Algebra Linear cap 07

Andrei Bastos
Andrei BastosEstudante um Universidade Federal do Espirito Santo
54
ELEMENTOS DE ÁLGEBRA LINEAR
CAPÍTULO 7
ISOMORFISMO
O objetivo deste capítulo é, dado uma transformação linear WV:T → , tentar definir a
transformação linear inversa, ou seja, VW:T 1
→−
. Quando ela existir será chamado de um
isomorfismo. Mas, antes precisamos de alguns conceitos.
Definição: Uma transformação linear WV:T → é chamada de injetora se
Vvev,vv)v(T)v(T 212121 ∈∀=⇒= .
Definição: Uma transformação linear WV:T → é sobrejetora se, e somente se .W)TIm( =
Definição: Uma transformação linear WV:T → é chamada de bijetora se, e somente se, ela é
injetora e sobrejetora.
Exemplo (1): Seja )yx,yx()y,x(T −+= uma transformação linear. Verificar se T é bijetora.
Solução: Temos que verificar se T é injetora e sobrejetora. Sejam )y,x(ve)y,x(v 222111 ==
dois vetores quaisquer do ℜ2
. Note que 22
:T ℜ→ℜ .
Se )yx,yx()yx,yx()v(T)v(T 2222111121 −+=−+⇒= ⇒



−=−
+=+
2211
2211
yxyx
yxyx
.
Resolvendo o sistema linear temos que 2121 yyexx == , ou seja, 21 vv = . Logo T é
injetora. Os vetores que formam a )TIm( são do tipo )yx,yx(v −+= . Então
)1,1(y)1,1(xv −+= , ou seja, )}1,1(),1,1{( − é uma base da Im(T) mas também é uma base
do ℜ2
. Logo, )dim()TIm(dim 2
ℜ= . Como 22
)TIm()TIm( ℜ=⇒ℜ⊂ . Assim, T é
sobrejetora. Portanto T é bijetora.
Vamos enunciar a seguir, alguns teoremas que nos ajudarão a verificar se uma
determinada transformação linear é ou não bijetora.
Teorema (1): Seja WV:T → uma transformação linear. Então T é injetora se, e somente se,
}0{)T(Ker = .
55
Demonstração:
(⇒⇒⇒⇒) hipótese: T é injetora
Tese: }0{)T(Ker =
Seja )T(Kerv∈ , então 0)v(T = ⇒ )0(T)v(T = . Com T é injetora, então 0v = . Portanto
}0{)T(Ker = .
(⇐⇐⇐⇐) hipótese: }0{)T(Ker =
Tese: T é injetora
Seja 0)vv(T0)v(T)v(T)v(T)v(T 212121 =−⇒=−⇒= . Isso significa que
}0{)T(Kervv 21 =∈− . Logo, 2121 vv0vv =⇒=− . Portanto, T é injetora.
Teorema (2): Uma transformação linear injetora WV:T → , leva vetores LI de V em vetores LI de
W.
Demonstração:
hipótese: T é injetora e V}v,...,v,v{ n21 ⊂ são LI.
Tese: W)}v(T),...,v(T),v(T{ n21 ⊂ são LI
Seja os escalares K,...,, n21 ∈ααα tais que 0)v(T...)v(T)v(T nn2211 =α++α+α . Então:
0)v...vv(T nn2211 =α++α+α . Como T é injetora, então, 0v...vv nn2211 =α++α+α . Como
}v,...,v,v{ n21 são LI, então 0... n21 =α==α=α . Portanto, )}v(T),...,v(T),v(T{ n21 são LI.
Teorema (3): Seja WV:T → uma transformação linear. Então: )T(Kerdim)TIm(dim)Vdim( +=
Demonstração: Seja V}u,...,u,u{ n21 ⊂ uma base do Ker(T). Podemos completar esse conjunto
de modo a obter uma base de V. Sejam V}v,...,v,v{ m21 ⊂ tais que a base de V se
escreva como }v,...,v,v,u,...,u,u{ m21n21 . Logo mn)Vdim( += . Basta mostrar
que )}v(T),...,v(T),v(T{ m21 é base da )TIm( . Para isso vamos mostrar que:
a) )}v(T),...,v(T),v(T{ m21 gera )TIm( .
b) )}v(T),...,v(T),v(T{ m21 é LI.
a) Seja )TIm(w ∈∀ , então existe Vv∈ tal que w)v(T = . Como Vv∈ ele se
escreve como combinação linear dos vetores da base de V. Logo, existem escalares
tais que mm2211nn2211 v...vvu...uuv α++α+α+β++β+β= . Daí vem que
)v(T...)v(T)v(T)u(T...)u(T)u(Tw)v(T mm2211nn2211 α++α+α+β++β+β==
Como }u,...,u,u{ n21 é base do Ker(T), então, 0)u(T...)u(T)u(T n21 ==== .
56
Logo, )v(T...)v(T)v(Tw)v(T mm2211 α++α+α== . Isso mostra que w é
combinação linear de )}v(T),...,v(T),v(T{ m21 . Portanto )}v(T),...,v(T),v(T{ m21
gera a Im(T).
b) Sejam m21 ,...,, ααα escalares tais que 0)v(T...)v(T)v(T mm2211 =α++α+α .
Então, 0)v...vv(T mm2211 =α++α+α ⇒ )T(Kerv...vv mm2211 ∈α++α+α .
Podemos escrever que: mm2211mm2211 u...uuv...vv β++β+β=α++α+α ⇒
0u...uuv...vv mm2211mm2211 =β−−β−β−α++α+α . Como a base de V é
}v,...,v,v,u,...,u,u{ m21n21 , logo 0...... m21m21 =β−==β−=β−=α==α=α .
Portanto )}v(T),...,v(T),v(T{ m21 é LI.
Teorema (4): Se )Wdim()Vdim( = então WV:T → é injetora se, somente se, T é sobrejetora.
Demonstração:
(⇒⇒⇒⇒) hipótese: )Wdim()Vdim( = e T é injetora
Tese: T é sobrejetora.
Como T é injetora ⇒ }0{)T(Ker = ⇒ 0)T(Kerdim = . Pelo teorema (3) temos que
)Wdim(0)TIm(dim)Vdim( =+= . Como )Wdim()TIm(dim = e W)TIm( ⊆ , pela
proposição (2) do capítulo (4), vem que W)TIm( = , ou seja, T é sobrejetora.
(⇐⇐⇐⇐) hipótese: )Wdim()Vdim( = e T é sobrejetora
Tese: T é injetora
Como T é injetora ⇒ )Wdim()TIm(dim = . Pelo teorema (3) temos que
)T(Kerdim)Wdim()Vdim( += . Como )Wdim()Vdim( = ⇒ 0)T(Kerdim = ⇒ }0{)T(Ker = .
Pelo teorema (1), T é injetora.
Teorema (5): Se WV:T → é uma transformação linear injetora e )Wdim()Vdim( = então T leva
base de V em base de W.
Demonstração: Seja }v,...,v,v{ n21 base de V ⇒ n)Vdim( = . Como )Wdim()Vdim( = e T é
injetora, pelo teorema (4), T é sobrejetora ⇒ nW)TIm( == . Temos que
)}v(T),...,v(T),v(T{ n21 geram W e são LI pelo teorema (2). Portanto
)}v(T),...,v(T),v(T{ n21 é base de W.
57
Teorema (6): Se WV:T → é uma transformação linear, então:
a) Se )Wdim()Vdim( > ⇒ T não é injetora
b) Se )Wdim()Vdim( < ⇒ T não é sobrejetora
Demonstração:
a) Suponhamos que T seja injetora, então 0)T(Kerdim = . Pelo teorema (3) temos que:
)Wdim()T(Kerdim)TIm(dim)Vdim( >+= ⇒ )Wdim()TIm(dim > (absurdo!). Portanto, T
não é injetora.
b) Suponhamos que T seja sobrejetora, então )Wdim()TIm(dim = . Pelo teorema (3) temos que
)Wdim()T(Kerdim)TIm(dim)Vdim( <+= ⇒ 0)T(Kerdim < (absurdo!). Portanto, T não é
sobrejetora.
Exemplo (2): Vamos resolver, novamente, o exemplo (1) utilizando os teoremas enunciados.
Solução: Como )yx,yx()y,x(T −+= , ou seja, 22
:T ℜ→ℜ , estamos nas condições do teorema
(4). Vamos determinar o Ker(T). Seja )0,0()yx,yx()y,x(T =−+= ⇒



=−
=+
0yx
0yx
.
Resolvendo o sistema temos que )}0,0{()T(Ker = . Pelo teorema (1), T é injetora. Pelo
teorema (4), se T é injetora então T é sobrejetora. Portanto T é bijetora.
Exemplo (3): Seja )(M)(P:T 2x22 ℜ→ℜ uma transformação linear definida por






−
−
=++
21
102
210
aa0
0aa
)tataa(T . T é sobrejetora? T é injetora? Determine a
dimensão do Ker(T) e da Im(T).
Solução: Como )(Mdim)(Pdim 2x22 ℜ<ℜ , pelo teorema (6), T não é sobrejetora. Vamos verificar
se ela é injetora. Seja )T(Kertataa)t(p 2
210 ∈++= . Então
( ) 





−
−
=





=
21
10
aa0
0aa
00
00
)t(pT ⇒



=−
=−
0aa
0aa
21
10
⇒ 210 aaa == . Logo, todo
)T(Ker)t(p ∈ é da forma: )tt1(atataa)t(p 2
0
2
000 ++=++= , ou seja, }tt1{ 2
++ é
base do Ker(T) ⇒ 1)T(Kerdim = . Pelo teorema (1), T não é injetora e pelo teorema (3)
temos: 2)TIm(dim1)TIm(dim)T(Kerdim)TIm(dim3)(Pdim 2 =⇒+=+==ℜ .
58
Definição: Seja WV:T → uma transformação linear. Dizemos que T é um isomorfismo se T é
uma transformação linear bijetora.
OBS: Quando WV = , ou seja, temos que VV:T → é um operador linear bijetor, então T é
chamado de um automorfismo.
Definição: Seja WV:T → um isomorfismo. Então, a aplicação inversa VW:T 1
→−
, se existir, é
também um isomorfismo tal que IdTTTT 11
== −−
oo .
Definição: Dois espaços vetoriais V e W são isomorfos se existir um isomorfismo entre eles.
Teorema (7): Dois espaços vetoriais sobre um mesmo corpo K são isomorfos se, e somente se, eles
têm a mesma dimensão.
Exemplo (4): Seja )aaa,aa,aa()tataa(T 2102110
2
210 ++−+=++ . T é um isomorfismo? Em
caso afirmativo, determine o isomorfismo inverso.
Solução: Note que 3
2 )(P:T ℜ→ℜ e 3)dim()(Pdim 3
2 =ℜ=ℜ . Seja )T(Kertataa 2
210 ∈++ .
Então, )aaa,aa,aa()0,0,0( 2102110 ++−+= ⇒





=++
=−
=+
0aaa
0aa
0aa
210
21
10
. Resolvendo o
sistema temos que 0aaa 210 === . Logo }0{)T(Ker = . Pelo teorema (1), T é injetora e
pelo teorema (4), T é sobrejetora. Portanto T é um isomorfismo. Seja )(P:T 2
31
ℜ→ℜ−
.
Então 2
210
1
tataa)z,y,x(T ++=−
⇒ )tataa(T)z,y,x(TT 2
210
1
++=−
o ⇒
)aaa,aa,aa()z,y,x( 2102110 ++−+= ⇒





++=
−=
+=
210
21
10
aaaz
aay
aax
⇒





+−=
++−=
−−=
zxa
zyxa
zyx2a
2
1
0
.
Portanto, 21
t)zx(t)zyx()zyx2()z,y,x(T +−+++−+−−=−
59
Exercícios Propostos
1) Seja )cba,dc,cb,ba(
dc
ba
T +++++=





uma transformação linear. Mostre que T é um
isomorfismo e determine o isomorfismo inverso. Resp: 





−++−
−++−
=−
tzxtx
tyxty
)t,z,y,x(T 1
2) Seja )y,zx,zx()z,y,x(T −+= um operador linear. Mostre que T é um automorfismo e
determine o automorfismo inverso. Resp: 




 −+
=−
2
yx
,z,
2
yx
)z,y,x(T 1
3) Dada à transformação linear )z,zy,yx,x()z,y,x(T −−= . Determine a dimensão da Im(T) e do
Ker(T). T é um isomorfismo? Porque?
Resp: 0)T(Kerdim = ⇒ T é injetora; 3)TIm(dim = ⇒ T não é sobrejetora. Portanto, T não é
um isomorfismo.
4) Se 21
t)zy(t)yx()zyx2()z,y,x(T −+−+−+=−
é o isomorfismo inverso da T, determine a T e
onde ela está definida.
Resp: 




 −−−−−
=++
2
a3a2a
,
2
aa2a
,
2
aa
)tataa(T 210210202
210 ; 3
2 )(P:T ℜ→ℜ
5) Sabendo que T é um automorfismo do ℜ2
e que 





=−= −
3
2
,
3
1
)0,1(Te)1,1()1,0(T 1
, determine a
expressão da T e da 1
T−
. Resp: 




 −+
=−+= −
3
yx2
,
3
yx
)y,x(Te)yx2,yx()y,x(T 1

Recomendados

Derivadas direcionais von
Derivadas direcionaisDerivadas direcionais
Derivadas direcionaisFranklin G Mendes
29.3K views14 Folien
Eu odeio edo 2ª edição von
Eu odeio edo 2ª ediçãoEu odeio edo 2ª edição
Eu odeio edo 2ª ediçãoHelder Guerreiro
3.4K views122 Folien
Matemática Discreta - Parte VI funções von
Matemática Discreta - Parte VI funçõesMatemática Discreta - Parte VI funções
Matemática Discreta - Parte VI funçõesUlrich Schiel
9.9K views33 Folien
Exercícios resolvidos von
Exercícios resolvidosExercícios resolvidos
Exercícios resolvidosLeonardo Ferreira
3.9K views27 Folien
Função de duas variáveis, domínios e imagem von
Função de duas variáveis, domínios e imagemFunção de duas variáveis, domínios e imagem
Função de duas variáveis, domínios e imagemIsadora Toledo
84.4K views13 Folien
A Matemática do Ensino Médio Volume 1 by Elon Lages Lima Paulo Cezar Pinto Ca... von
A Matemática do Ensino Médio Volume 1 by Elon Lages Lima Paulo Cezar Pinto Ca...A Matemática do Ensino Médio Volume 1 by Elon Lages Lima Paulo Cezar Pinto Ca...
A Matemática do Ensino Médio Volume 1 by Elon Lages Lima Paulo Cezar Pinto Ca...RodrigoLuis21
297 views247 Folien

Más contenido relacionado

Was ist angesagt?

2 gases von
2 gases2 gases
2 gasesLeonardo Menezes
1.2K views20 Folien
Logaritmo von
LogaritmoLogaritmo
LogaritmoAntonio Carneiro
5.9K views14 Folien
Livro Análise Combinatoria e Probabilidade .pdf von
Livro Análise Combinatoria e Probabilidade .pdfLivro Análise Combinatoria e Probabilidade .pdf
Livro Análise Combinatoria e Probabilidade .pdfElisângela Rodrigues
544 views132 Folien
57701066 matematica-discreta-exercicios-resolvidos von
57701066 matematica-discreta-exercicios-resolvidos57701066 matematica-discreta-exercicios-resolvidos
57701066 matematica-discreta-exercicios-resolvidosHAROLDO MIRANDA DA COSTA JR
35.4K views19 Folien
Cap 2 problemas estaticamente indeterminados von
Cap 2   problemas estaticamente indeterminadosCap 2   problemas estaticamente indeterminados
Cap 2 problemas estaticamente indeterminadosBianca Alencar
5.1K views13 Folien

Was ist angesagt?(20)

Cap 2 problemas estaticamente indeterminados von Bianca Alencar
Cap 2   problemas estaticamente indeterminadosCap 2   problemas estaticamente indeterminados
Cap 2 problemas estaticamente indeterminados
Bianca Alencar5.1K views
Sistemas Lineares 2equacoes 2incognitas von tioheraclito
Sistemas Lineares 2equacoes 2incognitasSistemas Lineares 2equacoes 2incognitas
Sistemas Lineares 2equacoes 2incognitas
tioheraclito4.2K views
Aula 20: O átomo de hidrogênio von Adriano Silva
Aula 20: O átomo de hidrogênioAula 20: O átomo de hidrogênio
Aula 20: O átomo de hidrogênio
Adriano Silva12.4K views
Exercícios matrizes ii gabarito von Otávio Sales
Exercícios matrizes ii gabaritoExercícios matrizes ii gabarito
Exercícios matrizes ii gabarito
Otávio Sales14.3K views
Lista de exercícios sobre refração luminosa 2º ano von Waldir Montenegro
Lista de exercícios sobre refração luminosa 2º anoLista de exercícios sobre refração luminosa 2º ano
Lista de exercícios sobre refração luminosa 2º ano
Waldir Montenegro5.9K views
Exercícios eletrostática von Victor Said
Exercícios eletrostáticaExercícios eletrostática
Exercícios eletrostática
Victor Said28.8K views
Lista de Exercícios - Relações nos triãngulos von andreilson18
Lista de Exercícios - Relações nos triãngulosLista de Exercícios - Relações nos triãngulos
Lista de Exercícios - Relações nos triãngulos
andreilson181.6K views
Ap fisica modulo 25 exercicios von comentada
Ap fisica modulo 25 exerciciosAp fisica modulo 25 exercicios
Ap fisica modulo 25 exercicios
comentada28K views
Algebra - Livro texto IV (UNIP/Matemática) 2018 von Antonio Marcos
Algebra - Livro texto IV (UNIP/Matemática) 2018Algebra - Livro texto IV (UNIP/Matemática) 2018
Algebra - Livro texto IV (UNIP/Matemática) 2018
Antonio Marcos1.3K views
Questõesdetermologia1 von afpinto
Questõesdetermologia1Questõesdetermologia1
Questõesdetermologia1
afpinto10K views

Destacado

Transformação linear von
Transformação linearTransformação linear
Transformação linearramos_unicap
1.7K views6 Folien
Algebra Linear cap 08 von
Algebra Linear cap  08Algebra Linear cap  08
Algebra Linear cap 08Andrei Bastos
625 views6 Folien
Combinação linear, autovetores e autovalores von
Combinação linear, autovetores e autovaloresCombinação linear, autovetores e autovalores
Combinação linear, autovetores e autovaloresAxsell Eker Aquiles
8.4K views29 Folien
Aula de Álgebra Linear - 1 de Dezembro von
Aula de Álgebra Linear - 1 de DezembroAula de Álgebra Linear - 1 de Dezembro
Aula de Álgebra Linear - 1 de DezembroThiago VedoVatto
495 views32 Folien
Curso de àlgebra linear von
Curso de àlgebra linearCurso de àlgebra linear
Curso de àlgebra linearThiago VedoVatto
968 views45 Folien
Álgebra Linear Para Leigos von
Álgebra Linear Para LeigosÁlgebra Linear Para Leigos
Álgebra Linear Para LeigosJúlio Alexandre
4.3K views28 Folien

Destacado(6)

Similar a Algebra Linear cap 07

1939 d (2) von
1939 d (2)1939 d (2)
1939 d (2)Tuane Paixão
2.9K views14 Folien
Algebra Linear cap 09 von
Algebra Linear cap 09Algebra Linear cap 09
Algebra Linear cap 09Andrei Bastos
560 views10 Folien
Capitulo4 tl06 von
Capitulo4 tl06Capitulo4 tl06
Capitulo4 tl06Jesu Ângelo Bispo Bispo
529 views20 Folien
Nucleo-Imagem.pdf von
Nucleo-Imagem.pdfNucleo-Imagem.pdf
Nucleo-Imagem.pdfPauloAndrePinheiro1
17 views16 Folien
Exercitandoaula6 von
Exercitandoaula6Exercitandoaula6
Exercitandoaula6AlexGrift
201 views1 Folie
Aula 4 espaços vetoriais von
Aula 4   espaços vetoriaisAula 4   espaços vetoriais
Aula 4 espaços vetoriaisFernanda Paola Butarelli
1.2K views28 Folien

Similar a Algebra Linear cap 07(20)

Exercitandoaula6 von AlexGrift
Exercitandoaula6Exercitandoaula6
Exercitandoaula6
AlexGrift201 views
Prova de edo von Molequita
Prova de edoProva de edo
Prova de edo
Molequita254 views
Aplicação da Transformada de Laplace na Determinação de Tensões e Correntes e... von Felipe De Almeida
Aplicação da Transformada de Laplace na Determinação de Tensões e Correntes e...Aplicação da Transformada de Laplace na Determinação de Tensões e Correntes e...
Aplicação da Transformada de Laplace na Determinação de Tensões e Correntes e...
Felipe De Almeida3.8K views

Más de Andrei Bastos

Lógica de programação em ppt von
Lógica de programação em pptLógica de programação em ppt
Lógica de programação em pptAndrei Bastos
4.4K views52 Folien
Geometria analitica exercicios resolvidos von
Geometria analitica exercicios resolvidosGeometria analitica exercicios resolvidos
Geometria analitica exercicios resolvidosAndrei Bastos
25.4K views9 Folien
Apostila vetores e geometria analitica von
Apostila vetores e geometria analiticaApostila vetores e geometria analitica
Apostila vetores e geometria analiticaAndrei Bastos
76K views157 Folien
GEOMETRIA ANALÍTICA cap 09 von
GEOMETRIA ANALÍTICA cap 09GEOMETRIA ANALÍTICA cap 09
GEOMETRIA ANALÍTICA cap 09Andrei Bastos
680 views8 Folien
GEOMETRIA ANALÍTICA cap 08 von
GEOMETRIA ANALÍTICA cap  08GEOMETRIA ANALÍTICA cap  08
GEOMETRIA ANALÍTICA cap 08Andrei Bastos
2.3K views17 Folien
GEOMETRIA ANALÍTICA cap 07 von
GEOMETRIA ANALÍTICA cap  07GEOMETRIA ANALÍTICA cap  07
GEOMETRIA ANALÍTICA cap 07Andrei Bastos
769 views8 Folien

Más de Andrei Bastos(20)

Lógica de programação em ppt von Andrei Bastos
Lógica de programação em pptLógica de programação em ppt
Lógica de programação em ppt
Andrei Bastos4.4K views
Geometria analitica exercicios resolvidos von Andrei Bastos
Geometria analitica exercicios resolvidosGeometria analitica exercicios resolvidos
Geometria analitica exercicios resolvidos
Andrei Bastos25.4K views
Apostila vetores e geometria analitica von Andrei Bastos
Apostila vetores e geometria analiticaApostila vetores e geometria analitica
Apostila vetores e geometria analitica
Andrei Bastos76K views
GEOMETRIA ANALÍTICA cap 09 von Andrei Bastos
GEOMETRIA ANALÍTICA cap 09GEOMETRIA ANALÍTICA cap 09
GEOMETRIA ANALÍTICA cap 09
Andrei Bastos680 views
GEOMETRIA ANALÍTICA cap 08 von Andrei Bastos
GEOMETRIA ANALÍTICA cap  08GEOMETRIA ANALÍTICA cap  08
GEOMETRIA ANALÍTICA cap 08
Andrei Bastos2.3K views
GEOMETRIA ANALÍTICA cap 07 von Andrei Bastos
GEOMETRIA ANALÍTICA cap  07GEOMETRIA ANALÍTICA cap  07
GEOMETRIA ANALÍTICA cap 07
Andrei Bastos769 views
GEOMETRIA ANALÍTICA cap 06 von Andrei Bastos
GEOMETRIA ANALÍTICA cap  06GEOMETRIA ANALÍTICA cap  06
GEOMETRIA ANALÍTICA cap 06
Andrei Bastos1.8K views
GEOMETRIA ANALÍTICA cap 05 von Andrei Bastos
GEOMETRIA ANALÍTICA cap  05GEOMETRIA ANALÍTICA cap  05
GEOMETRIA ANALÍTICA cap 05
Andrei Bastos1.6K views
GEOMETRIA ANALÍTICA cap 04 von Andrei Bastos
GEOMETRIA ANALÍTICA cap  04GEOMETRIA ANALÍTICA cap  04
GEOMETRIA ANALÍTICA cap 04
Andrei Bastos3.8K views
GEOMETRIA ANALÍTICA cap 03 von Andrei Bastos
GEOMETRIA ANALÍTICA cap  03GEOMETRIA ANALÍTICA cap  03
GEOMETRIA ANALÍTICA cap 03
Andrei Bastos800 views
GEOMETRIA ANALÍTICA cap 02 von Andrei Bastos
GEOMETRIA ANALÍTICA cap 02GEOMETRIA ANALÍTICA cap 02
GEOMETRIA ANALÍTICA cap 02
Andrei Bastos2.1K views
GEOMETRIA ANALÍTICA cap 01 von Andrei Bastos
GEOMETRIA ANALÍTICA cap  01GEOMETRIA ANALÍTICA cap  01
GEOMETRIA ANALÍTICA cap 01
Andrei Bastos2.7K views
GEOMETRIA ANALÍTICA cap 10 von Andrei Bastos
GEOMETRIA ANALÍTICA cap 10GEOMETRIA ANALÍTICA cap 10
GEOMETRIA ANALÍTICA cap 10
Andrei Bastos2.5K views
Java Comunicação Serial von Andrei Bastos
Java Comunicação SerialJava Comunicação Serial
Java Comunicação Serial
Andrei Bastos1.9K views
Provas Discursivas UFES 2010 von Andrei Bastos
Provas Discursivas UFES 2010Provas Discursivas UFES 2010
Provas Discursivas UFES 2010
Andrei Bastos5.8K views
C a linguagem de programação von Andrei Bastos
C   a linguagem de programaçãoC   a linguagem de programação
C a linguagem de programação
Andrei Bastos4.3K views

Algebra Linear cap 07

  • 1. 54 ELEMENTOS DE ÁLGEBRA LINEAR CAPÍTULO 7 ISOMORFISMO O objetivo deste capítulo é, dado uma transformação linear WV:T → , tentar definir a transformação linear inversa, ou seja, VW:T 1 →− . Quando ela existir será chamado de um isomorfismo. Mas, antes precisamos de alguns conceitos. Definição: Uma transformação linear WV:T → é chamada de injetora se Vvev,vv)v(T)v(T 212121 ∈∀=⇒= . Definição: Uma transformação linear WV:T → é sobrejetora se, e somente se .W)TIm( = Definição: Uma transformação linear WV:T → é chamada de bijetora se, e somente se, ela é injetora e sobrejetora. Exemplo (1): Seja )yx,yx()y,x(T −+= uma transformação linear. Verificar se T é bijetora. Solução: Temos que verificar se T é injetora e sobrejetora. Sejam )y,x(ve)y,x(v 222111 == dois vetores quaisquer do ℜ2 . Note que 22 :T ℜ→ℜ . Se )yx,yx()yx,yx()v(T)v(T 2222111121 −+=−+⇒= ⇒    −=− +=+ 2211 2211 yxyx yxyx . Resolvendo o sistema linear temos que 2121 yyexx == , ou seja, 21 vv = . Logo T é injetora. Os vetores que formam a )TIm( são do tipo )yx,yx(v −+= . Então )1,1(y)1,1(xv −+= , ou seja, )}1,1(),1,1{( − é uma base da Im(T) mas também é uma base do ℜ2 . Logo, )dim()TIm(dim 2 ℜ= . Como 22 )TIm()TIm( ℜ=⇒ℜ⊂ . Assim, T é sobrejetora. Portanto T é bijetora. Vamos enunciar a seguir, alguns teoremas que nos ajudarão a verificar se uma determinada transformação linear é ou não bijetora. Teorema (1): Seja WV:T → uma transformação linear. Então T é injetora se, e somente se, }0{)T(Ker = .
  • 2. 55 Demonstração: (⇒⇒⇒⇒) hipótese: T é injetora Tese: }0{)T(Ker = Seja )T(Kerv∈ , então 0)v(T = ⇒ )0(T)v(T = . Com T é injetora, então 0v = . Portanto }0{)T(Ker = . (⇐⇐⇐⇐) hipótese: }0{)T(Ker = Tese: T é injetora Seja 0)vv(T0)v(T)v(T)v(T)v(T 212121 =−⇒=−⇒= . Isso significa que }0{)T(Kervv 21 =∈− . Logo, 2121 vv0vv =⇒=− . Portanto, T é injetora. Teorema (2): Uma transformação linear injetora WV:T → , leva vetores LI de V em vetores LI de W. Demonstração: hipótese: T é injetora e V}v,...,v,v{ n21 ⊂ são LI. Tese: W)}v(T),...,v(T),v(T{ n21 ⊂ são LI Seja os escalares K,...,, n21 ∈ααα tais que 0)v(T...)v(T)v(T nn2211 =α++α+α . Então: 0)v...vv(T nn2211 =α++α+α . Como T é injetora, então, 0v...vv nn2211 =α++α+α . Como }v,...,v,v{ n21 são LI, então 0... n21 =α==α=α . Portanto, )}v(T),...,v(T),v(T{ n21 são LI. Teorema (3): Seja WV:T → uma transformação linear. Então: )T(Kerdim)TIm(dim)Vdim( += Demonstração: Seja V}u,...,u,u{ n21 ⊂ uma base do Ker(T). Podemos completar esse conjunto de modo a obter uma base de V. Sejam V}v,...,v,v{ m21 ⊂ tais que a base de V se escreva como }v,...,v,v,u,...,u,u{ m21n21 . Logo mn)Vdim( += . Basta mostrar que )}v(T),...,v(T),v(T{ m21 é base da )TIm( . Para isso vamos mostrar que: a) )}v(T),...,v(T),v(T{ m21 gera )TIm( . b) )}v(T),...,v(T),v(T{ m21 é LI. a) Seja )TIm(w ∈∀ , então existe Vv∈ tal que w)v(T = . Como Vv∈ ele se escreve como combinação linear dos vetores da base de V. Logo, existem escalares tais que mm2211nn2211 v...vvu...uuv α++α+α+β++β+β= . Daí vem que )v(T...)v(T)v(T)u(T...)u(T)u(Tw)v(T mm2211nn2211 α++α+α+β++β+β== Como }u,...,u,u{ n21 é base do Ker(T), então, 0)u(T...)u(T)u(T n21 ==== .
  • 3. 56 Logo, )v(T...)v(T)v(Tw)v(T mm2211 α++α+α== . Isso mostra que w é combinação linear de )}v(T),...,v(T),v(T{ m21 . Portanto )}v(T),...,v(T),v(T{ m21 gera a Im(T). b) Sejam m21 ,...,, ααα escalares tais que 0)v(T...)v(T)v(T mm2211 =α++α+α . Então, 0)v...vv(T mm2211 =α++α+α ⇒ )T(Kerv...vv mm2211 ∈α++α+α . Podemos escrever que: mm2211mm2211 u...uuv...vv β++β+β=α++α+α ⇒ 0u...uuv...vv mm2211mm2211 =β−−β−β−α++α+α . Como a base de V é }v,...,v,v,u,...,u,u{ m21n21 , logo 0...... m21m21 =β−==β−=β−=α==α=α . Portanto )}v(T),...,v(T),v(T{ m21 é LI. Teorema (4): Se )Wdim()Vdim( = então WV:T → é injetora se, somente se, T é sobrejetora. Demonstração: (⇒⇒⇒⇒) hipótese: )Wdim()Vdim( = e T é injetora Tese: T é sobrejetora. Como T é injetora ⇒ }0{)T(Ker = ⇒ 0)T(Kerdim = . Pelo teorema (3) temos que )Wdim(0)TIm(dim)Vdim( =+= . Como )Wdim()TIm(dim = e W)TIm( ⊆ , pela proposição (2) do capítulo (4), vem que W)TIm( = , ou seja, T é sobrejetora. (⇐⇐⇐⇐) hipótese: )Wdim()Vdim( = e T é sobrejetora Tese: T é injetora Como T é injetora ⇒ )Wdim()TIm(dim = . Pelo teorema (3) temos que )T(Kerdim)Wdim()Vdim( += . Como )Wdim()Vdim( = ⇒ 0)T(Kerdim = ⇒ }0{)T(Ker = . Pelo teorema (1), T é injetora. Teorema (5): Se WV:T → é uma transformação linear injetora e )Wdim()Vdim( = então T leva base de V em base de W. Demonstração: Seja }v,...,v,v{ n21 base de V ⇒ n)Vdim( = . Como )Wdim()Vdim( = e T é injetora, pelo teorema (4), T é sobrejetora ⇒ nW)TIm( == . Temos que )}v(T),...,v(T),v(T{ n21 geram W e são LI pelo teorema (2). Portanto )}v(T),...,v(T),v(T{ n21 é base de W.
  • 4. 57 Teorema (6): Se WV:T → é uma transformação linear, então: a) Se )Wdim()Vdim( > ⇒ T não é injetora b) Se )Wdim()Vdim( < ⇒ T não é sobrejetora Demonstração: a) Suponhamos que T seja injetora, então 0)T(Kerdim = . Pelo teorema (3) temos que: )Wdim()T(Kerdim)TIm(dim)Vdim( >+= ⇒ )Wdim()TIm(dim > (absurdo!). Portanto, T não é injetora. b) Suponhamos que T seja sobrejetora, então )Wdim()TIm(dim = . Pelo teorema (3) temos que )Wdim()T(Kerdim)TIm(dim)Vdim( <+= ⇒ 0)T(Kerdim < (absurdo!). Portanto, T não é sobrejetora. Exemplo (2): Vamos resolver, novamente, o exemplo (1) utilizando os teoremas enunciados. Solução: Como )yx,yx()y,x(T −+= , ou seja, 22 :T ℜ→ℜ , estamos nas condições do teorema (4). Vamos determinar o Ker(T). Seja )0,0()yx,yx()y,x(T =−+= ⇒    =− =+ 0yx 0yx . Resolvendo o sistema temos que )}0,0{()T(Ker = . Pelo teorema (1), T é injetora. Pelo teorema (4), se T é injetora então T é sobrejetora. Portanto T é bijetora. Exemplo (3): Seja )(M)(P:T 2x22 ℜ→ℜ uma transformação linear definida por       − − =++ 21 102 210 aa0 0aa )tataa(T . T é sobrejetora? T é injetora? Determine a dimensão do Ker(T) e da Im(T). Solução: Como )(Mdim)(Pdim 2x22 ℜ<ℜ , pelo teorema (6), T não é sobrejetora. Vamos verificar se ela é injetora. Seja )T(Kertataa)t(p 2 210 ∈++= . Então ( )       − − =      = 21 10 aa0 0aa 00 00 )t(pT ⇒    =− =− 0aa 0aa 21 10 ⇒ 210 aaa == . Logo, todo )T(Ker)t(p ∈ é da forma: )tt1(atataa)t(p 2 0 2 000 ++=++= , ou seja, }tt1{ 2 ++ é base do Ker(T) ⇒ 1)T(Kerdim = . Pelo teorema (1), T não é injetora e pelo teorema (3) temos: 2)TIm(dim1)TIm(dim)T(Kerdim)TIm(dim3)(Pdim 2 =⇒+=+==ℜ .
  • 5. 58 Definição: Seja WV:T → uma transformação linear. Dizemos que T é um isomorfismo se T é uma transformação linear bijetora. OBS: Quando WV = , ou seja, temos que VV:T → é um operador linear bijetor, então T é chamado de um automorfismo. Definição: Seja WV:T → um isomorfismo. Então, a aplicação inversa VW:T 1 →− , se existir, é também um isomorfismo tal que IdTTTT 11 == −− oo . Definição: Dois espaços vetoriais V e W são isomorfos se existir um isomorfismo entre eles. Teorema (7): Dois espaços vetoriais sobre um mesmo corpo K são isomorfos se, e somente se, eles têm a mesma dimensão. Exemplo (4): Seja )aaa,aa,aa()tataa(T 2102110 2 210 ++−+=++ . T é um isomorfismo? Em caso afirmativo, determine o isomorfismo inverso. Solução: Note que 3 2 )(P:T ℜ→ℜ e 3)dim()(Pdim 3 2 =ℜ=ℜ . Seja )T(Kertataa 2 210 ∈++ . Então, )aaa,aa,aa()0,0,0( 2102110 ++−+= ⇒      =++ =− =+ 0aaa 0aa 0aa 210 21 10 . Resolvendo o sistema temos que 0aaa 210 === . Logo }0{)T(Ker = . Pelo teorema (1), T é injetora e pelo teorema (4), T é sobrejetora. Portanto T é um isomorfismo. Seja )(P:T 2 31 ℜ→ℜ− . Então 2 210 1 tataa)z,y,x(T ++=− ⇒ )tataa(T)z,y,x(TT 2 210 1 ++=− o ⇒ )aaa,aa,aa()z,y,x( 2102110 ++−+= ⇒      ++= −= += 210 21 10 aaaz aay aax ⇒      +−= ++−= −−= zxa zyxa zyx2a 2 1 0 . Portanto, 21 t)zx(t)zyx()zyx2()z,y,x(T +−+++−+−−=−
  • 6. 59 Exercícios Propostos 1) Seja )cba,dc,cb,ba( dc ba T +++++=      uma transformação linear. Mostre que T é um isomorfismo e determine o isomorfismo inverso. Resp:       −++− −++− =− tzxtx tyxty )t,z,y,x(T 1 2) Seja )y,zx,zx()z,y,x(T −+= um operador linear. Mostre que T é um automorfismo e determine o automorfismo inverso. Resp:       −+ =− 2 yx ,z, 2 yx )z,y,x(T 1 3) Dada à transformação linear )z,zy,yx,x()z,y,x(T −−= . Determine a dimensão da Im(T) e do Ker(T). T é um isomorfismo? Porque? Resp: 0)T(Kerdim = ⇒ T é injetora; 3)TIm(dim = ⇒ T não é sobrejetora. Portanto, T não é um isomorfismo. 4) Se 21 t)zy(t)yx()zyx2()z,y,x(T −+−+−+=− é o isomorfismo inverso da T, determine a T e onde ela está definida. Resp:       −−−−− =++ 2 a3a2a , 2 aa2a , 2 aa )tataa(T 210210202 210 ; 3 2 )(P:T ℜ→ℜ 5) Sabendo que T é um automorfismo do ℜ2 e que       =−= − 3 2 , 3 1 )0,1(Te)1,1()1,0(T 1 , determine a expressão da T e da 1 T− . Resp:       −+ =−+= − 3 yx2 , 3 yx )y,x(Te)yx2,yx()y,x(T 1