Anzeige
For what values of k is the line y=k tangent to the graph (x-4)^2 + .pdf
Nächste SlideShare
For your argument r For Protectionism come up with 2 arguments to su.pdfFor your argument r For Protectionism come up with 2 arguments to su.pdf
Wird geladen in ... 3
1 von 1
Anzeige

Más contenido relacionado

Más de amoratrading(20)

Anzeige

For what values of k is the line y=k tangent to the graph (x-4)^2 + .pdf

  1. For what values of k is the line y=k tangent to the graph (x-4)^2 + y^2 = 16 Solution The line y = k is tangent to the circle (x-4)^2 + y^2 = 16 if the center of the circle lies at a distance from the line equal to the radius of the circle. (x-4)^2 + y^2 = 16 => (x - 4)^2 + (y - 0)^2 = 4^2 the center of the circle is (4, 0) and the radius is 4. The distance of a point (x1 , y1) from a line ax + by + c = 0 is given by |a*x1 + b*y1 + c|/sqrt (a^2 + b^2) Using the values given: 4 = |4*0 + 0*1 - k|/sqrt (1) => |-k| = 4 => k = 4 and k = -4 The lines y - 4 = 0 and y + 4 = 0 are tangents to the circle.
Anzeige