SlideShare ist ein Scribd-Unternehmen logo
1 von 53
Downloaden Sie, um offline zu lesen
‫ر‬َ‫ـد‬ْ‫ق‬‫ِـ‬‫ن‬،،،‫لما‬‫اننا‬ ‫نصدق‬ْْ‫ق‬ِ‫ن‬‫ر‬َ‫د‬
LECTURE (4)
The Z-Transform
Amr E. Mohamed
Faculty of Engineering - Helwan University
Agenda
 Introduction
 The z-Transform
 Properties of the z-Transform
 Inverse z-Transform
 Direct Division Method
 Partial Fraction-expansion Method
 Inversion Integral Method (Residue Theorem)
 System Representation in the z-Domain
 The Transfer Function of a Discrete-Time System
 The Frequency Response of a Discrete-Time System
 System Properties in the z-Domain
 Causality
 Stability
 Relationships Between System Representations
2
Introduction
 A LTI discrete system, as discussed in Chapter 2, represented in time domain
using the impulse response, h(n), frequency domain using frequency response,
H(ej) or in the Z domain using transfer function, H(z) as shown in Fig. 3.1.
 Advantages of using frequency response:
1) The computation of steady state response is greatly facilitated.
2) The response to any arbitrary signal x(n) can be easily computed.
 Disadvantages of using frequency response:
1) There are some useful signals for which DTFT does not exist.
2) The transient response of a system due to initial conditions can not be
computed.
3Fig. 3.1 LTI discrete system representation.
 nh
 j
eH
 nx
 j
eX
  )(*)( nhnxny 
      jjj
eHeXeY 
 zX  zH      zHzXzY 
The z-Transform
 Counterpart of the Laplace transform for discrete-time signals
 Generalization of the Fourier Transform
 Fourier Transform does not exist for all signals
 The z-Transform is often time more convenient to use
 Definition:
 Compare to DTFT definition:
 z is a complex variable that can be represented as z=r ej
 Substituting z=ej will reduce the z-transform to DTFT
4
   




n
n
znxzX
    nj
n
j
enxeX 




z-transform of the Unit impulse
 Let x[n] = δ(n)
 Then
 And the region of convergence is all z, where z is a complex number.
5


 

otherwise0
0nfor1
(n)
    1(n)  






n
n
n
n
zznxzX 
z-transform of the a Shifted Unit impulse
 Let x[n] = δ(n-q)
 Then
 And the region of convergence is all z except for z=0.
6


 

otherwise0
qnfor1
q)-(n
    q
n
n
n
n
zzznxzX 






  q)-(n
z-transform of a Unit-Step Function
 Let x[n] = u[n]
 Then
 And the region of convergence will be |z|>1.
7


 

0nfor0
0nfor1
(n)

u
   
11
1
(n) 1
0 


 









 z
z
z
zzuznxzX
n
n
n
n
n
n
z-transform of anu[n]
 Let x[n] = anu[n]
 Then
 With the region of convergence |z|>|a| and a is any real or complex
number.
8


 

0nfor0
0nfor
(n)

n
n a
ua
    










0
(n)
n
nn
n
nn
n
n
zazuaznxzX
 
az
z
az
azzX
n
n



 



 1
0
1
1
1
)(
z-transform of nanu[n]
 Let x[n] = nanu[n]
 Then
 With the region of convergence |z|>|a| and a is any real or complex
number.
9


 

0nfor0
0nfor
(n)

n
n na
una
    










0
n(n)
n
nn
n
nn
n
n
zazunaznxzX
  221
0
1
)()1(
1
)(n
az
z
az
azzX
n
n



 




z-transform of Sinusoids
 Let x[n] = (cos Ωn) u[n]
 Then
 Similarly it can be shown:
10


 

0nfor0
0nfor)cos(
(n))cos(

n
un
2
n)(cos
njnj
ee 


)}()({
2
1
u(n)}n)({cos nuenueZ njnj 








  jj
ez
z
ez
z
2
1
u(n)}n)({cos
1)(cos2
)(cos
)(cos21
)(cos1
u(n)}n)({cos 2
2
21
1





 

zz
zz
zz
z
1)(cos2
)(s
)(cos21
)(s
u(n)}n)({sin 221
1





 

zz
inz
zz
inz
The z-transform and the DTFT
 The z-transform is a function of the complex z variable
 Convenient to describe on the complex z-plane
 If we plot z=ej for =0 to 2 we get the unit circle
11
Re
Im
Unit Circle

r=1
0
2 0 2

 j
eX
Right-Sided Exponential Sequence Example
 For Convergence we require
 Hence the ROC is defined as
 Inside the ROC series converges to
12
         







0
1
n
n
n
nnn
azznuazXnuanx





0n
n
1
az
az1az
n
1

    az
z
az
azzX
n
n



 




0
1
1
1
1
Re
Im
a 1
o x
• Region outside the circle of
radius a is the ROC
• Right-sided sequence ROCs
extend outside a circle
Left-Sided Exponential Sequence Example
 Hence the ROC is defined as
• Region inside the circle of radius a is the ROC
• Left-sided sequence ROCs extend inside a circle
13
          





1
1
11
n
n
n
nnn
azznuazXnuanx
azza 
11
Re
Im
a 1
o x
  ...]1[... 33221133221
 
zazazazazazazazX
 
az
z
za
zazX



 

1
1
1
1
Two-Sided Exponential Sequence Example
14
     1-n-u
2
1
-nu
3
1
nx
nn













11
1
0
1
0n
n
1
z
3
1
1
1
z
3
1
1
z
3
1
z
3
1
z
3
1





























11
0
11
1
n
n
1
z
2
1
1
1
z
2
1
1
z
2
1
z
2
1
z
2
1






























z
3
1
1z
3
1
:ROC 1

 
z
2
1
1z
2
1
:ROC 1


 


























2
1
z
3
1
z
12
1
zz2
z
2
1
1
1
z
3
1
1
1
zX
11
Re
Im
2
1
oo
12
1
xx3
1

15
Finite Length Sequence
 


 

otherwise0
1Nn0a
nx
n
     
az
az
z
1
az1
az1
azzazX
NN
1N1
N11N
0n
n1
1N
0n
nn





 







 Geometric series formula:





2
1
21N
Nn
1NN
n
a1
aa
a
Stability, Causality, and the ROC
 Consider a system with impulse response h[n]
 The z-transform H(z) and the pole-zero plot
shown
 Without any other information h[n] is not
uniquely determined
 |z|>2 or |z|<½ or ½<|z|<2
 If system stable ROC must include unit-circle:
½<|z|<2
 If system is causal must be right sided: |z|>2
16
17
Signal, 𝐱(𝐧) Z-Transform, 𝐗(𝐳) ROC
1 𝛅(𝐧) 1 all Z
2 𝛅(𝐧 − 𝐧 𝟎) 𝐳−𝐧 𝟎 𝐳 ≠ 𝟎
3 𝐮(𝐧)
𝐳
𝐳 − 𝟏
𝐳 > 𝟏
4 −𝐮(−𝐧 − 𝟏)
𝐳
𝐳 − 𝟏
𝐳 < 𝟏
5 𝐚 𝐧
𝐮(𝐧)
𝐳
𝐳 − 𝐚
𝐳 > 𝐚
6 −𝐚 𝐧
𝐮(−𝐧 − 𝟏)
𝐳
𝐳 − 𝐚
𝐳 < 𝐚
7 𝐧 𝐮(𝐧)
𝐳
(𝐳 − 𝟏) 𝟐
𝐳 > 𝟏
8 𝐧 𝐚 𝐧
𝐮(𝐧)
𝐚𝐳
(𝐳 − 𝐚) 𝟐
𝐳 > 𝐚
9 𝐜𝐨𝐬(𝛚 𝟎 𝐧)
𝐳 𝟐
− 𝐳𝐜𝐨𝐬(𝛚 𝟎)
𝐳 𝟐 − 𝟐𝐳 𝐜𝐨𝐬 𝛚 𝟎 + 𝟏
𝐳 > 𝟏
10 𝐬𝐢𝐧(𝛚 𝟎 𝐧)
𝐳 𝐬𝐢𝐧(𝛚 𝟎)
𝐳 𝟐 − 𝟐𝐳 𝐜𝐨𝐬 𝛚 𝟎 + 𝟏
𝐳 > 𝟏
11 𝐫 𝐧
𝐜𝐨𝐬(𝛚 𝟎 𝐧)
𝐳 𝟐
− 𝐳 𝐫 𝐜𝐨𝐬(𝛚 𝟎)
𝐳 𝟐 − 𝟐𝐳 𝐫 𝐜𝐨𝐬 𝛚 𝟎 + 𝐫 𝟐
𝐳 > 𝐫
12 𝐫 𝐧
𝐬𝐢𝐧(𝛚 𝟎 𝐧)
𝐳 𝐫 𝐬𝐢𝐧(𝛚 𝟎)
𝐳 𝟐 − 𝟐𝐳 𝐫 𝐜𝐨𝐬 𝛚 𝟎 + 𝐫 𝟐
𝐳 > 𝐫
Z-Transform Properties
18
19
Z-Transform Properties: Linearity
 Notation
 Linearity
 Note that the ROC of combined sequence may be larger than either ROC
 This would happen if some pole/zero cancellation occurs
 Example:
• Both sequences are right-sided
• Both sequences have a pole z=a
• Both have a ROC defined as |z|>|a|
• In the combined sequence the pole at z=a cancels with a zero at z=a
• The combined ROC is the entire z plane except z=0
 We did make use of this property already, where?
    x
Z
RROCzXnx  
        21 xx21
Z
21 RRROCzbXzaXnbxnax  
     N-nua-nuanx nn

Z-Transform Properties: Time Shifting
 Here no is an integer
 If positive the sequence is shifted right
 If negative the sequence is shifted left
 Add or remove poles at z=0 or z=
 Example:
20
    x
nZ
o RROCzXznnx o
 
 
4
1
z
z
4
1
1
1
zzX
1
1

















   1-nu
4
1
nx
1-n







    x
n
nnZ
o RROCzzXznnx
o
o






 

x(n)-
0n
Z-Transform Properties: Multiplication by Exponential
 ROC is scaled by |zo|
 All pole/zero locations are scaled
 If zo is a positive real number: z-plane shrinks or expands
 If zo is a complex number with unit magnitude it rotates
 Example: We know the z-transform pair
 Let’s find the z-transform of
21
    x
Zn
RROCzXnx   /
  1z:ROC
z-1
1
nu 1-
Z
 
             nurenurenunrnx
njnj
o
n oo 
 

2
1
2
1
cos
  rz
zre1
2/1
zre1
2/1
zX 1j1j oo




 
Z-Transform Properties: Differentiation
 Example: We want the inverse z-transform of
 Let’s differentiate to obtain rational expression
 Making use of z-transform properties and ROC
22
   
x
Z
RROC
dz
zdX
znnx  
    azaz1logzX 1
 
   
1
1
1
2
az1
1
az
dz
zdX
z
az1
az
dz
zdX









     1nuaannx
1n


     1nu
n
a
1nx
n
1n


Z-Transform Properties: Time Reversal
 ROC is inverted
 Example:
 Time reversed version of
23
   
x
Z
R
1
ROCz/1Xnx  
   nuanx n
 
 nuan
  1
11-
1-1
az
za-1
za-
az1
1
zX 





Z-Transform Properties: Convolution
 Convolution in time domain is multiplication in z-domain
 Example: Let’s calculate the convolution of
 Multiplications of z-transforms is
 ROC: if |a|<1 ROC is |z|>1 if |a|>1 ROC is |z|>|a|
 Partial fractional expansion of Y(z)
24
        2x1x21
Z
21 RR:ROCzXzXnxnx  
       nunxandnuanx 2
n
1 
  az:ROC
az1
1
zX 11 

 
  1z:ROC
z1
1
zX 12 

 
     
  1121
z1az1
1
zXzXzY 


  1z:ROCassume
1
1
1
1
1
1
11









 
azza
zY
      nuanu
a1
1
ny 1n



Z-Transform Properties: Initial and Final Value Theorems
 Initial Value Theorem:
 The value of x(n) as n → 0 is given by:
 Final Value Theorem:
 The value of x(n) as n →  is given by:
25
)(lim)(lim)0(
0
zXnxx
zn 

)]()1[(lim)(lim)(
1
zXznxx
zn


Z-Transform Properties: Complex Conjugation
 If X(z) = Z[x(n)], then:
26
XRzzXnx  *)(*)](*[Z
27
The inverse Z-Transform
28
29
The Inverse Z-Transform
 Formal inverse z-transform is based on a Cauchy integral
 Less formal ways sufficient most of the time
1) Direct or Long Division Method
2) Partial fraction expansion
3) Inversion Integral Method (Residue-theorem)
       dzzzX
j
zXZnx n
C
11
2
1 


30
Inverse Z-Transform: Power Series Expansion
 The z-transform is power series
 In expanded form
 Z-transforms of this form can generally be inversed easily
 Especially useful for finite-length series
 Example
   




n
n
znxzX
            ...21012... 2112
 
zxzxxzxzxzX
    
12
1112
2
1
1
2
1
z
11
2
1
1










zz
zzzzzX
         1n
2
1
n1n
2
1
2nnx 
 














Otherwise
n
n
n
n
nx
0
1
2
1
01
1
2
1
21
Inverse Z-Transform: Power Series Expansion
 Example: Find x(n) for n = 0, 1, 2, 3, 4, when X(z) is given by:
 Solution:
 First, rewrite X(z) as a ratio of polynomial in 𝑧−1
, as follows:
 Dividing the numerator by the denominator, we have:
31
 
  2.01
510



zz
z
zX
  21
21
2.02.11
510





zz
zz
zX
4321
68.184.181710 
 zzzz
21
2.02.11 
 zz 21
510 
 zz
32
217 
 zz
432
4.34.2017 
 zzz
43
4.34.18 
 zz
543
68.308.224.18 
 zzz
54
68.368.18 
 zz
654
736.3416.2268.18 
 zzz
321
21210 
 zzz Therefore,
• x(0) = 0,
• x(1) = 10,
• x(2) = 17,
• x(3) = 18.4
• x(4) = 18.68
Inverse Z-Transform: Partial Fraction Expansion
 Assume that a given z-transform can be expressed as
 Apply partial fractional expansion
 First term exist only if M>N
 Br is obtained by long division
 Second term represents all first order poles
 Third term represents an order s pole
 There will be a similar term for every high-order pole
 Each term can be inverse transformed by inspection
32
 






 N
0k
k
k
M
0k
k
k
za
zb
zX
 
  










s
1m
m1
i
m
N
ik,1k
1
k
k
NM
0r
r
r
zd1
C
zd1
A
zBzX
Inverse Z-Transform: Partial Fraction Expansion
 Coefficients are given as
 Easier to understand with examples
33
 
  










s
1m
m1
i
m
N
ik,1k
1
k
k
NM
0r
r
r
zd1
C
zd1
A
zBzX
    kdzkk zXzdA 

 1
1
   
     1
1
1
!
1















idw
s
ims
ms
ms
i
m wXwd
dw
d
dms
C
Example:
 Find x(n) if X(z) is given by:
 Solution: We first expand X(z)/z into partial fractions as follows :
 Then we obtain
 then
34
 
  2.01
10


zz
z
zX
 
      2.0
5.12
1
5.12
2.01
10






zzzzz
zX
  









2.01
5.12
z
z
z
z
zX
  )()2.0(5.12)(5.12 nununx n

  )(11
nZ 
 nu
z
z
Z 







1
1
 nua
az
z
Z n







1
Another Solution
 In this example, if X(z), rather than X(z)/z, is expanded into partial
fractions, then we obtain:
 However, by use of the shifting theorem we find :
 Then
35
 
   2.0
5.2
1
5.12
2.01
10






zzzz
z
zX
  








 
2.0
5.2
1
5.12 11
z
z
z
z
z
zzX
  )1(2.015.12)1()2.0(
2.0
5.2
)1(5.12)(
)1()2.0(5.2)1(5.12)( 1

 
nunununx
nununx
nn
n
 
 
 
 
 
..
..
48.124
4.123
122
101
00





x
x
x
x
x
     o
n
nnxzXzZ o
1
Example:
 Find x(n) if X(z) is given by:
 Solution: Expand X(z)/z into partial fraction as follows:
 Then:
 By referring to tables we find that x(n) is given by:
 and therefore,
 x(0) = 0 -1 +3 = 2
 x(1) = 18 – 2 + 3= 19
36
 
   12
2
2
3



zz
zz
zX
 
      1
3
2
1
2
9
12
12
22
2









zzzzz
z
z
zX
 
     1
3
22
9
2






z
z
z
z
z
z
zX
  )(3)()2()()2(5.4 nununrnx nn

 nnu
n
nn
nr 


 

00
0
)(

 
 nr
z
z
Z 







2
1
1
 
 nra
az
az
Z n








2
1
Solution of Difference Equations
37
Transfer Function Representation
 First – Order Case
 Let y[n] + ay[n-1] = bx[n]
 Then take the z-transform to get:
• Y(z) + a z-1Y(z) = b X(z)
 Simplifying:
• Y(z) (1 + az-1) = b X(z)
• Y(z) = (b X(z))/ (1 + az-1)
 And we have the transfer function H(z):
• Y(z) = H(z) X(z)
• so  H(z) = b z /(z + a)
38
Step Response of a First Order System
 If a discrete-Time system has the following difference equation y[n] + ay[n-1]
= bx[n]
 Find the impulse response
 Solution:
 In time Domain:
 y[n] = bx[n] - ay[n-1]
 For n<0  y[n] = 0
 at n=0  y[0] = b δ[0] – ay[-1] = b
 at n=1  y[1] = b δ[1] – ay[0] = -ab
 at n=2  y[2] = b δ[2] – ay[1] = a2b
 at n=3  y[3] = b δ[3] – ay[2] = -a3b
 For n>0  y[n] = (-a)n b
39
Step Response of a First Order System
 If a discrete-Time system has the following difference equation
y[n] + ay[n-1] = bx[n]
 Find the impulse response
 Solution:
 In z-Domain:
 By z-transform  Y[z] + az-1 y[z] = bX[z]
Y[z][1 + az-1] = bX[z]
Y[z] = b X[z] /[1 + az-1]
 Since, x[n] = δ[n]  X[z] = 1
Y[z] = b /[1 + az-1]
 By inverse z-transform
y[n] = (-a)nb u(n)
40
Second-Order Case
 Consider the following difference equation:
 Y[n] +a1y[n-1] +a2y[n-2] = b0x[n] + b1x[n-1]
• H(z) = (b0z2 + b1z)/(z2 + a1z + a2)
41
Nth-Order System
 y[n] +a1y[n-1] +…+aNy[n-N] =b0x[n]+…+bMx[n-M]
 And H(z) = B(z)/A(z)
 Where H(z) =(b0+…+bMz-M)/(1 + a1z-1+ …+aNz-N)
 Now multiply by (zN/zN)
 H(z) = (b0zN +…+bMzN-M)/ (zN + a1zN-1 + …+ aN)
 So we have
 B(z) = (b0zN +…+bMzN-M)
 A(z) = (zN + a1zN-1 + …+ aN)
42
System Representation in the z-
Domain
43
The Transfer Function of a Discrete-Time System
 The transfer function of a discrete-time system is defined as the ratio of the z
transform of the response to the z transform of the excitation as shown in Fig. 3.6.
 Consider a linear, time-invariant, discrete-time system, and let x(n), y(n), and h(n)
be the excitation, response, and impulse response, respectively. From the
convolution summation in Eq. (2.7), we have:
 and, therefore, from the real-convolution theorem, we get:
 or
44
     



k
knhkxny
      





 

k
knhkxZnyZ
Fig. 3.6 The transfer function of a discrete-time system.
H(z)
X(z) Y(z)
Input
Excitation
Output
Response
System Function
Transfer Function         
 zX
zY
zHzHzXzY 
Derivation of the Transfer Function from Difference Equation
 A causal, linear, time-invariant, recursive discrete-time system can be
represented by the difference equation Eq. (2.10) as:
 Apply the z transform for both sides, we get:
45
      





  
 
N
i
M
i
ii inybinxaZnyZ
0 1
 
 


N
i
M
i
i
i
i
i zbzYzazXzY
0 1
)()()(
   
 
 
 zD
zN
zb
za
zX
zY
zH M
i
i
i
N
i
i
i









1
0
1
      
 

N
i
M
i
ii inyainxany
0 1
Derivation of the Transfer Function from the System Network
 The z-domain characterizations of the unit delay, the adder, and the multiplier
are obtained from Fig. 2.9 and shown in Fig. 3.7.
46Fig. 3.7 Elements of discrete-time systems (a) Unit delay, (b) Adder, (c) Multiplier.
The Transfer Function of a Discrete-Time System
 Example 3.14 Find the transfer function of the system shown in Fig. 3.8.
 Solution From Fig. 3.8, we can write:
 Therefore,
47Fig. 3.8 Second-order recursive system.
  )(
4
1
)(
2
1
)( 21
zWzzWzzXzW 

    )()1()()( 11
zWzzYzWzzWzY 

 
21
4
1
2
1
1
)(



zz
zX
zW
 
4
1
2
1
)1(
)(
)(
2



zz
zz
zX
zY
zH
The Frequency Response of a Discrete-Time System
 If x(n) is absolutely sumable, that is:
 Then the discrete-time Fourier transform is given by:
 The operator [.] transforms a discrete time signal x(n) into a complex valued
continuous function X(ej) of real variable  = 𝟐𝝅𝒇 .
 X(ej) is a complex valued continuous function.
  = 𝟐𝝅𝒇 [rad/sec] and f is the digital frequency measured in [C/S or Hz].
 To find the frequency response 𝑯(𝒆𝒋) from the transfer function, H(z), replace z
by 𝒆𝒋 as follow:
48
  

0n
nx
      




0n
njj
enxnxeX 
   


j
ezn
njj
zHenheH




  )(
 nx      nhnxny 
 j
eX  j
eH
 nh
      jjj
eHeXeY 
    j
eYny 1

Example
 For the system described by its impulse response do:
a) Derive the frequency response, 𝐻(𝑒𝑗) .
b) Evaluate and draw its magnitude and phase at 𝜔 = 0, 0.25𝜋, 0.5𝜋, 0.75𝜋 𝑎𝑛𝑑 𝜋.
 Solution
a) Using DTFT Eq.(3.17 and 3.18), we find :
Hence:
Or
and
49
     nunh
n
9.0
     
         

sin9.0cos9.01
1
9.01
1
9.0
0 je
eenheH j
n n
njnnjj



 





 
 
                  22222
sincos9.0cos9.021
1
sin9.0cos9.01
1





j
eH
   

cos8.181.1
1

j
eH
   
 









cos9.01
sin9.0
arctanj
eH
Example (Cont.)
b) The magnitude and phase plots are shown in Fig. 3.9.
50
Fig. 3.9 The frequency response of a discrete-time system:
(a) The magnitude plot and (b) The phase plot.
(a) (b)
Causality
 H(z) is described as:
 H(z) is causal If the order of the denominator, D(z) ≥ the order of numerator N(z).
 Example 3.16: Check the system causality if its transfer function, H(z) is:
a) b)
 Solution
a) The system is not causal as the O[N(z)] > O[D(z)].
b) H(z) can be rewritten as:
Therefore, he system is causal as the O[N(z)] = O[D(z)].
51
   
 zD
zN
zH 
 
8
1
4
1
2
2
23



zz
zzz
zH   1
1 21
1
3
1
1
1

 



zz
zH
 
1)3/5(
)3/5(2
21
1
)3/1(1
1
2
2
11






 
zz
zz
zz
zH
Stability
 A LTI system is said to be stable If the poles of H(z) lies inside the unit
circle (z=1)
 Example 3.16 Check the system stability if its transfer function, H(z) is:
a) b)
 Solution
a) H(z) can be rewritten as:
This system is unstable as it has one pole at z = 4.
a) H(z) can be rewritten as:
This system is stable as it has one pole at z = 0.5.
52
  1
41
1



z
zH   


 

1
1
)2/1(1
)2/1(1
z
z
zH
 
)2/1(
)2/1(
)2/1(1
)2/1(1
1
1





 

z
z
z
z
zH
 
441
1
1



 
z
z
z
zH
53

Weitere ähnliche Inhalte

Was ist angesagt?

5. convolution and correlation of discrete time signals
5. convolution and correlation of discrete time signals 5. convolution and correlation of discrete time signals
5. convolution and correlation of discrete time signals MdFazleRabbi18
 
Design of FIR filters
Design of FIR filtersDesign of FIR filters
Design of FIR filtersop205
 
Chapter2 - Linear Time-Invariant System
Chapter2 - Linear Time-Invariant SystemChapter2 - Linear Time-Invariant System
Chapter2 - Linear Time-Invariant SystemAttaporn Ninsuwan
 
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and SystemsDSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and SystemsAmr E. Mohamed
 
Decimation in time and frequency
Decimation in time and frequencyDecimation in time and frequency
Decimation in time and frequencySARITHA REDDY
 
Lecture No:1 Signals & Systems
Lecture No:1 Signals & SystemsLecture No:1 Signals & Systems
Lecture No:1 Signals & Systemsrbatec
 
Digital Signal Processing[ECEG-3171]-Ch1_L03
Digital Signal Processing[ECEG-3171]-Ch1_L03Digital Signal Processing[ECEG-3171]-Ch1_L03
Digital Signal Processing[ECEG-3171]-Ch1_L03Rediet Moges
 
Fourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time SignalsFourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time SignalsJayanshu Gundaniya
 
Chapter1 - Signal and System
Chapter1 - Signal and SystemChapter1 - Signal and System
Chapter1 - Signal and SystemAttaporn Ninsuwan
 
Overlap save method and overlap add method in dsp
Overlap save method and overlap add method in dspOverlap save method and overlap add method in dsp
Overlap save method and overlap add method in dspchitra raju
 
Dsp U Lec10 DFT And FFT
Dsp U   Lec10  DFT And  FFTDsp U   Lec10  DFT And  FFT
Dsp U Lec10 DFT And FFTtaha25
 
Z transforms and their applications
Z transforms and their applicationsZ transforms and their applications
Z transforms and their applicationsRam Kumar K R
 
Discrete Time Fourier Transform
Discrete Time Fourier TransformDiscrete Time Fourier Transform
Discrete Time Fourier TransformWaqas Afzal
 
FILTER DESIGN
FILTER DESIGNFILTER DESIGN
FILTER DESIGNnaimish12
 
Digital Signal Processing[ECEG-3171]-Ch1_L02
Digital Signal Processing[ECEG-3171]-Ch1_L02Digital Signal Processing[ECEG-3171]-Ch1_L02
Digital Signal Processing[ECEG-3171]-Ch1_L02Rediet Moges
 
Digital Signal Processing
Digital Signal ProcessingDigital Signal Processing
Digital Signal ProcessingSandip Ladi
 

Was ist angesagt? (20)

5. convolution and correlation of discrete time signals
5. convolution and correlation of discrete time signals 5. convolution and correlation of discrete time signals
5. convolution and correlation of discrete time signals
 
Design of Filters PPT
Design of Filters PPTDesign of Filters PPT
Design of Filters PPT
 
Design of FIR filters
Design of FIR filtersDesign of FIR filters
Design of FIR filters
 
Chapter2 - Linear Time-Invariant System
Chapter2 - Linear Time-Invariant SystemChapter2 - Linear Time-Invariant System
Chapter2 - Linear Time-Invariant System
 
Fourier transform
Fourier transformFourier transform
Fourier transform
 
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and SystemsDSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
 
Decimation in time and frequency
Decimation in time and frequencyDecimation in time and frequency
Decimation in time and frequency
 
Lecture No:1 Signals & Systems
Lecture No:1 Signals & SystemsLecture No:1 Signals & Systems
Lecture No:1 Signals & Systems
 
Z Transform
Z TransformZ Transform
Z Transform
 
Digital Signal Processing[ECEG-3171]-Ch1_L03
Digital Signal Processing[ECEG-3171]-Ch1_L03Digital Signal Processing[ECEG-3171]-Ch1_L03
Digital Signal Processing[ECEG-3171]-Ch1_L03
 
Fourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time SignalsFourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time Signals
 
Chapter1 - Signal and System
Chapter1 - Signal and SystemChapter1 - Signal and System
Chapter1 - Signal and System
 
Overlap save method and overlap add method in dsp
Overlap save method and overlap add method in dspOverlap save method and overlap add method in dsp
Overlap save method and overlap add method in dsp
 
Dsp U Lec10 DFT And FFT
Dsp U   Lec10  DFT And  FFTDsp U   Lec10  DFT And  FFT
Dsp U Lec10 DFT And FFT
 
Two port network
Two port networkTwo port network
Two port network
 
Z transforms and their applications
Z transforms and their applicationsZ transforms and their applications
Z transforms and their applications
 
Discrete Time Fourier Transform
Discrete Time Fourier TransformDiscrete Time Fourier Transform
Discrete Time Fourier Transform
 
FILTER DESIGN
FILTER DESIGNFILTER DESIGN
FILTER DESIGN
 
Digital Signal Processing[ECEG-3171]-Ch1_L02
Digital Signal Processing[ECEG-3171]-Ch1_L02Digital Signal Processing[ECEG-3171]-Ch1_L02
Digital Signal Processing[ECEG-3171]-Ch1_L02
 
Digital Signal Processing
Digital Signal ProcessingDigital Signal Processing
Digital Signal Processing
 

Ähnlich wie DSP_2018_FOEHU - Lec 04 - The z-Transform

dsp dsp by Dr. k Udaya kumar power point
dsp dsp by Dr. k Udaya kumar power pointdsp dsp by Dr. k Udaya kumar power point
dsp dsp by Dr. k Udaya kumar power pointAnujKumar734472
 
Digital Signal Processing and the z-transform
Digital Signal Processing and the  z-transformDigital Signal Processing and the  z-transform
Digital Signal Processing and the z-transformRowenaDulay1
 
Signals and systems3 ppt
Signals and systems3 pptSignals and systems3 ppt
Signals and systems3 pptEngr umar
 
Chapter 6 frequency domain transformation.pptx
Chapter 6 frequency domain transformation.pptxChapter 6 frequency domain transformation.pptx
Chapter 6 frequency domain transformation.pptxEyob Adugnaw
 
ADSP (17 Nov)week8.ppt
ADSP (17 Nov)week8.pptADSP (17 Nov)week8.ppt
ADSP (17 Nov)week8.pptAhmadZafar60
 
Region of Convergence (ROC) in the z-plane
Region of Convergence (ROC) in the z-planeRegion of Convergence (ROC) in the z-plane
Region of Convergence (ROC) in the z-planevenkatasuman1983
 
Dsp U Lec05 The Z Transform
Dsp U   Lec05 The Z TransformDsp U   Lec05 The Z Transform
Dsp U Lec05 The Z Transformtaha25
 
Best to be presented z-transform
Best to be presented   z-transformBest to be presented   z-transform
Best to be presented z-transformKaransinh Parmar
 
"Z" TRANSFORM TOPIC REVIEW
"Z" TRANSFORM  TOPIC REVIEW"Z" TRANSFORM  TOPIC REVIEW
"Z" TRANSFORM TOPIC REVIEWSharmanya Korde
 

Ähnlich wie DSP_2018_FOEHU - Lec 04 - The z-Transform (20)

Z transform
Z transformZ transform
Z transform
 
dsp dsp by Dr. k Udaya kumar power point
dsp dsp by Dr. k Udaya kumar power pointdsp dsp by Dr. k Udaya kumar power point
dsp dsp by Dr. k Udaya kumar power point
 
Digital Signal Processing and the z-transform
Digital Signal Processing and the  z-transformDigital Signal Processing and the  z-transform
Digital Signal Processing and the z-transform
 
Signals and systems3 ppt
Signals and systems3 pptSignals and systems3 ppt
Signals and systems3 ppt
 
z transform.pptx
z transform.pptxz transform.pptx
z transform.pptx
 
Chapter 6 frequency domain transformation.pptx
Chapter 6 frequency domain transformation.pptxChapter 6 frequency domain transformation.pptx
Chapter 6 frequency domain transformation.pptx
 
Unit 7 &amp; 8 z-transform
Unit 7 &amp; 8  z-transformUnit 7 &amp; 8  z-transform
Unit 7 &amp; 8 z-transform
 
ADSP (17 Nov)week8.ppt
ADSP (17 Nov)week8.pptADSP (17 Nov)week8.ppt
ADSP (17 Nov)week8.ppt
 
ADSP (17 Nov).ppt
ADSP (17 Nov).pptADSP (17 Nov).ppt
ADSP (17 Nov).ppt
 
Region of Convergence (ROC) in the z-plane
Region of Convergence (ROC) in the z-planeRegion of Convergence (ROC) in the z-plane
Region of Convergence (ROC) in the z-plane
 
Ch3_Z-transform.pdf
Ch3_Z-transform.pdfCh3_Z-transform.pdf
Ch3_Z-transform.pdf
 
Z transfrm ppt
Z transfrm pptZ transfrm ppt
Z transfrm ppt
 
5.pdf
5.pdf5.pdf
5.pdf
 
Dsp U Lec05 The Z Transform
Dsp U   Lec05 The Z TransformDsp U   Lec05 The Z Transform
Dsp U Lec05 The Z Transform
 
Best to be presented z-transform
Best to be presented   z-transformBest to be presented   z-transform
Best to be presented z-transform
 
Digital signal processing part2
Digital signal processing part2Digital signal processing part2
Digital signal processing part2
 
"Z" TRANSFORM TOPIC REVIEW
"Z" TRANSFORM  TOPIC REVIEW"Z" TRANSFORM  TOPIC REVIEW
"Z" TRANSFORM TOPIC REVIEW
 
ch3-4
ch3-4ch3-4
ch3-4
 
Signal3
Signal3Signal3
Signal3
 
Z TRRANSFORM
Z  TRRANSFORMZ  TRRANSFORM
Z TRRANSFORM
 

Mehr von Amr E. Mohamed

Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processingDsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processingAmr E. Mohamed
 
Dcs lec03 - z-analysis of discrete time control systems
Dcs   lec03 - z-analysis of discrete time control systemsDcs   lec03 - z-analysis of discrete time control systems
Dcs lec03 - z-analysis of discrete time control systemsAmr E. Mohamed
 
Dcs lec02 - z-transform
Dcs   lec02 - z-transformDcs   lec02 - z-transform
Dcs lec02 - z-transformAmr E. Mohamed
 
Dcs lec01 - introduction to discrete-time control systems
Dcs   lec01 - introduction to discrete-time control systemsDcs   lec01 - introduction to discrete-time control systems
Dcs lec01 - introduction to discrete-time control systemsAmr E. Mohamed
 
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing ApplicationsDDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing ApplicationsAmr E. Mohamed
 
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter DesignDSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter DesignAmr E. Mohamed
 
SE2018_Lec-22_-Continuous-Integration-Tools
SE2018_Lec-22_-Continuous-Integration-ToolsSE2018_Lec-22_-Continuous-Integration-Tools
SE2018_Lec-22_-Continuous-Integration-ToolsAmr E. Mohamed
 
SE2018_Lec 21_ Software Configuration Management (SCM)
SE2018_Lec 21_ Software Configuration Management (SCM)SE2018_Lec 21_ Software Configuration Management (SCM)
SE2018_Lec 21_ Software Configuration Management (SCM)Amr E. Mohamed
 
SE2018_Lec 18_ Design Principles and Design Patterns
SE2018_Lec 18_ Design Principles and Design PatternsSE2018_Lec 18_ Design Principles and Design Patterns
SE2018_Lec 18_ Design Principles and Design PatternsAmr E. Mohamed
 
Selenium - Introduction
Selenium - IntroductionSelenium - Introduction
Selenium - IntroductionAmr E. Mohamed
 
SE2018_Lec 20_ Test-Driven Development (TDD)
SE2018_Lec 20_ Test-Driven Development (TDD)SE2018_Lec 20_ Test-Driven Development (TDD)
SE2018_Lec 20_ Test-Driven Development (TDD)Amr E. Mohamed
 
SE2018_Lec 19_ Software Testing
SE2018_Lec 19_ Software TestingSE2018_Lec 19_ Software Testing
SE2018_Lec 19_ Software TestingAmr E. Mohamed
 
DSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital FiltersDSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital FiltersAmr E. Mohamed
 
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time SignalsDSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time SignalsAmr E. Mohamed
 
SE2018_Lec 15_ Software Design
SE2018_Lec 15_ Software DesignSE2018_Lec 15_ Software Design
SE2018_Lec 15_ Software DesignAmr E. Mohamed
 
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal ProcessingDSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal ProcessingAmr E. Mohamed
 
DSP_2018_FOEHU - Lec 0 - Course Outlines
DSP_2018_FOEHU - Lec 0 - Course OutlinesDSP_2018_FOEHU - Lec 0 - Course Outlines
DSP_2018_FOEHU - Lec 0 - Course OutlinesAmr E. Mohamed
 
SE2018_Lec 14_ Process Modeling and Data Flow Diagram.pptx
SE2018_Lec 14_ Process Modeling and Data Flow Diagram.pptxSE2018_Lec 14_ Process Modeling and Data Flow Diagram.pptx
SE2018_Lec 14_ Process Modeling and Data Flow Diagram.pptxAmr E. Mohamed
 
SE18_Lec 13_ Project Planning
SE18_Lec 13_ Project PlanningSE18_Lec 13_ Project Planning
SE18_Lec 13_ Project PlanningAmr E. Mohamed
 

Mehr von Amr E. Mohamed (20)

Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processingDsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
 
Dcs lec03 - z-analysis of discrete time control systems
Dcs   lec03 - z-analysis of discrete time control systemsDcs   lec03 - z-analysis of discrete time control systems
Dcs lec03 - z-analysis of discrete time control systems
 
Dcs lec02 - z-transform
Dcs   lec02 - z-transformDcs   lec02 - z-transform
Dcs lec02 - z-transform
 
Dcs lec01 - introduction to discrete-time control systems
Dcs   lec01 - introduction to discrete-time control systemsDcs   lec01 - introduction to discrete-time control systems
Dcs lec01 - introduction to discrete-time control systems
 
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing ApplicationsDDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
 
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter DesignDSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
 
SE2018_Lec 17_ Coding
SE2018_Lec 17_ CodingSE2018_Lec 17_ Coding
SE2018_Lec 17_ Coding
 
SE2018_Lec-22_-Continuous-Integration-Tools
SE2018_Lec-22_-Continuous-Integration-ToolsSE2018_Lec-22_-Continuous-Integration-Tools
SE2018_Lec-22_-Continuous-Integration-Tools
 
SE2018_Lec 21_ Software Configuration Management (SCM)
SE2018_Lec 21_ Software Configuration Management (SCM)SE2018_Lec 21_ Software Configuration Management (SCM)
SE2018_Lec 21_ Software Configuration Management (SCM)
 
SE2018_Lec 18_ Design Principles and Design Patterns
SE2018_Lec 18_ Design Principles and Design PatternsSE2018_Lec 18_ Design Principles and Design Patterns
SE2018_Lec 18_ Design Principles and Design Patterns
 
Selenium - Introduction
Selenium - IntroductionSelenium - Introduction
Selenium - Introduction
 
SE2018_Lec 20_ Test-Driven Development (TDD)
SE2018_Lec 20_ Test-Driven Development (TDD)SE2018_Lec 20_ Test-Driven Development (TDD)
SE2018_Lec 20_ Test-Driven Development (TDD)
 
SE2018_Lec 19_ Software Testing
SE2018_Lec 19_ Software TestingSE2018_Lec 19_ Software Testing
SE2018_Lec 19_ Software Testing
 
DSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital FiltersDSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital Filters
 
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time SignalsDSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
 
SE2018_Lec 15_ Software Design
SE2018_Lec 15_ Software DesignSE2018_Lec 15_ Software Design
SE2018_Lec 15_ Software Design
 
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal ProcessingDSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
 
DSP_2018_FOEHU - Lec 0 - Course Outlines
DSP_2018_FOEHU - Lec 0 - Course OutlinesDSP_2018_FOEHU - Lec 0 - Course Outlines
DSP_2018_FOEHU - Lec 0 - Course Outlines
 
SE2018_Lec 14_ Process Modeling and Data Flow Diagram.pptx
SE2018_Lec 14_ Process Modeling and Data Flow Diagram.pptxSE2018_Lec 14_ Process Modeling and Data Flow Diagram.pptx
SE2018_Lec 14_ Process Modeling and Data Flow Diagram.pptx
 
SE18_Lec 13_ Project Planning
SE18_Lec 13_ Project PlanningSE18_Lec 13_ Project Planning
SE18_Lec 13_ Project Planning
 

Kürzlich hochgeladen

Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfAsst.prof M.Gokilavani
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Solving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptSolving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptJasonTagapanGulla
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
Industrial Safety Unit-I SAFETY TERMINOLOGIES
Industrial Safety Unit-I SAFETY TERMINOLOGIESIndustrial Safety Unit-I SAFETY TERMINOLOGIES
Industrial Safety Unit-I SAFETY TERMINOLOGIESNarmatha D
 
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfgUnit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfgsaravananr517913
 
Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating SystemRashmi Bhat
 
Earthing details of Electrical Substation
Earthing details of Electrical SubstationEarthing details of Electrical Substation
Earthing details of Electrical Substationstephanwindworld
 
home automation using Arduino by Aditya Prasad
home automation using Arduino by Aditya Prasadhome automation using Arduino by Aditya Prasad
home automation using Arduino by Aditya Prasadaditya806802
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHC Sai Kiran
 
Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating SystemRashmi Bhat
 
Class 1 | NFPA 72 | Overview Fire Alarm System
Class 1 | NFPA 72 | Overview Fire Alarm SystemClass 1 | NFPA 72 | Overview Fire Alarm System
Class 1 | NFPA 72 | Overview Fire Alarm Systemirfanmechengr
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 
NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...
NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...
NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...Amil Baba Dawood bangali
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncssuser2ae721
 

Kürzlich hochgeladen (20)

Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Solving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptSolving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.ppt
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
Industrial Safety Unit-I SAFETY TERMINOLOGIES
Industrial Safety Unit-I SAFETY TERMINOLOGIESIndustrial Safety Unit-I SAFETY TERMINOLOGIES
Industrial Safety Unit-I SAFETY TERMINOLOGIES
 
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfgUnit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
 
Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating System
 
Earthing details of Electrical Substation
Earthing details of Electrical SubstationEarthing details of Electrical Substation
Earthing details of Electrical Substation
 
home automation using Arduino by Aditya Prasad
home automation using Arduino by Aditya Prasadhome automation using Arduino by Aditya Prasad
home automation using Arduino by Aditya Prasad
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECH
 
Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating System
 
Class 1 | NFPA 72 | Overview Fire Alarm System
Class 1 | NFPA 72 | Overview Fire Alarm SystemClass 1 | NFPA 72 | Overview Fire Alarm System
Class 1 | NFPA 72 | Overview Fire Alarm System
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 
NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...
NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...
NO1 Certified Black Magic Specialist Expert Amil baba in Uae Dubai Abu Dhabi ...
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
 

DSP_2018_FOEHU - Lec 04 - The z-Transform

  • 2. Agenda  Introduction  The z-Transform  Properties of the z-Transform  Inverse z-Transform  Direct Division Method  Partial Fraction-expansion Method  Inversion Integral Method (Residue Theorem)  System Representation in the z-Domain  The Transfer Function of a Discrete-Time System  The Frequency Response of a Discrete-Time System  System Properties in the z-Domain  Causality  Stability  Relationships Between System Representations 2
  • 3. Introduction  A LTI discrete system, as discussed in Chapter 2, represented in time domain using the impulse response, h(n), frequency domain using frequency response, H(ej) or in the Z domain using transfer function, H(z) as shown in Fig. 3.1.  Advantages of using frequency response: 1) The computation of steady state response is greatly facilitated. 2) The response to any arbitrary signal x(n) can be easily computed.  Disadvantages of using frequency response: 1) There are some useful signals for which DTFT does not exist. 2) The transient response of a system due to initial conditions can not be computed. 3Fig. 3.1 LTI discrete system representation.  nh  j eH  nx  j eX   )(*)( nhnxny        jjj eHeXeY   zX  zH      zHzXzY 
  • 4. The z-Transform  Counterpart of the Laplace transform for discrete-time signals  Generalization of the Fourier Transform  Fourier Transform does not exist for all signals  The z-Transform is often time more convenient to use  Definition:  Compare to DTFT definition:  z is a complex variable that can be represented as z=r ej  Substituting z=ej will reduce the z-transform to DTFT 4         n n znxzX     nj n j enxeX     
  • 5. z-transform of the Unit impulse  Let x[n] = δ(n)  Then  And the region of convergence is all z, where z is a complex number. 5      otherwise0 0nfor1 (n)     1(n)         n n n n zznxzX 
  • 6. z-transform of the a Shifted Unit impulse  Let x[n] = δ(n-q)  Then  And the region of convergence is all z except for z=0. 6      otherwise0 qnfor1 q)-(n     q n n n n zzznxzX          q)-(n
  • 7. z-transform of a Unit-Step Function  Let x[n] = u[n]  Then  And the region of convergence will be |z|>1. 7      0nfor0 0nfor1 (n)  u     11 1 (n) 1 0                z z z zzuznxzX n n n n n n
  • 8. z-transform of anu[n]  Let x[n] = anu[n]  Then  With the region of convergence |z|>|a| and a is any real or complex number. 8      0nfor0 0nfor (n)  n n a ua                0 (n) n nn n nn n n zazuaznxzX   az z az azzX n n          1 0 1 1 1 )(
  • 9. z-transform of nanu[n]  Let x[n] = nanu[n]  Then  With the region of convergence |z|>|a| and a is any real or complex number. 9      0nfor0 0nfor (n)  n n na una                0 n(n) n nn n nn n n zazunaznxzX   221 0 1 )()1( 1 )(n az z az azzX n n         
  • 10. z-transform of Sinusoids  Let x[n] = (cos Ωn) u[n]  Then  Similarly it can be shown: 10      0nfor0 0nfor)cos( (n))cos(  n un 2 n)(cos njnj ee    )}()({ 2 1 u(n)}n)({cos nuenueZ njnj            jj ez z ez z 2 1 u(n)}n)({cos 1)(cos2 )(cos )(cos21 )(cos1 u(n)}n)({cos 2 2 21 1         zz zz zz z 1)(cos2 )(s )(cos21 )(s u(n)}n)({sin 221 1         zz inz zz inz
  • 11. The z-transform and the DTFT  The z-transform is a function of the complex z variable  Convenient to describe on the complex z-plane  If we plot z=ej for =0 to 2 we get the unit circle 11 Re Im Unit Circle  r=1 0 2 0 2   j eX
  • 12. Right-Sided Exponential Sequence Example  For Convergence we require  Hence the ROC is defined as  Inside the ROC series converges to 12                  0 1 n n n nnn azznuazXnuanx      0n n 1 az az1az n 1      az z az azzX n n          0 1 1 1 1 Re Im a 1 o x • Region outside the circle of radius a is the ROC • Right-sided sequence ROCs extend outside a circle
  • 13. Left-Sided Exponential Sequence Example  Hence the ROC is defined as • Region inside the circle of radius a is the ROC • Left-sided sequence ROCs extend inside a circle 13                 1 1 11 n n n nnn azznuazXnuanx azza  11 Re Im a 1 o x   ...]1[... 33221133221   zazazazazazazazX   az z za zazX       1 1 1 1
  • 14. Two-Sided Exponential Sequence Example 14      1-n-u 2 1 -nu 3 1 nx nn              11 1 0 1 0n n 1 z 3 1 1 1 z 3 1 1 z 3 1 z 3 1 z 3 1                              11 0 11 1 n n 1 z 2 1 1 1 z 2 1 1 z 2 1 z 2 1 z 2 1                               z 3 1 1z 3 1 :ROC 1    z 2 1 1z 2 1 :ROC 1                               2 1 z 3 1 z 12 1 zz2 z 2 1 1 1 z 3 1 1 1 zX 11 Re Im 2 1 oo 12 1 xx3 1 
  • 15. 15 Finite Length Sequence        otherwise0 1Nn0a nx n       az az z 1 az1 az1 azzazX NN 1N1 N11N 0n n1 1N 0n nn                Geometric series formula:      2 1 21N Nn 1NN n a1 aa a
  • 16. Stability, Causality, and the ROC  Consider a system with impulse response h[n]  The z-transform H(z) and the pole-zero plot shown  Without any other information h[n] is not uniquely determined  |z|>2 or |z|<½ or ½<|z|<2  If system stable ROC must include unit-circle: ½<|z|<2  If system is causal must be right sided: |z|>2 16
  • 17. 17 Signal, 𝐱(𝐧) Z-Transform, 𝐗(𝐳) ROC 1 𝛅(𝐧) 1 all Z 2 𝛅(𝐧 − 𝐧 𝟎) 𝐳−𝐧 𝟎 𝐳 ≠ 𝟎 3 𝐮(𝐧) 𝐳 𝐳 − 𝟏 𝐳 > 𝟏 4 −𝐮(−𝐧 − 𝟏) 𝐳 𝐳 − 𝟏 𝐳 < 𝟏 5 𝐚 𝐧 𝐮(𝐧) 𝐳 𝐳 − 𝐚 𝐳 > 𝐚 6 −𝐚 𝐧 𝐮(−𝐧 − 𝟏) 𝐳 𝐳 − 𝐚 𝐳 < 𝐚 7 𝐧 𝐮(𝐧) 𝐳 (𝐳 − 𝟏) 𝟐 𝐳 > 𝟏 8 𝐧 𝐚 𝐧 𝐮(𝐧) 𝐚𝐳 (𝐳 − 𝐚) 𝟐 𝐳 > 𝐚 9 𝐜𝐨𝐬(𝛚 𝟎 𝐧) 𝐳 𝟐 − 𝐳𝐜𝐨𝐬(𝛚 𝟎) 𝐳 𝟐 − 𝟐𝐳 𝐜𝐨𝐬 𝛚 𝟎 + 𝟏 𝐳 > 𝟏 10 𝐬𝐢𝐧(𝛚 𝟎 𝐧) 𝐳 𝐬𝐢𝐧(𝛚 𝟎) 𝐳 𝟐 − 𝟐𝐳 𝐜𝐨𝐬 𝛚 𝟎 + 𝟏 𝐳 > 𝟏 11 𝐫 𝐧 𝐜𝐨𝐬(𝛚 𝟎 𝐧) 𝐳 𝟐 − 𝐳 𝐫 𝐜𝐨𝐬(𝛚 𝟎) 𝐳 𝟐 − 𝟐𝐳 𝐫 𝐜𝐨𝐬 𝛚 𝟎 + 𝐫 𝟐 𝐳 > 𝐫 12 𝐫 𝐧 𝐬𝐢𝐧(𝛚 𝟎 𝐧) 𝐳 𝐫 𝐬𝐢𝐧(𝛚 𝟎) 𝐳 𝟐 − 𝟐𝐳 𝐫 𝐜𝐨𝐬 𝛚 𝟎 + 𝐫 𝟐 𝐳 > 𝐫
  • 19. 19 Z-Transform Properties: Linearity  Notation  Linearity  Note that the ROC of combined sequence may be larger than either ROC  This would happen if some pole/zero cancellation occurs  Example: • Both sequences are right-sided • Both sequences have a pole z=a • Both have a ROC defined as |z|>|a| • In the combined sequence the pole at z=a cancels with a zero at z=a • The combined ROC is the entire z plane except z=0  We did make use of this property already, where?     x Z RROCzXnx           21 xx21 Z 21 RRROCzbXzaXnbxnax        N-nua-nuanx nn 
  • 20. Z-Transform Properties: Time Shifting  Here no is an integer  If positive the sequence is shifted right  If negative the sequence is shifted left  Add or remove poles at z=0 or z=  Example: 20     x nZ o RROCzXznnx o     4 1 z z 4 1 1 1 zzX 1 1                     1-nu 4 1 nx 1-n            x n nnZ o RROCzzXznnx o o          x(n)- 0n
  • 21. Z-Transform Properties: Multiplication by Exponential  ROC is scaled by |zo|  All pole/zero locations are scaled  If zo is a positive real number: z-plane shrinks or expands  If zo is a complex number with unit magnitude it rotates  Example: We know the z-transform pair  Let’s find the z-transform of 21     x Zn RROCzXnx   /   1z:ROC z-1 1 nu 1- Z                nurenurenunrnx njnj o n oo     2 1 2 1 cos   rz zre1 2/1 zre1 2/1 zX 1j1j oo      
  • 22. Z-Transform Properties: Differentiation  Example: We want the inverse z-transform of  Let’s differentiate to obtain rational expression  Making use of z-transform properties and ROC 22     x Z RROC dz zdX znnx       azaz1logzX 1       1 1 1 2 az1 1 az dz zdX z az1 az dz zdX               1nuaannx 1n        1nu n a 1nx n 1n  
  • 23. Z-Transform Properties: Time Reversal  ROC is inverted  Example:  Time reversed version of 23     x Z R 1 ROCz/1Xnx      nuanx n    nuan   1 11- 1-1 az za-1 za- az1 1 zX      
  • 24. Z-Transform Properties: Convolution  Convolution in time domain is multiplication in z-domain  Example: Let’s calculate the convolution of  Multiplications of z-transforms is  ROC: if |a|<1 ROC is |z|>1 if |a|>1 ROC is |z|>|a|  Partial fractional expansion of Y(z) 24         2x1x21 Z 21 RR:ROCzXzXnxnx          nunxandnuanx 2 n 1    az:ROC az1 1 zX 11       1z:ROC z1 1 zX 12             1121 z1az1 1 zXzXzY      1z:ROCassume 1 1 1 1 1 1 11            azza zY       nuanu a1 1 ny 1n   
  • 25. Z-Transform Properties: Initial and Final Value Theorems  Initial Value Theorem:  The value of x(n) as n → 0 is given by:  Final Value Theorem:  The value of x(n) as n →  is given by: 25 )(lim)(lim)0( 0 zXnxx zn   )]()1[(lim)(lim)( 1 zXznxx zn  
  • 26. Z-Transform Properties: Complex Conjugation  If X(z) = Z[x(n)], then: 26 XRzzXnx  *)(*)](*[Z
  • 27. 27
  • 29. 29 The Inverse Z-Transform  Formal inverse z-transform is based on a Cauchy integral  Less formal ways sufficient most of the time 1) Direct or Long Division Method 2) Partial fraction expansion 3) Inversion Integral Method (Residue-theorem)        dzzzX j zXZnx n C 11 2 1   
  • 30. 30 Inverse Z-Transform: Power Series Expansion  The z-transform is power series  In expanded form  Z-transforms of this form can generally be inversed easily  Especially useful for finite-length series  Example         n n znxzX             ...21012... 2112   zxzxxzxzxzX      12 1112 2 1 1 2 1 z 11 2 1 1           zz zzzzzX          1n 2 1 n1n 2 1 2nnx                  Otherwise n n n n nx 0 1 2 1 01 1 2 1 21
  • 31. Inverse Z-Transform: Power Series Expansion  Example: Find x(n) for n = 0, 1, 2, 3, 4, when X(z) is given by:  Solution:  First, rewrite X(z) as a ratio of polynomial in 𝑧−1 , as follows:  Dividing the numerator by the denominator, we have: 31     2.01 510    zz z zX   21 21 2.02.11 510      zz zz zX 4321 68.184.181710   zzzz 21 2.02.11   zz 21 510   zz 32 217   zz 432 4.34.2017   zzz 43 4.34.18   zz 543 68.308.224.18   zzz 54 68.368.18   zz 654 736.3416.2268.18   zzz 321 21210   zzz Therefore, • x(0) = 0, • x(1) = 10, • x(2) = 17, • x(3) = 18.4 • x(4) = 18.68
  • 32. Inverse Z-Transform: Partial Fraction Expansion  Assume that a given z-transform can be expressed as  Apply partial fractional expansion  First term exist only if M>N  Br is obtained by long division  Second term represents all first order poles  Third term represents an order s pole  There will be a similar term for every high-order pole  Each term can be inverse transformed by inspection 32          N 0k k k M 0k k k za zb zX                s 1m m1 i m N ik,1k 1 k k NM 0r r r zd1 C zd1 A zBzX
  • 33. Inverse Z-Transform: Partial Fraction Expansion  Coefficients are given as  Easier to understand with examples 33                s 1m m1 i m N ik,1k 1 k k NM 0r r r zd1 C zd1 A zBzX     kdzkk zXzdA    1 1          1 1 1 ! 1                idw s ims ms ms i m wXwd dw d dms C
  • 34. Example:  Find x(n) if X(z) is given by:  Solution: We first expand X(z)/z into partial fractions as follows :  Then we obtain  then 34     2.01 10   zz z zX         2.0 5.12 1 5.12 2.01 10       zzzzz zX             2.01 5.12 z z z z zX   )()2.0(5.12)(5.12 nununx n    )(11 nZ   nu z z Z         1 1  nua az z Z n        1
  • 35. Another Solution  In this example, if X(z), rather than X(z)/z, is expanded into partial fractions, then we obtain:  However, by use of the shifting theorem we find :  Then 35      2.0 5.2 1 5.12 2.01 10       zzzz z zX              2.0 5.2 1 5.12 11 z z z z z zzX   )1(2.015.12)1()2.0( 2.0 5.2 )1(5.12)( )1()2.0(5.2)1(5.12)( 1    nunununx nununx nn n           .. .. 48.124 4.123 122 101 00      x x x x x      o n nnxzXzZ o 1
  • 36. Example:  Find x(n) if X(z) is given by:  Solution: Expand X(z)/z into partial fraction as follows:  Then:  By referring to tables we find that x(n) is given by:  and therefore,  x(0) = 0 -1 +3 = 2  x(1) = 18 – 2 + 3= 19 36      12 2 2 3    zz zz zX         1 3 2 1 2 9 12 12 22 2          zzzzz z z zX        1 3 22 9 2       z z z z z z zX   )(3)()2()()2(5.4 nununrnx nn   nnu n nn nr       00 0 )(     nr z z Z         2 1 1    nra az az Z n         2 1
  • 37. Solution of Difference Equations 37
  • 38. Transfer Function Representation  First – Order Case  Let y[n] + ay[n-1] = bx[n]  Then take the z-transform to get: • Y(z) + a z-1Y(z) = b X(z)  Simplifying: • Y(z) (1 + az-1) = b X(z) • Y(z) = (b X(z))/ (1 + az-1)  And we have the transfer function H(z): • Y(z) = H(z) X(z) • so  H(z) = b z /(z + a) 38
  • 39. Step Response of a First Order System  If a discrete-Time system has the following difference equation y[n] + ay[n-1] = bx[n]  Find the impulse response  Solution:  In time Domain:  y[n] = bx[n] - ay[n-1]  For n<0  y[n] = 0  at n=0  y[0] = b δ[0] – ay[-1] = b  at n=1  y[1] = b δ[1] – ay[0] = -ab  at n=2  y[2] = b δ[2] – ay[1] = a2b  at n=3  y[3] = b δ[3] – ay[2] = -a3b  For n>0  y[n] = (-a)n b 39
  • 40. Step Response of a First Order System  If a discrete-Time system has the following difference equation y[n] + ay[n-1] = bx[n]  Find the impulse response  Solution:  In z-Domain:  By z-transform  Y[z] + az-1 y[z] = bX[z] Y[z][1 + az-1] = bX[z] Y[z] = b X[z] /[1 + az-1]  Since, x[n] = δ[n]  X[z] = 1 Y[z] = b /[1 + az-1]  By inverse z-transform y[n] = (-a)nb u(n) 40
  • 41. Second-Order Case  Consider the following difference equation:  Y[n] +a1y[n-1] +a2y[n-2] = b0x[n] + b1x[n-1] • H(z) = (b0z2 + b1z)/(z2 + a1z + a2) 41
  • 42. Nth-Order System  y[n] +a1y[n-1] +…+aNy[n-N] =b0x[n]+…+bMx[n-M]  And H(z) = B(z)/A(z)  Where H(z) =(b0+…+bMz-M)/(1 + a1z-1+ …+aNz-N)  Now multiply by (zN/zN)  H(z) = (b0zN +…+bMzN-M)/ (zN + a1zN-1 + …+ aN)  So we have  B(z) = (b0zN +…+bMzN-M)  A(z) = (zN + a1zN-1 + …+ aN) 42
  • 43. System Representation in the z- Domain 43
  • 44. The Transfer Function of a Discrete-Time System  The transfer function of a discrete-time system is defined as the ratio of the z transform of the response to the z transform of the excitation as shown in Fig. 3.6.  Consider a linear, time-invariant, discrete-time system, and let x(n), y(n), and h(n) be the excitation, response, and impulse response, respectively. From the convolution summation in Eq. (2.7), we have:  and, therefore, from the real-convolution theorem, we get:  or 44          k knhkxny                k knhkxZnyZ Fig. 3.6 The transfer function of a discrete-time system. H(z) X(z) Y(z) Input Excitation Output Response System Function Transfer Function           zX zY zHzHzXzY 
  • 45. Derivation of the Transfer Function from Difference Equation  A causal, linear, time-invariant, recursive discrete-time system can be represented by the difference equation Eq. (2.10) as:  Apply the z transform for both sides, we get: 45                  N i M i ii inybinxaZnyZ 0 1       N i M i i i i i zbzYzazXzY 0 1 )()()(          zD zN zb za zX zY zH M i i i N i i i          1 0 1           N i M i ii inyainxany 0 1
  • 46. Derivation of the Transfer Function from the System Network  The z-domain characterizations of the unit delay, the adder, and the multiplier are obtained from Fig. 2.9 and shown in Fig. 3.7. 46Fig. 3.7 Elements of discrete-time systems (a) Unit delay, (b) Adder, (c) Multiplier.
  • 47. The Transfer Function of a Discrete-Time System  Example 3.14 Find the transfer function of the system shown in Fig. 3.8.  Solution From Fig. 3.8, we can write:  Therefore, 47Fig. 3.8 Second-order recursive system.   )( 4 1 )( 2 1 )( 21 zWzzWzzXzW       )()1()()( 11 zWzzYzWzzWzY     21 4 1 2 1 1 )(    zz zX zW   4 1 2 1 )1( )( )( 2    zz zz zX zY zH
  • 48. The Frequency Response of a Discrete-Time System  If x(n) is absolutely sumable, that is:  Then the discrete-time Fourier transform is given by:  The operator [.] transforms a discrete time signal x(n) into a complex valued continuous function X(ej) of real variable  = 𝟐𝝅𝒇 .  X(ej) is a complex valued continuous function.   = 𝟐𝝅𝒇 [rad/sec] and f is the digital frequency measured in [C/S or Hz].  To find the frequency response 𝑯(𝒆𝒋) from the transfer function, H(z), replace z by 𝒆𝒋 as follow: 48     0n nx            0n njj enxnxeX        j ezn njj zHenheH       )(  nx      nhnxny   j eX  j eH  nh       jjj eHeXeY      j eYny 1 
  • 49. Example  For the system described by its impulse response do: a) Derive the frequency response, 𝐻(𝑒𝑗) . b) Evaluate and draw its magnitude and phase at 𝜔 = 0, 0.25𝜋, 0.5𝜋, 0.75𝜋 𝑎𝑛𝑑 𝜋.  Solution a) Using DTFT Eq.(3.17 and 3.18), we find : Hence: Or and 49      nunh n 9.0                  sin9.0cos9.01 1 9.01 1 9.0 0 je eenheH j n n njnnjj                                 22222 sincos9.0cos9.021 1 sin9.0cos9.01 1      j eH      cos8.181.1 1  j eH                cos9.01 sin9.0 arctanj eH
  • 50. Example (Cont.) b) The magnitude and phase plots are shown in Fig. 3.9. 50 Fig. 3.9 The frequency response of a discrete-time system: (a) The magnitude plot and (b) The phase plot. (a) (b)
  • 51. Causality  H(z) is described as:  H(z) is causal If the order of the denominator, D(z) ≥ the order of numerator N(z).  Example 3.16: Check the system causality if its transfer function, H(z) is: a) b)  Solution a) The system is not causal as the O[N(z)] > O[D(z)]. b) H(z) can be rewritten as: Therefore, he system is causal as the O[N(z)] = O[D(z)]. 51      zD zN zH    8 1 4 1 2 2 23    zz zzz zH   1 1 21 1 3 1 1 1       zz zH   1)3/5( )3/5(2 21 1 )3/1(1 1 2 2 11         zz zz zz zH
  • 52. Stability  A LTI system is said to be stable If the poles of H(z) lies inside the unit circle (z=1)  Example 3.16 Check the system stability if its transfer function, H(z) is: a) b)  Solution a) H(z) can be rewritten as: This system is unstable as it has one pole at z = 4. a) H(z) can be rewritten as: This system is stable as it has one pole at z = 0.5. 52   1 41 1    z zH         1 1 )2/1(1 )2/1(1 z z zH   )2/1( )2/1( )2/1(1 )2/1(1 1 1         z z z z zH   441 1 1      z z z zH
  • 53. 53