SlideShare ist ein Scribd-Unternehmen logo
1 von 82
The Molecular Basis of Inheritance
Figure 16.7a, c
C
T
A
A
T
CG
GC
A
C G
AT
AT
A T
TA
C
TA
0.34 nm
3.4 nm
(a) Key features of DNA structure
G
1 nm
G
(c) Space-filling model
T
1962: Nobel Prize in Physiology and Medicine
James D.
Watson
Francis H.
Crick
Maurice H. F.
Wilkins
What about?
Rosalind Franklin
Watson, J.D. and F.H. Crick, “Molecular Structure of
Nucleic Acids: A Structure for Deoxynucleic Acids”.
Nature 171 (1953), p. 738.
The Structure of DNA
• DNA is composed of four nucleotides,
each containing: adenine, cytosine,
thymine, or guanine.
• The amounts of A = T, G = C, and
purines = pyrimidines [Chargaff’s
Rule].
• DNA is a double-stranded helix with
antiparallel strands [Watson and
Crick].
• Nucleotides in each strand are linked
by 5’-3’ phosphodiester bonds
• Bases on opposite strands are linked
by hydrogen bonding: A with T, and G
with C.
The Basic Principle: Base Pairing to a
Template Strand
• The relationship between structure and
function is manifest in the double helix
• Since the two strands of DNA are
complementary each strand acts as a
template for building a new strand in
replication
DNA replication
• The parent molecule unwinds, and two new
daughter strands are built based on base-
pairing rules
(a) The parent molecule has two
complementary strands of DNA.
Each base is paired by hydrogen
bonding with its specific partner,
A with T and G with C.
(b) The first step in replication is
separation of the two DNA
strands.
(c) Each parental strand now
serves as a template that
determines the order of
nucleotides along a new,
complementary strand.
(d) The nucleotides are connected
to form the sugar-phosphate
backbones of the new strands.
Each “daughter” DNA
molecule consists of one parental
strand and one new strand.
A
C
T
A
G
A
C
T
A
G
A
C
T
A
G
A
C
T
A
G
T
G
A
T
C
T
G
A
T
C
A
C
T
A
G
A
C
T
A
G
T
G
A
T
C
T
G
A
T
C
T
G
A
T
C
T
G
A
T
C
DNA Replication is “Semi-conservative”
• Each 2-stranded
daughter molecule is
only half new
• One original strand was
used as a template to
make the new strand
DNA Replication
• The copying of DNA is remarkable in its speed and
accuracy
• Involves unwinding the double helix and synthesizing
two new strands.
• More than a dozen enzymes and other proteins
participate in DNA replication
• The replication of a DNA molecule begins at special
sites called origins of replication, where the two strands
are separated
Origins of Replication
• A eukaryotic chromosome may have hundreds or
even thousands of replication origins
Replication begins at specific sites
where the two parental strands
separate and form replication
bubbles.
The bubbles expand laterally, as
DNA replication proceeds in both
directions.
Eventually, the replication
bubbles fuse, and synthesis of
the daughter strands is
complete.
1
2
3
Origin of replication
Bubble
Parental (template) strand
Daughter (new) strand
Replication fork
Two daughter DNA molecules
In eukaryotes, DNA replication begins at many sites along the giant
DNA molecule of each chromosome.
In this micrograph, three replication
bubbles are visible along the DNA of
a cultured Chinese hamster cell (TEM).
(b)(a)
0.25 µm
Mechanism of DNA Replication
• DNA replication is catalyzed by DNA polymerase which needs an
RNA primer
• RNA primase synthesizes primer on DNA strand
• DNA polymerase adds nucleotides to the 3’ end of the growing
strand
Mechanism of DNA Replication
• Nucleotides are added by complementary base pairing with the
template strand
• The substrates, deoxyribonucleoside triphosphates, are
hydrolyzed as added, releasing energy for DNA synthesis.
The Mechanism of DNA Replication
• DNA synthesis on the leading strand is continuous
• The lagging strand grows the same general direction as the leading
strand (in the same direction as the Replication Fork). However,
DNA is made in the 5’-to-3’ direction
• Therefore, DNA synthesis on the lagging strand is discontinuous
• DNA is added as short fragments (Okasaki fragments) that are
subsequently ligated together
DNA polymerase I degrades the
RNA primer and replaces it with
DNA
The Mechanism of DNA Replication
• Many proteins assist in DNA replication
• DNA helicases unwind the double helix, the
template strands are stabilized by other
proteins
• Single-stranded DNA binding proteins make
the template available
• RNA primase catalyzes the synthesis of short
RNA primers, to which nucleotides are added.
• DNA polymerase III extends the strand in the
5’-to-3’ direction
• DNA polymerase I degrades the RNA primer
and replaces it with DNA
• DNA ligase joins the DNA fragments into a
continuous daughter strand
Enzymes in DNA replication
Helicase unwinds
parental double helix
Binding proteins
stabilize separate
strands
DNA polymerase III
binds nucleotides
to form new strands
Ligase joins Okazaki
fragments and seals
other nicks in sugar-
phosphate backbone
Primase adds
short primer
to template strand
DNA polymerase I
(Exonuclease) removes
RNA primer and inserts
the correct bases
Binding proteins prevent single strands from rewinding.
Helicase protein binds to DNA sequences called
origins and unwinds DNA strands.
5’
3’
5’
3’
Primase protein makes a short segment of RNA
complementary to the DNA, a primer.
3’5’
5’3’
Replication
Overall direction
of replication
5’3’
5’
3’
5’
3’
3’5’
DNA polymerase enzyme adds DNA nucleotides
to the RNA primer.
Replication
DNA polymerase enzyme adds DNA nucleotides
to the RNA primer.
5’
5’
Overall direction
of replication
5’
3’
5’
3’
3’
3’
DNA polymerase proofreads bases added and
replaces incorrect nucleotides.
Replication
5’
5’3’
5’
3’
3’
5’
3’
Overall direction
of replication
Leading strand synthesis continues in a
5’ to 3’ direction.
Replication
3’5’ 5’
5’3’
5’
3’
3’
5’
3’
Overall direction
of replication
Okazaki fragment
Leading strand synthesis continues in a
5’ to 3’ direction.
Discontinuous synthesis produces 5’ to 3’ DNA
segments called Okazaki fragments.
Replication
5’ 5’
5’3’
5’
3’
3’
5’
3’
Overall direction
of replication
3’
Leading strand synthesis continues in a
5’ to 3’ direction.
Discontinuous synthesis produces 5’ to 3’ DNA
segments called Okazaki fragments.
Okazaki fragment
Replication
5’
5’ 3’
5’
3’
3’
5’
3’
3’
5’ 5’3’
Leading strand synthesis continues in a
5’ to 3’ direction.
Discontinuous synthesis produces 5’ to 3’ DNA
segments called Okazaki fragments.
Replication
3’
5’
3’
5’
5’ 3’
5’
3’
3’
5’ 5’3’
Leading strand synthesis continues in a
5’ to 3’ direction.
Discontinuous synthesis produces 5’ to 3’ DNA
segments called Okazaki fragments.
Replication
5’
5’
3’ 3’
5’
3’
5’ 3’
5’
3’
3’
5’
Exonuclease activity of DNA polymerase I
removes RNA primers.
Replication
Polymerase activity of DNA polymerase I fills the gaps.
Ligase forms bonds between sugar-phosphate backbone.
3’
5’
3’
5’ 3’
5’
3’
3’
5’
Replication
Replication Fork Overview
Proofreading
• DNA must be faithfully replicated…but
mistakes occur
– DNA polymerase (DNA pol) inserts the wrong
nucleotide base in 1/10,000 bases
• DNA pol has a proofreading capability and can correct
errors
– Mismatch repair: ‘wrong’ inserted base can be
removed
– Excision repair: DNA may be damaged by
chemicals, radiation, etc. Mechanism to cut out
and replace with correct bases
Mutations
• A mismatching of base pairs, can occur at a
rate of 1 per 10,000 bases.
• DNA polymerase proofreads and repairs
accidental mismatched pairs.
• Chances of a mutation occurring at any one
gene is over 1 in 100,000
• Because the human genome is so large,
even at this rate, mutations add up. Each of
us probably inherited 3-4 mutations!
Proofreading and Repairing DNA
• DNA polymerases
proofread newly made
DNA, replacing any
incorrect nucleotides
• In mismatch repair of DNA,
repair enzymes correct
errors in base pairing
• In nucleotide excision DNA
repair nucleases cut out
and replace damaged
stretches of DNA
Nuclease
DNA
polymerase
DNA
ligase
A thymine dimer
distorts the DNA molecule.
1
A nuclease enzyme cuts
the damaged DNA strand
at two points and the
damaged section is
removed.
2
Repair synthesis by
a DNA polymerase
fills in the missing
nucleotides.
3
DNA ligase seals the
Free end of the new DNA
To the old DNA, making the
strand complete.
4
Accuracy of DNA Replication
• The chromosome of E. coli bacteria contains
about 5 million bases pairs
– Capable of copying this DNA in less than an hour
• The 46 chromosomes of a human cell contain
about 6 BILLION base pairs of DNA!!
– Printed one letter (A,C,T,G) at a time…would fill
up over 900 volumes of Campbell.
– Takes a cell a few hours to copy this DNA
– With amazing accuracy – an average of 1 per
billion nucleotides
The Central Dogma of Life.
replication
Protein Synthesis
• The information content of DNA is in the form
of specific sequences of nucleotides along
the DNA strands
• The DNA inherited by an organism leads to
specific traits by dictating the synthesis of
proteins
• The process by which DNA directs protein
synthesis, gene expression includes two
stages, called transcription and translation
Transcription and Translation
• Cells are governed by a cellular chain of
command
– DNA → RNA → protein
• Transcription
– Is the synthesis of RNA under the direction of DNA
– Produces messenger RNA (mRNA)
• Translation
– Is the actual synthesis of a polypeptide, which
occurs under the direction of mRNA
– Occurs on ribosomes
Transcription and Translation
• In prokaryotes transcription and translation
occur together
Figure 17.3a
Prokaryotic cell. In a cell lacking a nucleus, mRNA
produced by transcription is immediately translated
without additional processing.
(a)
TRANSLATION
TRANSCRIPTION
DNA
mRNA
Ribosome
Polypeptide
Transcription and Translation
• In a eukaryotic cell the nuclear envelope separates
transcription from translation
• Extensive RNA processing occurs in the nucleus
Eukaryotic cell. The nucleus provides a separate
compartment for transcription. The original RNA
transcript, called pre-mRNA, is processed in various
ways before leaving the nucleus as mRNA.
(b)
TRANSCRIPTION
RNA PROCESSING
TRANSLATION
mRNA
DNA
Pre-mRNA
Polypeptide
Ribosome
Nuclear
envelope
Transcription
• Transcription is the DNA-
directed synthesis of RNA
• RNA synthesis
– Is catalyzed by RNA
polymerase, which pries the
DNA strands apart and hooks
together the RNA nucleotides
– Follows the same base-pairing
rules as DNA, except that in
RNA, uracil substitutes for
thymine
RNA
Table 17.1
• RNA is single stranded, not double stranded like DNA
• RNA is short, only 1 gene long, where DNA is very long and
contains many genes
• RNA uses the sugar ribose instead of deoxyribose in DNA
• RNA uses the base uracil (U) instead of thymine (T) in DNA.
Synthesis of an RNA Transcript
• The stages of
transcription
are
– Initiation
– Elongation
– Termination
Promoter
Transcription unit
RNA polymerase
Start point
5′
3′
3′
5′
3′
5′
5′
3′
5′
3′
3′
5′
5′
3′
3′
5′
5′
5′
Rewound
RNA
RNA
transcript
3′
3′
Completed RNA
transcript
Unwound
DNA
RNA
transcript
Template strand of
DNA
DNA
1 Initiation. After RNA polymerase binds to
the promoter, the DNA strands unwind, and
the polymerase initiates RNA synthesis at the
start point on the template strand.
2 Elongation. The polymerase moves downstream, unwinding the
DNA and elongating the RNA transcript 5′ → 3 ′. In the wake of
transcription, the DNA strands re-form a double helix.
3 Termination. Eventually, the RNA
transcript is released, and the
polymerase detaches from the DNA.
• Promoters signal the
initiation of RNA
synthesis
• Transcription factors help
eukaryotic RNA
polymerase recognize
promoter sequences
• A crucial promoter DNA
sequence is called a
TATA box.
TRANSCRIPTION
RNA PROCESSING
TRANSLATION
DNA
Pre-mRNA
mRNA
Ribosome
Polypeptide
T A T AAA A
ATAT T T T
TATA box Start point Template
DNA strand
5′
3′
3′
5′
Transcription
factors
5′
3′
3′
5′
Promoter
5′
3′
3′
5′5′
RNA polymerase II
Transcription factors
RNA transcript
Transcription initiation complex
Eukaryotic promoters1
Several transcription
factors
2
Additional transcription
factors
3
Synthesis of an RNA Transcript - Initiation
Synthesis of an RNA Transcript - Elongation
Elongation
RNA
polymerase
Non-template
strand of DNA
RNA nucleotides
3′ end
C A E G C A
A
U
T A G G T T
A
A
C
G
U
A
T
C
A
T C C A A T
T
G
G
3′
5′
5′
Newly made
RNA
Direction of transcription
(“downstream”) Template
strand of DNA
• RNA polymerase synthesizes a single strand of RNA against the DNA
template strand (anti-sense strand), adding nucleotides to the 3’ end of
the RNA chain
• As RNA polymerase moves along the DNA it continues to untwist the
double helix, exposing about 10 to 20 DNA bases at a time for pairing
with RNA nucleotides
• Specific sequences in the DNA signal
termination of transcription
• When one of these is encountered by the
polymerase, the RNA transcript is
released from the DNA and the double
helix can zip up again.
Synthesis of an RNA Transcript - Termination
Transcription Overview
• Most eukaryotic mRNAs aren’t ready to be translated into protein directly after being
transcribed from DNA. mRNA requires processing.
• Transcription of RNA processing occur in the nucleus. After this, the messenger RNA
moves to the cytoplasm for translation.
• The cell adds a protective cap to one end, and a tail of A’s to the other end. These
both function to protect the RNA from enzymes that would degrade
• Most of the genome consists of non-coding regions called introns
– Non-coding regions may have specific chromosomal functions or have regulatory purposes
– Introns also allow for alternative RNA splicing
• Thus, an RNA copy of a gene is converted into messenger RNA by doing 2 things:
– Add protective bases to the ends
– Cut out the introns
Post Termination RNA Processing
Alteration of mRNA Ends
• Each end of a pre-mRNA molecule is modified
in a particular way
– The 5′ end receives a modified nucleotide cap
– The 3′ end gets a poly-A tail
A modified guanine nucleotide
added to the 5′ end
50 to 250 adenine nucleotides
added to the 3′ end
Protein-coding segment Polyadenylation signal
Poly-A tail3′ UTR
Stop codonStart codon
5′ Cap 5′ UTR
AAUAAA AAA…AAA
TRANSCRIPTION
RNA PROCESSING
DNA
Pre-mRNA
mRNA
TRANSLATION
Ribosome
Polypeptide
G P P P
5′
3′
RNA Processing - Splicing
• The original transcript
from the DNA is called
pre-mRNA.
• It contains transcripts of
both introns and exons.
• The introns are removed
by a process called
splicing to produce
messenger RNA
(mRNA)
RNA Processing - Splicing
• Ribozymes are catalytic RNA molecules that
function as enzymes and can splice RNA
• RNA splicing removes introns and joins exons
Figure 17.10
TRANSCRIPTION
RNA PROCESSING
DNA
Pre-mRNA
mRNA
TRANSLATION
Ribosome
Polypeptide
5′ Cap
Exon Intron
1
5′
30 31
Exon Intron
104 105 146
Exon 3′
Poly-A tail
Poly-A tail
Introns cut out and
exons spliced together
Coding
segment
5′ Cap
1 146
3′ UTR3′ UTR
Pre-mRNA
mRNA
RNA Processing
• RNA Splicing can also be carried out by spliceosomes
RNA transcript (pre-mRNA)
Exon 1 Intron Exon 2
Other proteins
Protein
snRNA
snRNPs
Spliceosome
Spliceosome
components
Cut-out
intron
mRNA
Exon 1 Exon 2
5′
5′
5′
1
2
3
Alternative Splicing (of Exons)
• How is it possible that there are millions of
human antibodies when there are only about
30,000 genes?
• Alternative splicing refers to the different
ways the exons of a gene may be combined,
producing different forms of proteins within
the same gene-coding region
• Alternative pre-mRNA splicing is an important
mechanism for regulating gene expression in
higher eukaryotes
RNA Processing
• Proteins often have a modular architecture
consisting of discrete structural and functional
regions called domains
• In many cases different exons code for the
different domains in a protein
Figure 17.12
Gene
DNA
Exon 1 Intron Exon 2 Intron Exon 3
Transcription
RNA processing
Translation
Domain 3
Domain 1
Domain 2
Polypeptide
Translation
• Translation is the RNA-
directed synthesis of a
polypeptide
• Translation involves
– mRNA
– Ribosomes - Ribosomal RNA
– Transfer RNA
– Genetic coding - codons
TRANSCRIPTION
TRANSLATION
DNA
mRNA
Ribosome
Polypeptide
Polypeptide
Amino
acids
tRNA with
amino acid
attachedRibosome
tRNA
Anticodon
mRNA
Trp
Phe Gly
A
G C
A A A
C
C
G
U G G U U U G G C
Codons5′ 3′
The Genetic Code
• Genetic information is encoded as a sequence of nonoverlapping
base triplets, or codons
• The gene determines the sequence of bases along the length of an
mRNA molecule
DNA
molecule
Gene 1
Gene 2
Gene 3
DNA strand
(template)
TRANSCRIPTION
mRNA
Protein
TRANSLATION
Amino acid
A C C A A A C C G A G T
U G G U U U G G C U C A
Trp Phe Gly Ser
Codon
3′ 5′
3′5′
The Genetic Code
• Codons: 3 base code for the production of a specific amino acid,
sequence of three of the four different nucleotides
• Since there are 4 bases and 3 positions in each codon, there
are 4 x 4 x 4 = 64 possible codons
• 64 codons but only 20 amino acids, therefore most have more
than 1 codon
• 3 of the 64 codons are used as STOP signals; they are found at
the end of every gene and mark the end of the protein
• One codon is used as a START signal: it is at the start of every
protein
• Universal: in all living organisms
The Genetic Code
• A codon in messenger RNA is either translated into an
amino acid or serves as a translational start/stop signal
Second mRNA base
U C A G
U
C
A
G
UUU
UUC
UUA
UUG
CUU
CUC
CUA
CUG
AUU
AUC
AUA
AUG
GUU
GUC
GUA
GUG
Met or
start
Phe
Leu
Leu
lle
Val
UCU
UCC
UCA
UCG
CCU
CCC
CCA
CCG
ACU
ACC
ACA
ACG
GCU
GCC
GCA
GCG
Ser
Pro
Thr
Ala
UAU
UAC
UGU
UGC
Tyr Cys
CAU
CAC
CAA
CAG
CGU
CGC
CGA
CGG
AAU
AAC
AAA
AAG
AGU
AGC
AGA
AGG
GAU
GAC
GAA
GAG
GGU
GGC
GGA
GGG
UGG
UAA
UAG Stop
Stop UGA Stop
Trp
His
Gln
Asn
Lys
Asp
Arg
Ser
Arg
Gly
U
C
A
G
U
C
A
G
U
C
A
G
U
C
A
G
FirstmRNAbase(5′end)
ThirdmRNAbase(3′end)
Glu
Transfer RNA
• Consists of a single RNA strand that is only about 80
nucleotides long
• Each carries a specific amino acid on one end and has an
anticodon on the other end
• A special group of enzymes pairs up the proper tRNA molecules
with their corresponding amino acids.
• tRNA brings the amino acids to the ribosomes,
Two-dimensional structure. The four base-paired regions and
three loops are characteristic of all tRNAs, as is the base sequence
of the amino acid attachment site at the 3′ end. The anticodon triplet
is unique to each tRNA type. (The asterisks mark bases that have
been chemically modified, a characteristic of tRNA.)
(a)
3′
C
C
A
C
G
C
U
U
A
A
GACACCU
*
G
C
* *
G U G U
*CU
* G AG
G
U
*
*A
*
A
A G
U
C
A
G
A
C
C
*
C G A G
A G G
G
*
*
GA
CUC*AU
U
U
A
G
G
C
G
5′
Amino acid
attachment site
Hydrogen
bonds
Anticodon
A
The “anticodon” is the 3 RNA bases that
matches the 3 bases of the codon on the
mRNA molecule
Transfer RNA
• 3 dimensional tRNA molecule is roughly “L” shaped
(b) Three-dimensional structure
Symbol used
in the book
Amino acid
attachment site
Hydrogen
bonds
Anticodon
Anticodon
A A G
5′
3′
3′ 5′
(c)
Ribosomes
• Ribosomes facilitate the specific coupling of tRNA anticodons
with mRNA codons during protein synthesis
• The 2 ribosomal subunits are constructed of proteins and RNA
molecules named ribosomal RNA or rRNA
TRANSCRIPTION
TRANSLATION
DNA
mRNA
Ribosome
Polypeptide
Exit tunnel
Growing
polypeptide
tRNA
molecules
E
P A
Large
subunit
Small
subunit
mRNA
Computer model of functioning ribosome. This is a model of a bacterial
ribosome, showing its overall shape. The eukaryotic ribosome is roughly
similar. A ribosomal subunit is an aggregate of ribosomal RNA molecules
and proteins.
(a)
5′
3′
Ribosome
• The ribosome has three binding sites for tRNA
– The P site
– The A site
– The E site
E P A
P site (Peptidyl-tRNA
binding site)
E site
(Exit site)
mRNA
binding site
A site (Aminoacyl-
tRNA binding site)
Large
subunit
Small
subunit
Schematic model showing binding sites. A ribosome has an
mRNA binding site and three tRNA binding sites, known as the A,
P, and E sites. This schematic ribosome will appear in later
diagrams.
(b)
Amino end Growing polypeptide
Next amino acid
to be added to
polypeptide chain
tRNA
mRNA
Codons
3′
5′
Schematic model with mRNA and tRNA. A tRNA fits into a binding site when its anticodon base-
pairs with an mRNA codon. The P site holds the tRNA attached to the growing polypeptide. The A
site holds the tRNA carrying the next amino acid to be added to the polypeptide chain. Discharged
tRNA leaves via the E site.
(c)
Building a Polypeptide
Building a Molecule of tRNA
• A specific enzyme called an aminoacyl-tRNA
synthetase joins each amino acid to the correct tRNA
Figure 17.15
Amino acid
ATP
Adenosine
Pyrophosphate
Adenosine
Adenosine
Phosphates
tRNA
P P P
P
P Pi
Pi
Pi
P
AMP
Aminoacyl tRNA
(an “activated
amino acid”)
Aminoacyl-tRNA
synthetase (enzyme)
Active site binds the
amino acid and ATP.
1
ATP loses two P groups
and joins amino acid as AMP.
2
3 Appropriate
tRNA covalently
Bonds to amino
Acid, displacing
AMP.
Activated amino acid
is released by the enzyme.
4
Building a Polypeptide
• We can divide translation into three stages
– Initiation
– Elongation
– Termination
• The AUG start codon is recognized by methionyl-tRNA
or Met
• Once the start codon has been identified, the ribosome
incorporates amino acids into a polypeptide chain
• RNA is decoded by tRNA (transfer RNA) molecules,
which each transport specific amino acids to the
growing chain
• Translation ends when a stop codon (UAA, UAG, UGA)
is reached
Initiation of Translation
• The initiation stage of translation brings together
mRNA, tRNA bearing the first amino acid of the
polypeptide, and two subunits of a ribosome
Large
ribosomal
subunit
The arrival of a large ribosomal subunit completes
the initiation complex. Proteins called initiation
factors (not shown) are required to bring all the
translation components together. GTP provides
the energy for the assembly. The initiator tRNA is
in the P site; the A site is available to the tRNA
bearing the next amino acid.
2
Initiator tRNA
mRNA
mRNA binding site Small
ribosomal
subunit
Translation initiation complex
P site
GDPGTP
Start codon
A small ribosomal subunit binds to a molecule of
mRNA. In a prokaryotic cell, the mRNA binding site
on this subunit recognizes a specific nucleotide
sequence on the mRNA just upstream of the start
codon. An initiator tRNA, with the anticodon UAC,
base-pairs with the start codon, AUG. This tRNA
carries the amino acid methionine (Met).
1
Met
Met
U A C
A U G
E A
3′
5′
5′
3′
3′5′ 3′5′
Elongation of the Polypeptide Chain
• In the elongation stage, amino acids are added one
by one to the preceding amino acid
Amino end
of polypeptide
mRNA
Ribosome ready for
next aminoacyl tRNA
E
P A
E
P A
E
P A
E
P A
GDP
GTP
GTP
GDP
2
2
site site5′
3′
TRANSCRIPTION
TRANSLATION
DNA
mRNA
Ribosome
Polypeptide
Codon recognition. The anticodon
of an incoming aminoacyl tRNA
base-pairs with the complementary
mRNA codon in the A site. Hydrolysis
of GTP increases the accuracy and
efficiency of this step.
1
Peptide bond formation. An
rRNA molecule of the large
subunit catalyzes the formation
of a peptide bond between the
new amino acid in the A site and
the carboxyl end of the growing
polypeptide in the P site. This step
attaches the polypeptide to the
tRNA in the A site.
2
Translocation. The ribosome
translocates the tRNA in the A
site to the P site. The empty tRNA
in the P site is moved to the E site,
where it is released. The mRNA
moves along with its bound tRNAs,
bringing the next codon to be
translated into the A site.
3
Termination of Translation
• The final step in translation is termination. When the ribosome reaches
a STOP codon, there is no corresponding transfer RNA.
• Instead, a small protein called a “release factor” attaches to the stop
codon.
• The release factor causes the whole complex to fall apart: messenger
RNA, the two ribosome subunits, the new polypeptide.
• The messenger RNA can be translated many times, to produce many
protein copies.
Release
factor
Free
polypeptide
Stop codon
(UAG, UAA, or UGA)
5′
3′ 3′
5′
3′
5′
When a ribosome reaches a stop
codon on mRNA, the A site of the
ribosome accepts a protein called
a release factor instead of tRNA.
1 The release factor hydrolyzes
the bond between the tRNA in
the P site and the last amino
acid of the polypeptide chain.
The polypeptide is thus freed
from the ribosome.
2 3 The two ribosomal subunits
and the other components of
the assembly dissociate.
Translation: Initiation
• mRNA binds to a ribosome, and the transfer RNA
corresponding to the START codon binds to this complex.
Ribosomes are composed of 2 subunits (large and small), which
come together when the messenger RNA attaches during the
initiation process.
Translation: Elongation
• Elongation: the ribosome moves down the messenger RNA,
adding new amino acids to the growing polypeptide chain.
• The ribosome has 2 sites for binding transfer RNA. The first
RNA with its attached amino acid binds to the first site, and then
the transfer RNA corresponding to the second codon bind to the
second site.
Translation: Elongation
• The ribosome then removes the amino acid from the
first transfer RNA and attaches it to the second amino
acid.
• At this point, the first transfer RNA is empty: no
attached amino acid, and the second transfer RNA
has a chain of 2 amino acids attached to it.
• The elongation cycle repeats as the ribosome moves
down the messenger RNA, translating it one codon
and one amino acid at a time.
• The process repeats until a STOP codon is reached.
Translation: Termination
Polyribosomes
• A number of ribosomes can translate a single mRNA
molecule simultaneously forming a polyribosome
• Polyribosomes enable a cell to make many copies of
a polypeptide very quickly
Growing
polypeptides
Completed
polypeptide
Incoming
ribosomal
subunits
Start of
mRNA
(5′ end)
End of
mRNA
(3′ end)
Polyribosome
An mRNA molecule is generally translated simultaneously
by several ribosomes in clusters called polyribosomes.
(a)
Ribosomes
mRNA
This micrograph shows a large polyribosome in a prokaryotic
cell (TEM).
0.1 µm
Comparing Gene Expression In Prokaryotes And Eukaryotes
• In a eukaryotic cell:
– The nuclear envelope separates transcription from translation
– Extensive RNA processing occurs in the nucleus
• Prokaryotic cells lack a nuclear envelope, allowing translation to
begin while transcription progresses
RNA polymerase
DNA
Polyribosome
RNA
polymerase
Direction of
transcription
mRNA
0.25 µm
DNA
Polyribosome
Polypeptide
(amino end)
Ribosome
mRNA (5′ end)
A summary of transcription and translation in a eukaryotic cell
Figure 17.26
TRANSCRIPTION
RNA is transcribed
from a DNA template.
DNA
RNA
polymerase
RNA
transcript
RNA PROCESSING
In eukaryotes, the
RNA transcript (pre-
mRNA) is spliced and
modified to produce
mRNA, which moves
from the nucleus to the
cytoplasm.
Exon
Poly-A
RNA transcript
(pre-mRNA)
Intron
NUCLEUS
Cap
FORMATION OF
INITIATION COMPLEX
After leaving the
nucleus, mRNA attaches
to the ribosome.
CYTOPLASM
mRNA
Poly-A
Growing
polypeptide
Ribosomal
subunits
Cap
Aminoacyl-tRNA
synthetase
Amino
acid
tRNA
AMINO ACID ACTIVATION
Each amino acid
attaches to its proper tRNA
with the help of a specific
enzyme and ATP.
Activated
amino acid
TRANSLATION
A succession of tRNAs
add their amino acids to
the polypeptide chain
as the mRNA is moved
through the ribosome
one codon at a time.
(When completed, the
polypeptide is released
from the ribosome.)
Anticodon
A C C
A A A
U G G U U U A U G
U
A CE A
Ribosome
1
Poly-A
5′
5′
3′
Codon
2
3 4
5
Post-translation
• The new polypeptide is now floating loose in the
cytoplasm if translated by a free ribosome.
• Polypeptides fold spontaneously into their active
configuration, and they spontaneously join with other
polypeptides to form the final proteins.
• Often translation is not sufficient to make a functional
protein, polypeptide chains are modified after
translation
• Sometimes other molecules are also attached to the
polypeptides: sugars, lipids, phosphates, etc. All of
these have special purposes for protein function.
Targeting Polypeptides to Specific Locations
• Completed proteins are targeted to specific sites
in the cell
• Two populations of ribosomes are evident in cells:
free ribsomes (in the cytosol) and bound
ribosomes (attached to the ER)
– Free ribosomes mostly synthesize proteins that
function in the cytosol
– Bound ribosomes make proteins of the endomembrane
system and proteins that are secreted from the cell
• Ribosomes are identical and can switch from free
to bound
• Polypeptide synthesis always begins in the cytosol
• Synthesis finishes in the cytosol unless the polypeptide signals the ribosome to
attach to the ER
• Polypeptides destined for the ER or for secretion are marked by a signal
peptide
• A signal-recognition particle (SRP) binds to the signal peptide
• The SRP brings the signal peptide and its ribosome to the ER
Targeting Polypeptides to Specific Locations
Ribosomes
mRNA
Signal
peptide
Signal-
recognition
particle
(SRP)
SRP
receptor
protein
CYTOSOL
ER LUMEN Translocation
complex
Signal
peptide
removed
ER
membrane
Protein
Mutation Causes and Rate
• The natural replication of DNA produces occasional
errors. DNA polymerase has an editing mechanism
that decreases the rate, but it still exists
• Typically genes incur base substitutions about once
in every 10,000 to 1,000,000 cells
• Since we have about 6 billion bases of DNA in each
cell, virtually every cell in your body contains several
mutations
• Mutations can be harmful, lethal, helpful, silent
• However, most mutations are neutral: have no effect
• Only mutations in cells that become sperm or eggs—
are passed on to future generations
• Mutations in other body cells only cause trouble when
they cause cancer or related diseases
Mutagens
• Mutagens are chemical or physical agents that interact
with DNA to cause mutations.
• Physical agents include high-energy radiation like X-rays
and ultraviolet light
• Chemical mutagens fall into several categories.
– Chemicals that are base analogues that may be substituted into
DNA, but they pair incorrectly during DNA replication.
– Interference with DNA replication by inserting into DNA and
distorting the double helix.
– Chemical changes in bases that change their pairing properties.
• Tests are often used as a preliminary screen of chemicals
to identify those that may cause cancer
• Most carcinogens are mutagenic and most mutagens are
carcinogenic.
Viral Mutagens
• Scientists have recognized a number of tumor
viruses that cause cancer in various animals,
including humans
• About 15% of human cancers are caused by viral
infections that disrupt normal control of cell
division
• All tumor viruses transform cells into cancer cells
through the integration of viral nucleic acid into
host cell DNA.
Point mutations
• Point mutations involve alterations in the
structure or location of a single gene.
Generally, only one or a few base pairs are
involved.
• Point mutations can signficantly affect protein
structure and function
• Point mutations may be caused by physical
damage to the DNA from radiation or
chemicals, or may occur spontaneously
• Point mutations are often caused by mutagens
Point Mutation
• The change of a single nucleotide in the DNA’s template
strand leads to the production of an abnormal protein
In the DNA, the
mutant template
strand has an A where
the wild-type template
has a T.
The mutant mRNA has
a U instead of an A in
one codon.
The mutant (sickle-cell)
hemoglobin has a valine
(Val) instead of a glutamic
acid (Glu).
Mutant hemoglobin DNAWild-type hemoglobin DNA
mRNA mRNA
Normal hemoglobin Sickle-cell hemoglobin
Glu Val
C T T C A T
G A A G U A
3′ 5′ 3′ 5′
5′ 3′5′ 3′
Types of Point Mutations
• Point mutations within a gene can be divided
into two general categories
– Base-pair substitutions - is the replacement of
one nucleotide and its partner with another pair
of nucleotides
– Base-pair insertions or deletions - are additions
or losses of nucleotide pairs in a gene
Base-Pair Substitutions
• Silent - changes a codon but codes for the same amino acid
• Missense - substitutions that change a codon for one amino acid into a
codon for a different amino acid
• Nonsense -substitutions that change a codon for one amino acid into a
stop codon
Wild type
A U G A A G U U U G G C U A A
mRNA
5′
Protein Met Lys Phe Gly
Stop
Carboxyl end
Amino end
3′
A U G A A G U U U G G U U A A
Met Lys Phe Gly
Base-pair substitution
No effect on amino acid sequence
U instead of C
Stop
A U G A A G U U U A G U U A A
Met Lys Phe Ser Stop
A U G U A G U U U G G C U A A
Met Stop
Missense A instead of G
Nonsense
U instead of A
Insertions and Deletions
– Are additions or losses of nucleotide pairs in a gene
– May produce frameshift mutations that will change the
reading frame of the gene, and alter all codons
downstream from the mutation.
mRNA
Protein
Wild type
A U G A A G U U U G G C U A A
5′
Met Lys Phe Gly
Amino end Carboxyl end
Stop
Base-pair insertion or deletion
Frameshift causing immediate nonsense
A U G U A A G U U U G G C U A
A U G A A G U U G G C U A A
A U G U U U G G C U A A
Met Stop
U
Met Lys Leu Ala
Met Phe Gly
Stop
MissingA A G
Missing
Extra U
Frameshift causing
extensive missense
Insertion or deletion of 3 nucleotides:
no frameshift but extra or missing amino acid
3′

Weitere ähnliche Inhalte

Was ist angesagt?

DNA Replication -
DNA Replication -DNA Replication -
DNA Replication -Ashok Katta
 
DNA organization in Eukaryotic cells
DNA organization in Eukaryotic cellsDNA organization in Eukaryotic cells
DNA organization in Eukaryotic cellsSubhradeep sarkar
 
Central Dogma and Protein Synthesis
Central Dogma and Protein SynthesisCentral Dogma and Protein Synthesis
Central Dogma and Protein Synthesiscgales
 
DNA replication
DNA replicationDNA replication
DNA replicationEmaSushan
 
Hershey and chase experiment-the blender experiment
Hershey and chase experiment-the blender experimentHershey and chase experiment-the blender experiment
Hershey and chase experiment-the blender experimentbiOlOgyBINGE
 
DNA Structure PowerPoint
DNA Structure PowerPointDNA Structure PowerPoint
DNA Structure PowerPointBiologyIB
 
Dna recombination mechanisms new
Dna recombination mechanisms newDna recombination mechanisms new
Dna recombination mechanisms newSidra Shaffique
 
Mitosis powerpoint
Mitosis powerpointMitosis powerpoint
Mitosis powerpointfarrellw
 
Central dogma in molecular biology
Central dogma in molecular biologyCentral dogma in molecular biology
Central dogma in molecular biologyTanvir Raihan
 
Structure of DNA
Structure of DNAStructure of DNA
Structure of DNARavi Kiran
 
DNA Replication PowerPoint
DNA Replication PowerPointDNA Replication PowerPoint
DNA Replication PowerPointBiologyIB
 
RNA TRANSCRIPTION AND PROCESSING,.pptx
RNA TRANSCRIPTION AND PROCESSING,.pptxRNA TRANSCRIPTION AND PROCESSING,.pptx
RNA TRANSCRIPTION AND PROCESSING,.pptxjambojema3
 

Was ist angesagt? (20)

DNA Replication -
DNA Replication -DNA Replication -
DNA Replication -
 
DNA organization in Eukaryotic cells
DNA organization in Eukaryotic cellsDNA organization in Eukaryotic cells
DNA organization in Eukaryotic cells
 
Central Dogma and Protein Synthesis
Central Dogma and Protein SynthesisCentral Dogma and Protein Synthesis
Central Dogma and Protein Synthesis
 
DNA replication
DNA replicationDNA replication
DNA replication
 
Hershey and chase experiment-the blender experiment
Hershey and chase experiment-the blender experimentHershey and chase experiment-the blender experiment
Hershey and chase experiment-the blender experiment
 
DNA Structure PowerPoint
DNA Structure PowerPointDNA Structure PowerPoint
DNA Structure PowerPoint
 
Dna recombination mechanisms new
Dna recombination mechanisms newDna recombination mechanisms new
Dna recombination mechanisms new
 
Mitosis powerpoint
Mitosis powerpointMitosis powerpoint
Mitosis powerpoint
 
TRANSLATION
TRANSLATIONTRANSLATION
TRANSLATION
 
Genetic Material
Genetic MaterialGenetic Material
Genetic Material
 
Central dogma in molecular biology
Central dogma in molecular biologyCentral dogma in molecular biology
Central dogma in molecular biology
 
Structure of DNA
Structure of DNAStructure of DNA
Structure of DNA
 
Central dogma
Central dogmaCentral dogma
Central dogma
 
DNA Replication PowerPoint
DNA Replication PowerPointDNA Replication PowerPoint
DNA Replication PowerPoint
 
Dna damage
Dna damage Dna damage
Dna damage
 
Dna replication
Dna replicationDna replication
Dna replication
 
Nucleic acid (Advance)
Nucleic acid  (Advance)Nucleic acid  (Advance)
Nucleic acid (Advance)
 
Eukaryotic transcription
Eukaryotic transcriptionEukaryotic transcription
Eukaryotic transcription
 
DNA Replication
 DNA Replication DNA Replication
DNA Replication
 
RNA TRANSCRIPTION AND PROCESSING,.pptx
RNA TRANSCRIPTION AND PROCESSING,.pptxRNA TRANSCRIPTION AND PROCESSING,.pptx
RNA TRANSCRIPTION AND PROCESSING,.pptx
 

Andere mochten auch

Dna replication transcription and translation
Dna replication transcription and translationDna replication transcription and translation
Dna replication transcription and translationJames H. Workman
 
DNA Replication in eukaryotes and prokaryotes
DNA Replication in eukaryotes and prokaryotesDNA Replication in eukaryotes and prokaryotes
DNA Replication in eukaryotes and prokaryotesMohammad Barshan
 
Cell Division Mitosis and Meiosis
Cell Division Mitosis and MeiosisCell Division Mitosis and Meiosis
Cell Division Mitosis and MeiosisCatherine Patterson
 
Transcription,translation and genetic code(cell biology)by welfredo yu
Transcription,translation and genetic code(cell biology)by welfredo yuTranscription,translation and genetic code(cell biology)by welfredo yu
Transcription,translation and genetic code(cell biology)by welfredo yuGlee Cillo
 
Central dogma
Central dogmaCentral dogma
Central dogmaAIT
 
Genitics and inheritance
Genitics and inheritanceGenitics and inheritance
Genitics and inheritanceKaz_1234
 
Replication, transcription, translation and its regulation
Replication, transcription, translation and its regulationReplication, transcription, translation and its regulation
Replication, transcription, translation and its regulationAbhinava J V
 
Cell reproduction mitosis&meosis
Cell reproduction mitosis&meosisCell reproduction mitosis&meosis
Cell reproduction mitosis&meosisNaveen Gupta
 
Mendelian genetics by mohanbio
Mendelian genetics by mohanbioMendelian genetics by mohanbio
Mendelian genetics by mohanbiomohan bio
 
Dna replication and enzymes involved in dna replication
Dna replication and enzymes involved in dna replicationDna replication and enzymes involved in dna replication
Dna replication and enzymes involved in dna replicationNarayan Prahlad
 
DNA Presentation
DNA PresentationDNA Presentation
DNA Presentationjrfisher78
 
Basic Biological Concepts & Basic Genetics
Basic Biological Concepts & Basic GeneticsBasic Biological Concepts & Basic Genetics
Basic Biological Concepts & Basic Geneticsbharti sharma
 
Biotechnology ppt
Biotechnology pptBiotechnology ppt
Biotechnology pptblessiemary
 
07 mendelian genetics and humans
07 mendelian genetics and humans07 mendelian genetics and humans
07 mendelian genetics and humansmrtangextrahelp
 

Andere mochten auch (20)

Dna replication transcription and translation
Dna replication transcription and translationDna replication transcription and translation
Dna replication transcription and translation
 
Protein Synthesis
Protein SynthesisProtein Synthesis
Protein Synthesis
 
DNA Replication in eukaryotes and prokaryotes
DNA Replication in eukaryotes and prokaryotesDNA Replication in eukaryotes and prokaryotes
DNA Replication in eukaryotes and prokaryotes
 
Cell Division Mitosis and Meiosis
Cell Division Mitosis and MeiosisCell Division Mitosis and Meiosis
Cell Division Mitosis and Meiosis
 
Transcription,translation and genetic code(cell biology)by welfredo yu
Transcription,translation and genetic code(cell biology)by welfredo yuTranscription,translation and genetic code(cell biology)by welfredo yu
Transcription,translation and genetic code(cell biology)by welfredo yu
 
Biomitosismeiosis
BiomitosismeiosisBiomitosismeiosis
Biomitosismeiosis
 
2 Genetics
2 Genetics2 Genetics
2 Genetics
 
Central dogma
Central dogmaCentral dogma
Central dogma
 
Gnc help
Gnc helpGnc help
Gnc help
 
Genitics and inheritance
Genitics and inheritanceGenitics and inheritance
Genitics and inheritance
 
Replication, transcription, translation and its regulation
Replication, transcription, translation and its regulationReplication, transcription, translation and its regulation
Replication, transcription, translation and its regulation
 
Cell reproduction mitosis&meosis
Cell reproduction mitosis&meosisCell reproduction mitosis&meosis
Cell reproduction mitosis&meosis
 
Mendelian genetics by mohanbio
Mendelian genetics by mohanbioMendelian genetics by mohanbio
Mendelian genetics by mohanbio
 
Dna replication and enzymes involved in dna replication
Dna replication and enzymes involved in dna replicationDna replication and enzymes involved in dna replication
Dna replication and enzymes involved in dna replication
 
DNA Presentation
DNA PresentationDNA Presentation
DNA Presentation
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
 
Basic Biological Concepts & Basic Genetics
Basic Biological Concepts & Basic GeneticsBasic Biological Concepts & Basic Genetics
Basic Biological Concepts & Basic Genetics
 
Biotechnology ppt
Biotechnology pptBiotechnology ppt
Biotechnology ppt
 
Dn ato protein
Dn ato proteinDn ato protein
Dn ato protein
 
07 mendelian genetics and humans
07 mendelian genetics and humans07 mendelian genetics and humans
07 mendelian genetics and humans
 

Ähnlich wie DNA structure replication transcription translation

Chapter 8 microbial genetics
Chapter 8 microbial geneticsChapter 8 microbial genetics
Chapter 8 microbial geneticsBilalHoushaymi
 
replication-131220144801-phpapp01 (1).pdf
replication-131220144801-phpapp01 (1).pdfreplication-131220144801-phpapp01 (1).pdf
replication-131220144801-phpapp01 (1).pdfYoGeshSharma834784
 
DNA replication and repair
DNA replication and repairDNA replication and repair
DNA replication and repairNirajan Shrestha
 
LEC#7 DNA Replication and Repair.pdf
LEC#7  DNA Replication and Repair.pdfLEC#7  DNA Replication and Repair.pdf
LEC#7 DNA Replication and Repair.pdfMuhammadAfrazNuman
 
2 dna replication pro & euk.
2 dna replication pro & euk.2 dna replication pro & euk.
2 dna replication pro & euk.HEENA KAUSAR
 
BCH 3102 Moecular Biology.ppt
BCH 3102 Moecular Biology.pptBCH 3102 Moecular Biology.ppt
BCH 3102 Moecular Biology.pptSalimAbubakar4
 
DNA replication (1).ppt
DNA replication (1).pptDNA replication (1).ppt
DNA replication (1).pptAshok Kumar LP
 
Dna replication in eukaryotes
Dna replication in eukaryotesDna replication in eukaryotes
Dna replication in eukaryotesAhmad Raza
 
Replication
ReplicationReplication
ReplicationDhanya G
 
NUCLEOTIDES,NUCLEIC ACID AND HEREDITY.ppt
NUCLEOTIDES,NUCLEIC ACID AND HEREDITY.pptNUCLEOTIDES,NUCLEIC ACID AND HEREDITY.ppt
NUCLEOTIDES,NUCLEIC ACID AND HEREDITY.pptJaylaMaeMarcellana
 
Replication and gene exression
Replication and gene exressionReplication and gene exression
Replication and gene exressionShivanand Balan
 
9 DNA replication, repair , recombination
9 DNA replication, repair , recombination9 DNA replication, repair , recombination
9 DNA replication, repair , recombinationsaveena solanki
 
Central dogma of biology
Central dogma of biologyCentral dogma of biology
Central dogma of biologyBobbyPabores1
 
DNA replication of genetic information.ppt
DNA replication of genetic information.pptDNA replication of genetic information.ppt
DNA replication of genetic information.pptalifarag9115
 
molecular biology presentation.pptx
molecular biology presentation.pptxmolecular biology presentation.pptx
molecular biology presentation.pptxManish Soni
 

Ähnlich wie DNA structure replication transcription translation (20)

Microbial genetics lectures 4, 5, and 6
Microbial genetics lectures 4, 5, and 6Microbial genetics lectures 4, 5, and 6
Microbial genetics lectures 4, 5, and 6
 
Chapter 8 microbial genetics
Chapter 8 microbial geneticsChapter 8 microbial genetics
Chapter 8 microbial genetics
 
replication-131220144801-phpapp01 (1).pdf
replication-131220144801-phpapp01 (1).pdfreplication-131220144801-phpapp01 (1).pdf
replication-131220144801-phpapp01 (1).pdf
 
DNA replication and repair
DNA replication and repairDNA replication and repair
DNA replication and repair
 
LEC#7 DNA Replication and Repair.pdf
LEC#7  DNA Replication and Repair.pdfLEC#7  DNA Replication and Repair.pdf
LEC#7 DNA Replication and Repair.pdf
 
2 dna replication pro & euk.
2 dna replication pro & euk.2 dna replication pro & euk.
2 dna replication pro & euk.
 
BCH 3102 Moecular Biology.ppt
BCH 3102 Moecular Biology.pptBCH 3102 Moecular Biology.ppt
BCH 3102 Moecular Biology.ppt
 
DNA replication (1).ppt
DNA replication (1).pptDNA replication (1).ppt
DNA replication (1).ppt
 
DNA replication.ppt
DNA replication.pptDNA replication.ppt
DNA replication.ppt
 
Dna replication in eukaryotes
Dna replication in eukaryotesDna replication in eukaryotes
Dna replication in eukaryotes
 
Replication
ReplicationReplication
Replication
 
NUCLEOTIDES,NUCLEIC ACID AND HEREDITY.ppt
NUCLEOTIDES,NUCLEIC ACID AND HEREDITY.pptNUCLEOTIDES,NUCLEIC ACID AND HEREDITY.ppt
NUCLEOTIDES,NUCLEIC ACID AND HEREDITY.ppt
 
Dnareplication
DnareplicationDnareplication
Dnareplication
 
Replication.pdf
Replication.pdfReplication.pdf
Replication.pdf
 
Replication and gene exression
Replication and gene exressionReplication and gene exression
Replication and gene exression
 
9 DNA replication, repair , recombination
9 DNA replication, repair , recombination9 DNA replication, repair , recombination
9 DNA replication, repair , recombination
 
Central dogma of biology
Central dogma of biologyCentral dogma of biology
Central dogma of biology
 
DNA replication
DNA replicationDNA replication
DNA replication
 
DNA replication of genetic information.ppt
DNA replication of genetic information.pptDNA replication of genetic information.ppt
DNA replication of genetic information.ppt
 
molecular biology presentation.pptx
molecular biology presentation.pptxmolecular biology presentation.pptx
molecular biology presentation.pptx
 

Mehr von Aman Ullah

Chain of Infection
Chain of InfectionChain of Infection
Chain of InfectionAman Ullah
 
Immuno chromatography (ICT)
Immuno chromatography (ICT) Immuno chromatography (ICT)
Immuno chromatography (ICT) Aman Ullah
 
Infection in hospital environment
Infection in hospital environmentInfection in hospital environment
Infection in hospital environmentAman Ullah
 
Source and transmission of infection
Source and transmission of infectionSource and transmission of infection
Source and transmission of infectionAman Ullah
 
Hospital hygiene and infection control
Hospital hygiene and infection controlHospital hygiene and infection control
Hospital hygiene and infection controlAman Ullah
 
Types of Culture media
Types of Culture mediaTypes of Culture media
Types of Culture mediaAman Ullah
 
Chain of Infection
Chain of InfectionChain of Infection
Chain of InfectionAman Ullah
 
Blotting (Southern, Northern and Eastern)
Blotting (Southern, Northern and Eastern)Blotting (Southern, Northern and Eastern)
Blotting (Southern, Northern and Eastern)Aman Ullah
 
Blotting Technique
Blotting TechniqueBlotting Technique
Blotting TechniqueAman Ullah
 
Immunochromatographic technique (ICT)
Immunochromatographic technique (ICT)Immunochromatographic technique (ICT)
Immunochromatographic technique (ICT)Aman Ullah
 
Hypersensitivity
HypersensitivityHypersensitivity
HypersensitivityAman Ullah
 
Blood collection tube with color heads
Blood collection tube with color headsBlood collection tube with color heads
Blood collection tube with color headsAman Ullah
 
Classification of parasite
Classification of parasiteClassification of parasite
Classification of parasiteAman Ullah
 
Laboratory diagnosis of visceral leishmaniasis
Laboratory diagnosis of visceral leishmaniasisLaboratory diagnosis of visceral leishmaniasis
Laboratory diagnosis of visceral leishmaniasisAman Ullah
 
Classification of parasites
Classification of parasitesClassification of parasites
Classification of parasitesAman Ullah
 
Bacillus and Corynebacterium
Bacillus and CorynebacteriumBacillus and Corynebacterium
Bacillus and CorynebacteriumAman Ullah
 
KMU-IPMS Guidelines for Research Project Report Writing
KMU-IPMS Guidelines for Research Project Report Writing KMU-IPMS Guidelines for Research Project Report Writing
KMU-IPMS Guidelines for Research Project Report Writing Aman Ullah
 
Lab diagnosis of Trematodes, Blood flagellates, Plasmodium and Protozoans
Lab diagnosis of Trematodes,  Blood flagellates, Plasmodium and ProtozoansLab diagnosis of Trematodes,  Blood flagellates, Plasmodium and Protozoans
Lab diagnosis of Trematodes, Blood flagellates, Plasmodium and ProtozoansAman Ullah
 

Mehr von Aman Ullah (20)

Chain of Infection
Chain of InfectionChain of Infection
Chain of Infection
 
Immuno chromatography (ICT)
Immuno chromatography (ICT) Immuno chromatography (ICT)
Immuno chromatography (ICT)
 
Infection in hospital environment
Infection in hospital environmentInfection in hospital environment
Infection in hospital environment
 
Source and transmission of infection
Source and transmission of infectionSource and transmission of infection
Source and transmission of infection
 
Hospital hygiene and infection control
Hospital hygiene and infection controlHospital hygiene and infection control
Hospital hygiene and infection control
 
HIV
HIV HIV
HIV
 
Types of Culture media
Types of Culture mediaTypes of Culture media
Types of Culture media
 
Chain of Infection
Chain of InfectionChain of Infection
Chain of Infection
 
Blotting (Southern, Northern and Eastern)
Blotting (Southern, Northern and Eastern)Blotting (Southern, Northern and Eastern)
Blotting (Southern, Northern and Eastern)
 
Blotting Technique
Blotting TechniqueBlotting Technique
Blotting Technique
 
Immunochromatographic technique (ICT)
Immunochromatographic technique (ICT)Immunochromatographic technique (ICT)
Immunochromatographic technique (ICT)
 
Hypersensitivity
HypersensitivityHypersensitivity
Hypersensitivity
 
Blood collection tube with color heads
Blood collection tube with color headsBlood collection tube with color heads
Blood collection tube with color heads
 
Classification of parasite
Classification of parasiteClassification of parasite
Classification of parasite
 
Laboratory diagnosis of visceral leishmaniasis
Laboratory diagnosis of visceral leishmaniasisLaboratory diagnosis of visceral leishmaniasis
Laboratory diagnosis of visceral leishmaniasis
 
Classification of parasites
Classification of parasitesClassification of parasites
Classification of parasites
 
Bacillus and Corynebacterium
Bacillus and CorynebacteriumBacillus and Corynebacterium
Bacillus and Corynebacterium
 
Clostridium
ClostridiumClostridium
Clostridium
 
KMU-IPMS Guidelines for Research Project Report Writing
KMU-IPMS Guidelines for Research Project Report Writing KMU-IPMS Guidelines for Research Project Report Writing
KMU-IPMS Guidelines for Research Project Report Writing
 
Lab diagnosis of Trematodes, Blood flagellates, Plasmodium and Protozoans
Lab diagnosis of Trematodes,  Blood flagellates, Plasmodium and ProtozoansLab diagnosis of Trematodes,  Blood flagellates, Plasmodium and Protozoans
Lab diagnosis of Trematodes, Blood flagellates, Plasmodium and Protozoans
 

Kürzlich hochgeladen

Ahmedabad Call Girls CG Road 🔝9907093804 Short 1500 💋 Night 6000
Ahmedabad Call Girls CG Road 🔝9907093804  Short 1500  💋 Night 6000Ahmedabad Call Girls CG Road 🔝9907093804  Short 1500  💋 Night 6000
Ahmedabad Call Girls CG Road 🔝9907093804 Short 1500 💋 Night 6000aliya bhat
 
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...Miss joya
 
Call Girl Lucknow Mallika 7001305949 Independent Escort Service Lucknow
Call Girl Lucknow Mallika 7001305949 Independent Escort Service LucknowCall Girl Lucknow Mallika 7001305949 Independent Escort Service Lucknow
Call Girl Lucknow Mallika 7001305949 Independent Escort Service Lucknownarwatsonia7
 
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking ModelsMumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking Modelssonalikaur4
 
Call Girls Thane Just Call 9910780858 Get High Class Call Girls Service
Call Girls Thane Just Call 9910780858 Get High Class Call Girls ServiceCall Girls Thane Just Call 9910780858 Get High Class Call Girls Service
Call Girls Thane Just Call 9910780858 Get High Class Call Girls Servicesonalikaur4
 
Call Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort Service
Call Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort ServiceCall Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort Service
Call Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort Serviceparulsinha
 
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Glomerular Filtration rate and its determinants.pptx
Glomerular Filtration rate and its determinants.pptxGlomerular Filtration rate and its determinants.pptx
Glomerular Filtration rate and its determinants.pptxDr.Nusrat Tariq
 
Call Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalore
Call Girl Bangalore Nandini 7001305949 Independent Escort Service BangaloreCall Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalore
Call Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalorenarwatsonia7
 
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort ServiceCollege Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort ServiceNehru place Escorts
 
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbers
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbersBook Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbers
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbersnarwatsonia7
 
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiCall Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiNehru place Escorts
 
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment BookingCall Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment BookingNehru place Escorts
 
97111 47426 Call Girls In Delhi MUNIRKAA
97111 47426 Call Girls In Delhi MUNIRKAA97111 47426 Call Girls In Delhi MUNIRKAA
97111 47426 Call Girls In Delhi MUNIRKAAjennyeacort
 
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original PhotosBook Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photosnarwatsonia7
 
Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...
Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...
Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...narwatsonia7
 
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy GirlsCall Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy Girlsnehamumbai
 
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdf
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdfHemostasis Physiology and Clinical correlations by Dr Faiza.pdf
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdfMedicoseAcademics
 
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service JaipurHigh Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipurparulsinha
 

Kürzlich hochgeladen (20)

Ahmedabad Call Girls CG Road 🔝9907093804 Short 1500 💋 Night 6000
Ahmedabad Call Girls CG Road 🔝9907093804  Short 1500  💋 Night 6000Ahmedabad Call Girls CG Road 🔝9907093804  Short 1500  💋 Night 6000
Ahmedabad Call Girls CG Road 🔝9907093804 Short 1500 💋 Night 6000
 
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
 
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
College Call Girls Pune Mira 9907093804 Short 1500 Night 6000 Best call girls...
 
Call Girl Lucknow Mallika 7001305949 Independent Escort Service Lucknow
Call Girl Lucknow Mallika 7001305949 Independent Escort Service LucknowCall Girl Lucknow Mallika 7001305949 Independent Escort Service Lucknow
Call Girl Lucknow Mallika 7001305949 Independent Escort Service Lucknow
 
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking ModelsMumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
Mumbai Call Girls Service 9910780858 Real Russian Girls Looking Models
 
Call Girls Thane Just Call 9910780858 Get High Class Call Girls Service
Call Girls Thane Just Call 9910780858 Get High Class Call Girls ServiceCall Girls Thane Just Call 9910780858 Get High Class Call Girls Service
Call Girls Thane Just Call 9910780858 Get High Class Call Girls Service
 
Call Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort Service
Call Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort ServiceCall Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort Service
Call Girls Service In Shyam Nagar Whatsapp 8445551418 Independent Escort Service
 
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hosur Just Call 7001305949 Top Class Call Girl Service Available
 
Glomerular Filtration rate and its determinants.pptx
Glomerular Filtration rate and its determinants.pptxGlomerular Filtration rate and its determinants.pptx
Glomerular Filtration rate and its determinants.pptx
 
Call Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalore
Call Girl Bangalore Nandini 7001305949 Independent Escort Service BangaloreCall Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalore
Call Girl Bangalore Nandini 7001305949 Independent Escort Service Bangalore
 
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort ServiceCollege Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
College Call Girls Vyasarpadi Whatsapp 7001305949 Independent Escort Service
 
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbers
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbersBook Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbers
Book Call Girls in Kasavanahalli - 7001305949 with real photos and phone numbers
 
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiCall Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
 
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment BookingCall Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
 
97111 47426 Call Girls In Delhi MUNIRKAA
97111 47426 Call Girls In Delhi MUNIRKAA97111 47426 Call Girls In Delhi MUNIRKAA
97111 47426 Call Girls In Delhi MUNIRKAA
 
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original PhotosBook Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
Book Call Girls in Yelahanka - For 7001305949 Cheap & Best with original Photos
 
Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...
Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...
Housewife Call Girls Hsr Layout - Call 7001305949 Rs-3500 with A/C Room Cash ...
 
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy GirlsCall Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
 
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdf
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdfHemostasis Physiology and Clinical correlations by Dr Faiza.pdf
Hemostasis Physiology and Clinical correlations by Dr Faiza.pdf
 
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service JaipurHigh Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
High Profile Call Girls Jaipur Vani 8445551418 Independent Escort Service Jaipur
 

DNA structure replication transcription translation

  • 1. The Molecular Basis of Inheritance Figure 16.7a, c C T A A T CG GC A C G AT AT A T TA C TA 0.34 nm 3.4 nm (a) Key features of DNA structure G 1 nm G (c) Space-filling model T
  • 2. 1962: Nobel Prize in Physiology and Medicine James D. Watson Francis H. Crick Maurice H. F. Wilkins What about? Rosalind Franklin Watson, J.D. and F.H. Crick, “Molecular Structure of Nucleic Acids: A Structure for Deoxynucleic Acids”. Nature 171 (1953), p. 738.
  • 3. The Structure of DNA • DNA is composed of four nucleotides, each containing: adenine, cytosine, thymine, or guanine. • The amounts of A = T, G = C, and purines = pyrimidines [Chargaff’s Rule]. • DNA is a double-stranded helix with antiparallel strands [Watson and Crick]. • Nucleotides in each strand are linked by 5’-3’ phosphodiester bonds • Bases on opposite strands are linked by hydrogen bonding: A with T, and G with C.
  • 4.
  • 5. The Basic Principle: Base Pairing to a Template Strand • The relationship between structure and function is manifest in the double helix • Since the two strands of DNA are complementary each strand acts as a template for building a new strand in replication
  • 6. DNA replication • The parent molecule unwinds, and two new daughter strands are built based on base- pairing rules (a) The parent molecule has two complementary strands of DNA. Each base is paired by hydrogen bonding with its specific partner, A with T and G with C. (b) The first step in replication is separation of the two DNA strands. (c) Each parental strand now serves as a template that determines the order of nucleotides along a new, complementary strand. (d) The nucleotides are connected to form the sugar-phosphate backbones of the new strands. Each “daughter” DNA molecule consists of one parental strand and one new strand. A C T A G A C T A G A C T A G A C T A G T G A T C T G A T C A C T A G A C T A G T G A T C T G A T C T G A T C T G A T C
  • 7. DNA Replication is “Semi-conservative” • Each 2-stranded daughter molecule is only half new • One original strand was used as a template to make the new strand
  • 8. DNA Replication • The copying of DNA is remarkable in its speed and accuracy • Involves unwinding the double helix and synthesizing two new strands. • More than a dozen enzymes and other proteins participate in DNA replication • The replication of a DNA molecule begins at special sites called origins of replication, where the two strands are separated
  • 9. Origins of Replication • A eukaryotic chromosome may have hundreds or even thousands of replication origins Replication begins at specific sites where the two parental strands separate and form replication bubbles. The bubbles expand laterally, as DNA replication proceeds in both directions. Eventually, the replication bubbles fuse, and synthesis of the daughter strands is complete. 1 2 3 Origin of replication Bubble Parental (template) strand Daughter (new) strand Replication fork Two daughter DNA molecules In eukaryotes, DNA replication begins at many sites along the giant DNA molecule of each chromosome. In this micrograph, three replication bubbles are visible along the DNA of a cultured Chinese hamster cell (TEM). (b)(a) 0.25 µm
  • 10. Mechanism of DNA Replication • DNA replication is catalyzed by DNA polymerase which needs an RNA primer • RNA primase synthesizes primer on DNA strand • DNA polymerase adds nucleotides to the 3’ end of the growing strand
  • 11. Mechanism of DNA Replication • Nucleotides are added by complementary base pairing with the template strand • The substrates, deoxyribonucleoside triphosphates, are hydrolyzed as added, releasing energy for DNA synthesis.
  • 12. The Mechanism of DNA Replication • DNA synthesis on the leading strand is continuous • The lagging strand grows the same general direction as the leading strand (in the same direction as the Replication Fork). However, DNA is made in the 5’-to-3’ direction • Therefore, DNA synthesis on the lagging strand is discontinuous • DNA is added as short fragments (Okasaki fragments) that are subsequently ligated together
  • 13.
  • 14. DNA polymerase I degrades the RNA primer and replaces it with DNA
  • 15. The Mechanism of DNA Replication • Many proteins assist in DNA replication • DNA helicases unwind the double helix, the template strands are stabilized by other proteins • Single-stranded DNA binding proteins make the template available • RNA primase catalyzes the synthesis of short RNA primers, to which nucleotides are added. • DNA polymerase III extends the strand in the 5’-to-3’ direction • DNA polymerase I degrades the RNA primer and replaces it with DNA • DNA ligase joins the DNA fragments into a continuous daughter strand
  • 16. Enzymes in DNA replication Helicase unwinds parental double helix Binding proteins stabilize separate strands DNA polymerase III binds nucleotides to form new strands Ligase joins Okazaki fragments and seals other nicks in sugar- phosphate backbone Primase adds short primer to template strand DNA polymerase I (Exonuclease) removes RNA primer and inserts the correct bases
  • 17. Binding proteins prevent single strands from rewinding. Helicase protein binds to DNA sequences called origins and unwinds DNA strands. 5’ 3’ 5’ 3’ Primase protein makes a short segment of RNA complementary to the DNA, a primer. 3’5’ 5’3’ Replication
  • 18. Overall direction of replication 5’3’ 5’ 3’ 5’ 3’ 3’5’ DNA polymerase enzyme adds DNA nucleotides to the RNA primer. Replication
  • 19. DNA polymerase enzyme adds DNA nucleotides to the RNA primer. 5’ 5’ Overall direction of replication 5’ 3’ 5’ 3’ 3’ 3’ DNA polymerase proofreads bases added and replaces incorrect nucleotides. Replication
  • 20. 5’ 5’3’ 5’ 3’ 3’ 5’ 3’ Overall direction of replication Leading strand synthesis continues in a 5’ to 3’ direction. Replication
  • 21. 3’5’ 5’ 5’3’ 5’ 3’ 3’ 5’ 3’ Overall direction of replication Okazaki fragment Leading strand synthesis continues in a 5’ to 3’ direction. Discontinuous synthesis produces 5’ to 3’ DNA segments called Okazaki fragments. Replication
  • 22. 5’ 5’ 5’3’ 5’ 3’ 3’ 5’ 3’ Overall direction of replication 3’ Leading strand synthesis continues in a 5’ to 3’ direction. Discontinuous synthesis produces 5’ to 3’ DNA segments called Okazaki fragments. Okazaki fragment Replication
  • 23. 5’ 5’ 3’ 5’ 3’ 3’ 5’ 3’ 3’ 5’ 5’3’ Leading strand synthesis continues in a 5’ to 3’ direction. Discontinuous synthesis produces 5’ to 3’ DNA segments called Okazaki fragments. Replication
  • 24. 3’ 5’ 3’ 5’ 5’ 3’ 5’ 3’ 3’ 5’ 5’3’ Leading strand synthesis continues in a 5’ to 3’ direction. Discontinuous synthesis produces 5’ to 3’ DNA segments called Okazaki fragments. Replication
  • 25. 5’ 5’ 3’ 3’ 5’ 3’ 5’ 3’ 5’ 3’ 3’ 5’ Exonuclease activity of DNA polymerase I removes RNA primers. Replication
  • 26. Polymerase activity of DNA polymerase I fills the gaps. Ligase forms bonds between sugar-phosphate backbone. 3’ 5’ 3’ 5’ 3’ 5’ 3’ 3’ 5’ Replication
  • 28. Proofreading • DNA must be faithfully replicated…but mistakes occur – DNA polymerase (DNA pol) inserts the wrong nucleotide base in 1/10,000 bases • DNA pol has a proofreading capability and can correct errors – Mismatch repair: ‘wrong’ inserted base can be removed – Excision repair: DNA may be damaged by chemicals, radiation, etc. Mechanism to cut out and replace with correct bases
  • 29. Mutations • A mismatching of base pairs, can occur at a rate of 1 per 10,000 bases. • DNA polymerase proofreads and repairs accidental mismatched pairs. • Chances of a mutation occurring at any one gene is over 1 in 100,000 • Because the human genome is so large, even at this rate, mutations add up. Each of us probably inherited 3-4 mutations!
  • 30. Proofreading and Repairing DNA • DNA polymerases proofread newly made DNA, replacing any incorrect nucleotides • In mismatch repair of DNA, repair enzymes correct errors in base pairing • In nucleotide excision DNA repair nucleases cut out and replace damaged stretches of DNA Nuclease DNA polymerase DNA ligase A thymine dimer distorts the DNA molecule. 1 A nuclease enzyme cuts the damaged DNA strand at two points and the damaged section is removed. 2 Repair synthesis by a DNA polymerase fills in the missing nucleotides. 3 DNA ligase seals the Free end of the new DNA To the old DNA, making the strand complete. 4
  • 31. Accuracy of DNA Replication • The chromosome of E. coli bacteria contains about 5 million bases pairs – Capable of copying this DNA in less than an hour • The 46 chromosomes of a human cell contain about 6 BILLION base pairs of DNA!! – Printed one letter (A,C,T,G) at a time…would fill up over 900 volumes of Campbell. – Takes a cell a few hours to copy this DNA – With amazing accuracy – an average of 1 per billion nucleotides
  • 32. The Central Dogma of Life. replication
  • 33. Protein Synthesis • The information content of DNA is in the form of specific sequences of nucleotides along the DNA strands • The DNA inherited by an organism leads to specific traits by dictating the synthesis of proteins • The process by which DNA directs protein synthesis, gene expression includes two stages, called transcription and translation
  • 34. Transcription and Translation • Cells are governed by a cellular chain of command – DNA → RNA → protein • Transcription – Is the synthesis of RNA under the direction of DNA – Produces messenger RNA (mRNA) • Translation – Is the actual synthesis of a polypeptide, which occurs under the direction of mRNA – Occurs on ribosomes
  • 35. Transcription and Translation • In prokaryotes transcription and translation occur together Figure 17.3a Prokaryotic cell. In a cell lacking a nucleus, mRNA produced by transcription is immediately translated without additional processing. (a) TRANSLATION TRANSCRIPTION DNA mRNA Ribosome Polypeptide
  • 36. Transcription and Translation • In a eukaryotic cell the nuclear envelope separates transcription from translation • Extensive RNA processing occurs in the nucleus Eukaryotic cell. The nucleus provides a separate compartment for transcription. The original RNA transcript, called pre-mRNA, is processed in various ways before leaving the nucleus as mRNA. (b) TRANSCRIPTION RNA PROCESSING TRANSLATION mRNA DNA Pre-mRNA Polypeptide Ribosome Nuclear envelope
  • 37. Transcription • Transcription is the DNA- directed synthesis of RNA • RNA synthesis – Is catalyzed by RNA polymerase, which pries the DNA strands apart and hooks together the RNA nucleotides – Follows the same base-pairing rules as DNA, except that in RNA, uracil substitutes for thymine
  • 38. RNA Table 17.1 • RNA is single stranded, not double stranded like DNA • RNA is short, only 1 gene long, where DNA is very long and contains many genes • RNA uses the sugar ribose instead of deoxyribose in DNA • RNA uses the base uracil (U) instead of thymine (T) in DNA.
  • 39. Synthesis of an RNA Transcript • The stages of transcription are – Initiation – Elongation – Termination Promoter Transcription unit RNA polymerase Start point 5′ 3′ 3′ 5′ 3′ 5′ 5′ 3′ 5′ 3′ 3′ 5′ 5′ 3′ 3′ 5′ 5′ 5′ Rewound RNA RNA transcript 3′ 3′ Completed RNA transcript Unwound DNA RNA transcript Template strand of DNA DNA 1 Initiation. After RNA polymerase binds to the promoter, the DNA strands unwind, and the polymerase initiates RNA synthesis at the start point on the template strand. 2 Elongation. The polymerase moves downstream, unwinding the DNA and elongating the RNA transcript 5′ → 3 ′. In the wake of transcription, the DNA strands re-form a double helix. 3 Termination. Eventually, the RNA transcript is released, and the polymerase detaches from the DNA.
  • 40. • Promoters signal the initiation of RNA synthesis • Transcription factors help eukaryotic RNA polymerase recognize promoter sequences • A crucial promoter DNA sequence is called a TATA box. TRANSCRIPTION RNA PROCESSING TRANSLATION DNA Pre-mRNA mRNA Ribosome Polypeptide T A T AAA A ATAT T T T TATA box Start point Template DNA strand 5′ 3′ 3′ 5′ Transcription factors 5′ 3′ 3′ 5′ Promoter 5′ 3′ 3′ 5′5′ RNA polymerase II Transcription factors RNA transcript Transcription initiation complex Eukaryotic promoters1 Several transcription factors 2 Additional transcription factors 3 Synthesis of an RNA Transcript - Initiation
  • 41. Synthesis of an RNA Transcript - Elongation Elongation RNA polymerase Non-template strand of DNA RNA nucleotides 3′ end C A E G C A A U T A G G T T A A C G U A T C A T C C A A T T G G 3′ 5′ 5′ Newly made RNA Direction of transcription (“downstream”) Template strand of DNA • RNA polymerase synthesizes a single strand of RNA against the DNA template strand (anti-sense strand), adding nucleotides to the 3’ end of the RNA chain • As RNA polymerase moves along the DNA it continues to untwist the double helix, exposing about 10 to 20 DNA bases at a time for pairing with RNA nucleotides
  • 42. • Specific sequences in the DNA signal termination of transcription • When one of these is encountered by the polymerase, the RNA transcript is released from the DNA and the double helix can zip up again. Synthesis of an RNA Transcript - Termination
  • 44. • Most eukaryotic mRNAs aren’t ready to be translated into protein directly after being transcribed from DNA. mRNA requires processing. • Transcription of RNA processing occur in the nucleus. After this, the messenger RNA moves to the cytoplasm for translation. • The cell adds a protective cap to one end, and a tail of A’s to the other end. These both function to protect the RNA from enzymes that would degrade • Most of the genome consists of non-coding regions called introns – Non-coding regions may have specific chromosomal functions or have regulatory purposes – Introns also allow for alternative RNA splicing • Thus, an RNA copy of a gene is converted into messenger RNA by doing 2 things: – Add protective bases to the ends – Cut out the introns Post Termination RNA Processing
  • 45. Alteration of mRNA Ends • Each end of a pre-mRNA molecule is modified in a particular way – The 5′ end receives a modified nucleotide cap – The 3′ end gets a poly-A tail A modified guanine nucleotide added to the 5′ end 50 to 250 adenine nucleotides added to the 3′ end Protein-coding segment Polyadenylation signal Poly-A tail3′ UTR Stop codonStart codon 5′ Cap 5′ UTR AAUAAA AAA…AAA TRANSCRIPTION RNA PROCESSING DNA Pre-mRNA mRNA TRANSLATION Ribosome Polypeptide G P P P 5′ 3′
  • 46. RNA Processing - Splicing • The original transcript from the DNA is called pre-mRNA. • It contains transcripts of both introns and exons. • The introns are removed by a process called splicing to produce messenger RNA (mRNA)
  • 47. RNA Processing - Splicing • Ribozymes are catalytic RNA molecules that function as enzymes and can splice RNA • RNA splicing removes introns and joins exons Figure 17.10 TRANSCRIPTION RNA PROCESSING DNA Pre-mRNA mRNA TRANSLATION Ribosome Polypeptide 5′ Cap Exon Intron 1 5′ 30 31 Exon Intron 104 105 146 Exon 3′ Poly-A tail Poly-A tail Introns cut out and exons spliced together Coding segment 5′ Cap 1 146 3′ UTR3′ UTR Pre-mRNA mRNA
  • 48. RNA Processing • RNA Splicing can also be carried out by spliceosomes RNA transcript (pre-mRNA) Exon 1 Intron Exon 2 Other proteins Protein snRNA snRNPs Spliceosome Spliceosome components Cut-out intron mRNA Exon 1 Exon 2 5′ 5′ 5′ 1 2 3
  • 49. Alternative Splicing (of Exons) • How is it possible that there are millions of human antibodies when there are only about 30,000 genes? • Alternative splicing refers to the different ways the exons of a gene may be combined, producing different forms of proteins within the same gene-coding region • Alternative pre-mRNA splicing is an important mechanism for regulating gene expression in higher eukaryotes
  • 50. RNA Processing • Proteins often have a modular architecture consisting of discrete structural and functional regions called domains • In many cases different exons code for the different domains in a protein Figure 17.12 Gene DNA Exon 1 Intron Exon 2 Intron Exon 3 Transcription RNA processing Translation Domain 3 Domain 1 Domain 2 Polypeptide
  • 51. Translation • Translation is the RNA- directed synthesis of a polypeptide • Translation involves – mRNA – Ribosomes - Ribosomal RNA – Transfer RNA – Genetic coding - codons TRANSCRIPTION TRANSLATION DNA mRNA Ribosome Polypeptide Polypeptide Amino acids tRNA with amino acid attachedRibosome tRNA Anticodon mRNA Trp Phe Gly A G C A A A C C G U G G U U U G G C Codons5′ 3′
  • 52. The Genetic Code • Genetic information is encoded as a sequence of nonoverlapping base triplets, or codons • The gene determines the sequence of bases along the length of an mRNA molecule DNA molecule Gene 1 Gene 2 Gene 3 DNA strand (template) TRANSCRIPTION mRNA Protein TRANSLATION Amino acid A C C A A A C C G A G T U G G U U U G G C U C A Trp Phe Gly Ser Codon 3′ 5′ 3′5′
  • 53. The Genetic Code • Codons: 3 base code for the production of a specific amino acid, sequence of three of the four different nucleotides • Since there are 4 bases and 3 positions in each codon, there are 4 x 4 x 4 = 64 possible codons • 64 codons but only 20 amino acids, therefore most have more than 1 codon • 3 of the 64 codons are used as STOP signals; they are found at the end of every gene and mark the end of the protein • One codon is used as a START signal: it is at the start of every protein • Universal: in all living organisms
  • 54. The Genetic Code • A codon in messenger RNA is either translated into an amino acid or serves as a translational start/stop signal Second mRNA base U C A G U C A G UUU UUC UUA UUG CUU CUC CUA CUG AUU AUC AUA AUG GUU GUC GUA GUG Met or start Phe Leu Leu lle Val UCU UCC UCA UCG CCU CCC CCA CCG ACU ACC ACA ACG GCU GCC GCA GCG Ser Pro Thr Ala UAU UAC UGU UGC Tyr Cys CAU CAC CAA CAG CGU CGC CGA CGG AAU AAC AAA AAG AGU AGC AGA AGG GAU GAC GAA GAG GGU GGC GGA GGG UGG UAA UAG Stop Stop UGA Stop Trp His Gln Asn Lys Asp Arg Ser Arg Gly U C A G U C A G U C A G U C A G FirstmRNAbase(5′end) ThirdmRNAbase(3′end) Glu
  • 55. Transfer RNA • Consists of a single RNA strand that is only about 80 nucleotides long • Each carries a specific amino acid on one end and has an anticodon on the other end • A special group of enzymes pairs up the proper tRNA molecules with their corresponding amino acids. • tRNA brings the amino acids to the ribosomes, Two-dimensional structure. The four base-paired regions and three loops are characteristic of all tRNAs, as is the base sequence of the amino acid attachment site at the 3′ end. The anticodon triplet is unique to each tRNA type. (The asterisks mark bases that have been chemically modified, a characteristic of tRNA.) (a) 3′ C C A C G C U U A A GACACCU * G C * * G U G U *CU * G AG G U * *A * A A G U C A G A C C * C G A G A G G G * * GA CUC*AU U U A G G C G 5′ Amino acid attachment site Hydrogen bonds Anticodon A The “anticodon” is the 3 RNA bases that matches the 3 bases of the codon on the mRNA molecule
  • 56. Transfer RNA • 3 dimensional tRNA molecule is roughly “L” shaped (b) Three-dimensional structure Symbol used in the book Amino acid attachment site Hydrogen bonds Anticodon Anticodon A A G 5′ 3′ 3′ 5′ (c)
  • 57. Ribosomes • Ribosomes facilitate the specific coupling of tRNA anticodons with mRNA codons during protein synthesis • The 2 ribosomal subunits are constructed of proteins and RNA molecules named ribosomal RNA or rRNA TRANSCRIPTION TRANSLATION DNA mRNA Ribosome Polypeptide Exit tunnel Growing polypeptide tRNA molecules E P A Large subunit Small subunit mRNA Computer model of functioning ribosome. This is a model of a bacterial ribosome, showing its overall shape. The eukaryotic ribosome is roughly similar. A ribosomal subunit is an aggregate of ribosomal RNA molecules and proteins. (a) 5′ 3′
  • 58. Ribosome • The ribosome has three binding sites for tRNA – The P site – The A site – The E site E P A P site (Peptidyl-tRNA binding site) E site (Exit site) mRNA binding site A site (Aminoacyl- tRNA binding site) Large subunit Small subunit Schematic model showing binding sites. A ribosome has an mRNA binding site and three tRNA binding sites, known as the A, P, and E sites. This schematic ribosome will appear in later diagrams. (b)
  • 59. Amino end Growing polypeptide Next amino acid to be added to polypeptide chain tRNA mRNA Codons 3′ 5′ Schematic model with mRNA and tRNA. A tRNA fits into a binding site when its anticodon base- pairs with an mRNA codon. The P site holds the tRNA attached to the growing polypeptide. The A site holds the tRNA carrying the next amino acid to be added to the polypeptide chain. Discharged tRNA leaves via the E site. (c) Building a Polypeptide
  • 60. Building a Molecule of tRNA • A specific enzyme called an aminoacyl-tRNA synthetase joins each amino acid to the correct tRNA Figure 17.15 Amino acid ATP Adenosine Pyrophosphate Adenosine Adenosine Phosphates tRNA P P P P P Pi Pi Pi P AMP Aminoacyl tRNA (an “activated amino acid”) Aminoacyl-tRNA synthetase (enzyme) Active site binds the amino acid and ATP. 1 ATP loses two P groups and joins amino acid as AMP. 2 3 Appropriate tRNA covalently Bonds to amino Acid, displacing AMP. Activated amino acid is released by the enzyme. 4
  • 61. Building a Polypeptide • We can divide translation into three stages – Initiation – Elongation – Termination • The AUG start codon is recognized by methionyl-tRNA or Met • Once the start codon has been identified, the ribosome incorporates amino acids into a polypeptide chain • RNA is decoded by tRNA (transfer RNA) molecules, which each transport specific amino acids to the growing chain • Translation ends when a stop codon (UAA, UAG, UGA) is reached
  • 62. Initiation of Translation • The initiation stage of translation brings together mRNA, tRNA bearing the first amino acid of the polypeptide, and two subunits of a ribosome Large ribosomal subunit The arrival of a large ribosomal subunit completes the initiation complex. Proteins called initiation factors (not shown) are required to bring all the translation components together. GTP provides the energy for the assembly. The initiator tRNA is in the P site; the A site is available to the tRNA bearing the next amino acid. 2 Initiator tRNA mRNA mRNA binding site Small ribosomal subunit Translation initiation complex P site GDPGTP Start codon A small ribosomal subunit binds to a molecule of mRNA. In a prokaryotic cell, the mRNA binding site on this subunit recognizes a specific nucleotide sequence on the mRNA just upstream of the start codon. An initiator tRNA, with the anticodon UAC, base-pairs with the start codon, AUG. This tRNA carries the amino acid methionine (Met). 1 Met Met U A C A U G E A 3′ 5′ 5′ 3′ 3′5′ 3′5′
  • 63. Elongation of the Polypeptide Chain • In the elongation stage, amino acids are added one by one to the preceding amino acid Amino end of polypeptide mRNA Ribosome ready for next aminoacyl tRNA E P A E P A E P A E P A GDP GTP GTP GDP 2 2 site site5′ 3′ TRANSCRIPTION TRANSLATION DNA mRNA Ribosome Polypeptide Codon recognition. The anticodon of an incoming aminoacyl tRNA base-pairs with the complementary mRNA codon in the A site. Hydrolysis of GTP increases the accuracy and efficiency of this step. 1 Peptide bond formation. An rRNA molecule of the large subunit catalyzes the formation of a peptide bond between the new amino acid in the A site and the carboxyl end of the growing polypeptide in the P site. This step attaches the polypeptide to the tRNA in the A site. 2 Translocation. The ribosome translocates the tRNA in the A site to the P site. The empty tRNA in the P site is moved to the E site, where it is released. The mRNA moves along with its bound tRNAs, bringing the next codon to be translated into the A site. 3
  • 64. Termination of Translation • The final step in translation is termination. When the ribosome reaches a STOP codon, there is no corresponding transfer RNA. • Instead, a small protein called a “release factor” attaches to the stop codon. • The release factor causes the whole complex to fall apart: messenger RNA, the two ribosome subunits, the new polypeptide. • The messenger RNA can be translated many times, to produce many protein copies. Release factor Free polypeptide Stop codon (UAG, UAA, or UGA) 5′ 3′ 3′ 5′ 3′ 5′ When a ribosome reaches a stop codon on mRNA, the A site of the ribosome accepts a protein called a release factor instead of tRNA. 1 The release factor hydrolyzes the bond between the tRNA in the P site and the last amino acid of the polypeptide chain. The polypeptide is thus freed from the ribosome. 2 3 The two ribosomal subunits and the other components of the assembly dissociate.
  • 65. Translation: Initiation • mRNA binds to a ribosome, and the transfer RNA corresponding to the START codon binds to this complex. Ribosomes are composed of 2 subunits (large and small), which come together when the messenger RNA attaches during the initiation process.
  • 66. Translation: Elongation • Elongation: the ribosome moves down the messenger RNA, adding new amino acids to the growing polypeptide chain. • The ribosome has 2 sites for binding transfer RNA. The first RNA with its attached amino acid binds to the first site, and then the transfer RNA corresponding to the second codon bind to the second site.
  • 67. Translation: Elongation • The ribosome then removes the amino acid from the first transfer RNA and attaches it to the second amino acid. • At this point, the first transfer RNA is empty: no attached amino acid, and the second transfer RNA has a chain of 2 amino acids attached to it.
  • 68. • The elongation cycle repeats as the ribosome moves down the messenger RNA, translating it one codon and one amino acid at a time. • The process repeats until a STOP codon is reached. Translation: Termination
  • 69. Polyribosomes • A number of ribosomes can translate a single mRNA molecule simultaneously forming a polyribosome • Polyribosomes enable a cell to make many copies of a polypeptide very quickly Growing polypeptides Completed polypeptide Incoming ribosomal subunits Start of mRNA (5′ end) End of mRNA (3′ end) Polyribosome An mRNA molecule is generally translated simultaneously by several ribosomes in clusters called polyribosomes. (a) Ribosomes mRNA This micrograph shows a large polyribosome in a prokaryotic cell (TEM). 0.1 µm
  • 70. Comparing Gene Expression In Prokaryotes And Eukaryotes • In a eukaryotic cell: – The nuclear envelope separates transcription from translation – Extensive RNA processing occurs in the nucleus • Prokaryotic cells lack a nuclear envelope, allowing translation to begin while transcription progresses RNA polymerase DNA Polyribosome RNA polymerase Direction of transcription mRNA 0.25 µm DNA Polyribosome Polypeptide (amino end) Ribosome mRNA (5′ end)
  • 71. A summary of transcription and translation in a eukaryotic cell Figure 17.26 TRANSCRIPTION RNA is transcribed from a DNA template. DNA RNA polymerase RNA transcript RNA PROCESSING In eukaryotes, the RNA transcript (pre- mRNA) is spliced and modified to produce mRNA, which moves from the nucleus to the cytoplasm. Exon Poly-A RNA transcript (pre-mRNA) Intron NUCLEUS Cap FORMATION OF INITIATION COMPLEX After leaving the nucleus, mRNA attaches to the ribosome. CYTOPLASM mRNA Poly-A Growing polypeptide Ribosomal subunits Cap Aminoacyl-tRNA synthetase Amino acid tRNA AMINO ACID ACTIVATION Each amino acid attaches to its proper tRNA with the help of a specific enzyme and ATP. Activated amino acid TRANSLATION A succession of tRNAs add their amino acids to the polypeptide chain as the mRNA is moved through the ribosome one codon at a time. (When completed, the polypeptide is released from the ribosome.) Anticodon A C C A A A U G G U U U A U G U A CE A Ribosome 1 Poly-A 5′ 5′ 3′ Codon 2 3 4 5
  • 72. Post-translation • The new polypeptide is now floating loose in the cytoplasm if translated by a free ribosome. • Polypeptides fold spontaneously into their active configuration, and they spontaneously join with other polypeptides to form the final proteins. • Often translation is not sufficient to make a functional protein, polypeptide chains are modified after translation • Sometimes other molecules are also attached to the polypeptides: sugars, lipids, phosphates, etc. All of these have special purposes for protein function.
  • 73. Targeting Polypeptides to Specific Locations • Completed proteins are targeted to specific sites in the cell • Two populations of ribosomes are evident in cells: free ribsomes (in the cytosol) and bound ribosomes (attached to the ER) – Free ribosomes mostly synthesize proteins that function in the cytosol – Bound ribosomes make proteins of the endomembrane system and proteins that are secreted from the cell • Ribosomes are identical and can switch from free to bound
  • 74. • Polypeptide synthesis always begins in the cytosol • Synthesis finishes in the cytosol unless the polypeptide signals the ribosome to attach to the ER • Polypeptides destined for the ER or for secretion are marked by a signal peptide • A signal-recognition particle (SRP) binds to the signal peptide • The SRP brings the signal peptide and its ribosome to the ER Targeting Polypeptides to Specific Locations Ribosomes mRNA Signal peptide Signal- recognition particle (SRP) SRP receptor protein CYTOSOL ER LUMEN Translocation complex Signal peptide removed ER membrane Protein
  • 75. Mutation Causes and Rate • The natural replication of DNA produces occasional errors. DNA polymerase has an editing mechanism that decreases the rate, but it still exists • Typically genes incur base substitutions about once in every 10,000 to 1,000,000 cells • Since we have about 6 billion bases of DNA in each cell, virtually every cell in your body contains several mutations • Mutations can be harmful, lethal, helpful, silent • However, most mutations are neutral: have no effect • Only mutations in cells that become sperm or eggs— are passed on to future generations • Mutations in other body cells only cause trouble when they cause cancer or related diseases
  • 76. Mutagens • Mutagens are chemical or physical agents that interact with DNA to cause mutations. • Physical agents include high-energy radiation like X-rays and ultraviolet light • Chemical mutagens fall into several categories. – Chemicals that are base analogues that may be substituted into DNA, but they pair incorrectly during DNA replication. – Interference with DNA replication by inserting into DNA and distorting the double helix. – Chemical changes in bases that change their pairing properties. • Tests are often used as a preliminary screen of chemicals to identify those that may cause cancer • Most carcinogens are mutagenic and most mutagens are carcinogenic.
  • 77. Viral Mutagens • Scientists have recognized a number of tumor viruses that cause cancer in various animals, including humans • About 15% of human cancers are caused by viral infections that disrupt normal control of cell division • All tumor viruses transform cells into cancer cells through the integration of viral nucleic acid into host cell DNA.
  • 78. Point mutations • Point mutations involve alterations in the structure or location of a single gene. Generally, only one or a few base pairs are involved. • Point mutations can signficantly affect protein structure and function • Point mutations may be caused by physical damage to the DNA from radiation or chemicals, or may occur spontaneously • Point mutations are often caused by mutagens
  • 79. Point Mutation • The change of a single nucleotide in the DNA’s template strand leads to the production of an abnormal protein In the DNA, the mutant template strand has an A where the wild-type template has a T. The mutant mRNA has a U instead of an A in one codon. The mutant (sickle-cell) hemoglobin has a valine (Val) instead of a glutamic acid (Glu). Mutant hemoglobin DNAWild-type hemoglobin DNA mRNA mRNA Normal hemoglobin Sickle-cell hemoglobin Glu Val C T T C A T G A A G U A 3′ 5′ 3′ 5′ 5′ 3′5′ 3′
  • 80. Types of Point Mutations • Point mutations within a gene can be divided into two general categories – Base-pair substitutions - is the replacement of one nucleotide and its partner with another pair of nucleotides – Base-pair insertions or deletions - are additions or losses of nucleotide pairs in a gene
  • 81. Base-Pair Substitutions • Silent - changes a codon but codes for the same amino acid • Missense - substitutions that change a codon for one amino acid into a codon for a different amino acid • Nonsense -substitutions that change a codon for one amino acid into a stop codon Wild type A U G A A G U U U G G C U A A mRNA 5′ Protein Met Lys Phe Gly Stop Carboxyl end Amino end 3′ A U G A A G U U U G G U U A A Met Lys Phe Gly Base-pair substitution No effect on amino acid sequence U instead of C Stop A U G A A G U U U A G U U A A Met Lys Phe Ser Stop A U G U A G U U U G G C U A A Met Stop Missense A instead of G Nonsense U instead of A
  • 82. Insertions and Deletions – Are additions or losses of nucleotide pairs in a gene – May produce frameshift mutations that will change the reading frame of the gene, and alter all codons downstream from the mutation. mRNA Protein Wild type A U G A A G U U U G G C U A A 5′ Met Lys Phe Gly Amino end Carboxyl end Stop Base-pair insertion or deletion Frameshift causing immediate nonsense A U G U A A G U U U G G C U A A U G A A G U U G G C U A A A U G U U U G G C U A A Met Stop U Met Lys Leu Ala Met Phe Gly Stop MissingA A G Missing Extra U Frameshift causing extensive missense Insertion or deletion of 3 nucleotides: no frameshift but extra or missing amino acid 3′