Where does unzippable DNA come from?<br />
  32. 32. Making Shotgun Clones<br />Why clone?<br />We can have a ton of a specific DNA fragment<br />Some for unzipping<br />Some for sequencing<br />What is shotgunning?<br />Drinking a beer really fast<br />Creating random fragments quickly<br />
  33. 33. How Cloning Works<br />Plasmids are:<br />Extra chromosomal<br />Capable of replication <br />Useful for cloning<br />Cloning is:<br />Identical copying of fragment of DNA<br />DNA can be inserted into plasmid for replication via Multiple Cloning site <br />Wikipedia.org<br />Fermentas.com<br />
  34. 34. Cloning<br />LacZ gene turns cell blue<br />Disrupting gene turns cells white<br />Can select specific colonies <br />Each colony contains different genomic fragment<br />fragment<br />Wikipedia<br />No fragment<br />
  35. 35. Genome Digestion<br />Need to make fragments from pure genomic DNA<br />XhoI digest produces very large fragments<br />XhoI+EcoRI provides much smaller fragment sizes<br />Need smaller fragments for cloning<br />
  36. 36. DNA Tethering<br />Create flow cell from double stick tape, slide and coverslip<br />Flow anti-dig, surface blocker, tethering DNA, microspheres, and wash sequencially<br />
  37. 37. What’s Next?<br />
  38. 38. Calibrate and Unzip<br />Can unzip without calibration<br />Messy data analysis<br />Calibrate with stuck beads and free moving beads<br />Then I can get GOOD unzipping data <br />this can be real soon<br />
  39. 39. Chromatin Studies<br />Shotgun Chromatin Mapping<br />Can insert random fragments into yeast to get chromatin<br />Want to map nucleosome and protein locations<br />Optical Trap<br />nucleosome<br />Elongating Pol II<br />ssDNA<br />Coverglass<br />Koch<br />
  40. 40. Transcriptional Studies<br />RNA Pol II unzipping profile<br />Has been achieved for RNA Polymerase I (E. coli)<br />Pol II analysis during initiation, elongation, and termination<br />Stalled Pol II in Elongation from collaborator (K. Adelman)<br />
  41. 41. A Little About Telomeres<br />During Replication, ends of DNA are lost<br />Telomeric DNA caps ends to prevent disaster<br />Telomerase makes new telomere DNA from short RNA template<br />Wikipedia<br />
  42. 42. Telomere Studies<br />Telomere mapping<br />Highly repetitive DNA<br />Not easily sequenced<br />Telomerase structure<br />T-loops<br />This DNA Molecule has<br />17 nearly identical<br />~200 bp repeats<br />Koch<br />Griffin et al.<br />
  43. 43. Can I do it all?<br />Shotgun DNA Mapping<br />Transcription Unzipping<br />Collaborator ready and willing<br />Foundations for Chromatin Mapping<br />Which incorporates transcription<br />Telomere Mapping is gravy<br />Kinesin huge possibility (depending on funding)<br />
  44. 44. Thank You Everyone!<br />sley<br />Lab<br />Toyoko and Cory too…<br />…And my committee!<br />
  45. 45. Gel Electrophoresis<br />Electric field applied to charged molecules<br />DNA is negatively charged<br />Gel lattice causes smaller particles to travel faster than larger ones<br />Staining allows visualization of DNA<br />Direction of <br />DNA motion<br />
  46. 46. Initial Studies<br />Using PHO5 as “calibrator”<br />PHO5 is promoter with 4 well know nucleosome positions<br />We can show mapping works<br />
  47. 47. Unzipping Sensitivity<br />Unzipping can detect:<br />Insertions<br />Deletions<br />Inversions<br />Seen Right – DNA sequence with deletion (black) compared with original sequence (red)<br />
  48. 48. Polymerase Chain Reaction<br />Needed to make anchor<br />Start with template DNA and primers<br />Taq polymerase replicates DNA from primer location<br />Undergoes multiple cycles of melting, annealing, and replicating (extension)<br />For anchor one primer has dig molecule attached (digitylated)<br />
  49. 49. Trapping<br />0<br />
  50. 50. Calibrating Trap Stiffness with free bead<br />viscosity<br />where<br />radius of particle<br />Power spectrum from<br />Fourier t’form<br />0, mass term insignificant in regime of frequency<br />
  51. 51. Profile from Stuck Bead(used in calibrating trap)<br />
  52. 52. Overview of Simulation<br />The simulation is based on a quasi-equilibrium model. This is achieved by calculating the expectation values for Force and unzipping index.<br />EFJC<br />EDNA<br />Bockelmann, U., & et al.(1997). Molecular Stick-Slip Motion Revealed by Opening DNA with Piconewton Forces. Physical Review Letters , 4489-4492<br />Wang, M. D ., & et al. (1997). Stretching DNA with Optical Tweezers. Biophysical Journal , 1335-1346.<br />
  53. 53. Overview of Simulation<br />EDNAis the energy to break the base pairs.<br />EFJC<br />EDNA<br />Bockelmann, U., & et al.(1997). Molecular Stick-Slip Motion Revealed by Opening DNA with Piconewton Forces. Physical Review Letters , 4489-4492<br />Wang, M. D ., & et al. (1997). Stretching DNA with Optical Tweezers. Biophysical Journal , 1335-1346.<br />
  54. 54. Overview of Simulation<br />EFJC is the energy of single stranded DNA. As the dsDNA unzips this increases.<br />EFJC<br />EDNA<br />Bockelmann, U., & et al.(1997). Molecular Stick-Slip Motion Revealed by Opening DNA with Piconewton Forces. Physical Review Letters , 4489-4492<br />Wang, M. D ., & et al. (1997). Stretching DNA with Optical Tweezers. Biophysical Journal , 1335-1346.<br />

×