INSTRUCCIONES 
Bienvenido al examen de práctica para la fase abierta nacional. Te recomendamos 
leer 
con cuidado las sigu...
RAZONAMIENTO MATEMÁTICO 
En este tema se plantean problemas cuya resolución requiere que el problema se 
modele 
utilizand...
En este problema el único dato que tenemos es el hecho de que en la última casa no pudo 
vender la mitad de las naranjas q...
b) Ruth es más lenta que Liz. 
c) Ruth es tan rápida como Liz. 
d) Es imposible saber quien es más rápida de Ruth o de Liz...
El primer dato que se tiene es que hay 3 hijas. El segundo dato es el hecho de que el 
producto de sus edades es 36. Estos...
9.- Selecciona la imagen que complete correctamente la figura. 
RESPUESTA: A 
RESOLUCIÓN DE PROBLEMAS 
En este tema se te ...
COMPUERTA “O” 
La compuerta “O” se representa con el símbolo (O) y se comporta de la siguiente manera. Si la 
entrada 1 es...
Por ejemplo, el sensor puede detectar objetos de color verde, y el sensor 
puede detectar objetos en forma de cruz. 
En ca...
10.- RESUELVE EL SIGUENTE SISTEMA: 
Respuesta: 
De la figura se aprecia que sólo se tiene puntajes positivos en los triáng...
Respuesta: 
De la figura se puede apreciar que la respuesta debe ser verdadera en los triángulos que no 
sean verdes. 
Con...
Nächste SlideShare
Wird geladen in …5
×

EXAMEN PRACTICA DE LA OMI

262 Aufrufe

Veröffentlicht am

EXAMEN PRACTICA DE LA OMI

Veröffentlicht in: Bildung
0 Kommentare
0 Gefällt mir
Statistik
Notizen
  • Als Erste(r) kommentieren

  • Gehören Sie zu den Ersten, denen das gefällt!

Keine Downloads
Aufrufe
Aufrufe insgesamt
262
Auf SlideShare
0
Aus Einbettungen
0
Anzahl an Einbettungen
15
Aktionen
Geteilt
0
Downloads
4
Kommentare
0
Gefällt mir
0
Einbettungen 0
Keine Einbettungen

Keine Notizen für die Folie

EXAMEN PRACTICA DE LA OMI

  1. 1. INSTRUCCIONES Bienvenido al examen de práctica para la fase abierta nacional. Te recomendamos leer con cuidado las siguientes instrucciones. Este examen de práctica se llevará a cabo con el objetivo de que los alumnos se familiaricen con la mecánica del examen abierto nacional. Los resultados de este examen no serán tomados en cuenta para las siguientes fases, sin embargo te recomendamos que hagas tu mejor esfuerzo para resolver los problemas correctamente. Los problemas que aparecen en este examen son similares en temática y dificultad a los que aparecerán en el examen real. Sólo podrás enviar tus resultados una vez, así es que antes de enviarlos asegúrate de revisarlos. Una vez que tus resultados hayan sido enviados no podrás hacer ningún cambio en ellos. El examen de práctica consta de 12 reactivos divididos en 4 temas diferentes. En este examen de práctica los temas estarán claramente diferenciados y con una breve explicación al principio de cada tema. En los reactivos de opción múltiple deberás escribir únicamente la letra de la opción que consideras correcta, no debes escribir ningún otro carácter o símbolo. En las preguntas abiertas deberás escribir únicamente la palabra o número o serie de símbolos que determine la respuesta, no es necesario utilizar signos de puntuación o cualquier otro caracter. El examen de práctica estará abierto todo el día 19 de marzo, puedes enviar las respuestas del examen en cualquier momento de este día. A las 23:59:59 del día 19 de marzo se cerrará el examen y no podrás enviar más resultados. Los alumnos que envíen respuestas para el examen recibirán sus resultados por vía electrónica en los días siguientes. Las respuestas para todos los reactivos del examen de práctica serán publicadas en la pagina de la olimpiada el día 20 de marzo. Si tienes cualquier duda o comentario escribe a cesar@olimpiadadeinformatica.org ¡Mucha suerte!
  2. 2. RAZONAMIENTO MATEMÁTICO En este tema se plantean problemas cuya resolución requiere que el problema se modele utilizando alguna herramienta matemática. Ninguno de los problemas matemáticos que se presenten requerirán de conocimientos superiores de matemáticas. Sin embargo para resolver estos problemas se requiere que entiendas perfectamente lo que se te esta pidiendo y seas capaz de expresarlo de manera matemática. Recuerda escribir solamente el resultado del problema y ningún otro caracter. 1.- LLENANDO UNA ALBERCA Tienes que llenar una alberca y tienes dos mangueras de diferente grosor. Si utilizas la manguera ancha tardaras 240 minutos (4 horas) en llenar la alberca. Si utilizas la manguera delgada tardaras 360 minutos (6 horas) en llenarla. ¿Cuánto tardarás en llenarla si utilizas las dos mangueras? (Escribe tu resultado en minutos). Respuesta: Lo primero que hay que pensar es que el volumen de la alberca siempre es el mismo, sin importar la manguera con que se este llenando. Sea Fael flujo de la manguera ancha y Fd el de la manguera delgada. Tenemos que Fa * 240min  V Fd *360min  V La pregunta es ¿Cuánto tardaremos con las dos mangueras? La ecuación que describe la pregunta es (Fa Fd)*t V donde t es el tiempo que queremos encontrar. De las primeras dos ecuaciones tenemos que 360 Fa * 240  Fd *360 Fa  Fd  Fa  1.5Fd 240 sustituyendo tenemos que 144min 360 2.5Fd *t V  Fd *360t   2.5 POR LO TANTO CON LAS DOS MANGUERAS SIMULTÁNEAMENTE TARDARÍAMOS 144 MINUTOS. 2.- LAS NARANJAS DEL GRANJERO Un granjero tiene una canasta de naranjas que desea vender, en la primera casa a la que llega, vende la mitad de las naranjas mas una, en la segunda casa vende igualmente la mitad de las naranjas que le quedan, mas una, del mismo modo en la tercera y la cuarta. Cuando llega a la quinta casa, le resulta imposible vender la mitad de sus naranjas mas una, por lo que contento decide regresar a su casa. ¿Cuantas naranjas tenia el granjero? Respuesta:
  3. 3. En este problema el único dato que tenemos es el hecho de que en la última casa no pudo vender la mitad de las naranjas que tenía mas una. Esto nos obliga a que en la última casa el granjero tenía únicamente 1 naranja, ya que si tuviera 2 o mas siempre podría vender la mitad mas 1. Partiendo de este hecho tenemos que en la quinta casa el granjero tenía 1. En la cuarta casa vendió la mitad de las que tenía mas 1 y le quedo 1, esto implica que     n n n 1 1 2 2 2 4 2            n n En la cuarta casa tenía 4 naranjas, vendió la mitad mas 1 (2 + 1 = 3) y le quedó 1. Utilizando la misma ecuación tenemos que en la tercera casa tenía 10 naranjas, en la segunda casa tenía 22 y en la primera casa tenía 46 naranjas. POR LO TANTO EL RESULTADO DEL PROBLEMA ES 46. 3.- LA EDAD DE MARTHA María tiene 4 años, su hermana Martha tiene tres veces su edad. ¿Que edad tendrá Martha cuando su edad sea el doble de la de María? Respuesta: Sea m la edad de María y M la edad de Martha. Según el enunciado del problema tenemos que m M 3  . Como las dos cumplen años a la misma razón, es decir las dos cumplen un año cada año, para obtener la edad de Martha cuando su edad sea el doble de la de María debemos buscar la solución a M  x  2(m x) substituyendo los valores de las edades tenemos que 12  x  2(4  x)12 x  8  2x x  4 por lo tanto el número de años que pasaron para que Martha tuviera el doble de la edad de María fueron 4 años. Si Martha comenzó el problema con 12 años, entonces al final tendrá 16 y María tendrá 8 años. LA RESPUESTA ES 16. RAZONAMIENTO LÓGICO En el tema de razonamiento lógico se plantean problemas para cuya solución se requiere seguir un razonamiento lógico basado en los datos con los que se cuenta para el problema. Es muy importante que antes de iniciar a resolver el problema te asegures que entiendes perfectamente que es lo que se te esta pidiendo. Posteriormente toma los datos que se te dan y trata de establecer una relación lógica entre ellos y el resultado al que quieres llegar. 4.- ¿QUIÉN ES MÁS RÁPIDA? Vero es más rápida que Liz, y Ruth es mas lenta que Vero. Cual de los siguientes enunciados es correcto: a) Ruth es más rápida que Liz.
  4. 4. b) Ruth es más lenta que Liz. c) Ruth es tan rápida como Liz. d) Es imposible saber quien es más rápida de Ruth o de Liz. Respuesta: El enunciado nos dice que Vero es más rápida que Liz ( V > L ) y que Ruth es mas lenta que Vero ( V > R ). Entonces tenemos que Vero es más rápida que las otras dos, sin embargo no sabemos quien es más rápida de Liz y Ruth ya que no hay una comparación entre ellas. LA RESPUESTA ES D 5.- ¿SERÁ CIERTO? Supongamos que los siguientes argumentos son verdaderos: I .- Todos los desarrolladores son ingenieros. II .- Todos los ingenieros son listos. Si concluimos que ”Todos los dearrolladores son listos”, nuestra conclusión sería a) Correcta b) Incorrecta c) No se puede saber Respuesta: Si todos los ingenieros son listos, quiere decir que los ingenieros forman un subconjunto de las personas listas. Todos los desarrolladores son ingenieros implica que los desarrolladores son un subconjunto de los ingenieros, lo que implica que los desarrolladores son un subconjunto de los listos. Por lo tanto todos los desarrolladores son listos. La aseveración es correcta. LA RESPUESTA ES A 6.- LAS HIJAS DEL PROFESOR Cierto día se encontraron en la universidad dos profesores amigos, el primero daba clase de música y el segundo de matemáticas. Tras platicar un rato el profesor de música dijo que tenía que irse porque era el cumpleaños de una de sus hijas y tenía que ir a comprar un regalo. El profesor de matemáticas le pregunto la edad de sus hijas. Como a ambos les gustaban los acertijos, el profesor de música dijo: - Te voy a plantear un acertijo, y si lo resuelves sabrás la edad de mis hijas. - Muy bien – dijo el profesor de matemáticas. - Tengo 3 hijas, y el producto de sus edades es 36 y la suma es igual al número de ventanas de ese edificio. - El profesor de matemáticas lo pensó un momento y dijo: “Me hace falta un dato” - Es cierto – dijo el profesor de música - La mayor de ellas toca el piano. ¿Qué edad tienen las hijas del profesor de música? Escribe tu respuesta comenzando por la hija mayor y separando cada número por una coma, en la forma a,b,c Respuesta: Este es un problema en el que hay que observar muy bien los datos que se tienen y entender que es lo que se esta pidiendo.
  5. 5. El primer dato que se tiene es que hay 3 hijas. El segundo dato es el hecho de que el producto de sus edades es 36. Estos dos datos nos limitan las posibles soluciones a un número finito de tercias de números. Hay que buscar todos los conjuntos de tres números enteros que multiplicados den 3. Las posibles soluciones son: (1,1,36), (1,2,18), (1,3,12), (1,4,9), (1,6,6), (2,2,9), (2,3,6), (3,3,4). Ahora tenemos que escoger de entre esas 8 soluciones posibles. El siguiente dato que tenemos es que la suma de sus edades es igual al número de ventanas de un edificio. En el problema no nos dicen cuantas ventanas tiene el edificio, sin embargo el profesor de matemáticas esta ahí, y como no hay duda que el sabe contar, seguro conoce el número de ventanas en el edificio. Podría parecer que sabiendo el número de ventanas del edificio se puede resolver el problema, sin embargo el profesor de matemáticas no pudo, dijo que aún le faltaba un dato. Obtengamos las sumas de cada una de las soluciones para ver que dan 1 + 1 + 36 = 38 1 + 2 + 18 = 21 1 + 3 + 12 = 16 1 + 4 + 9 = 14 1 + 6 + 6 = 13 2 + 2 + 9 = 13 2 + 3 + 6 = 11 3 + 3 + 4 = 10 Se puede apreciar que todas las soluciones salvo 2 tienen sumas diferentes, si cualquiera de estas fuera la respuesta entonces el profesor de matemáticas no hubiera necesitado ningún dato, como el profesor necesitaba un dato mas entonces la solución era (1,6,6) ó (2,2,9). El último dato es que la mayor de ellas toca el piano, de las dos soluciones posibles que quedan solo en una hay una mayor, ya que en (1,6,6) no hay una que sea mayor. POR LO TANTO LA RESPUESTA ES 9,2,2 ANALOGIAS En este tema se te darán series de objetos o números que tienen alguna relación lógica entre si. Debes buscar esa relación para encontrar el resultado. 7.- 20 : 12 :: 5 : ? a) 3 b) 15/4 c) 3.5 d) 2 e) 5/3 Respuesta: La respuesta es a 5 * 4 = 20, 3 * 4 = 12. 8.- Indica el número que debe seguir en la secuencia: 8, 1, 3, 9, 2, 4, 10, 3, 5, 11 ... ? RESPUESTA: 4
  6. 6. 9.- Selecciona la imagen que complete correctamente la figura. RESPUESTA: A RESOLUCIÓN DE PROBLEMAS En este tema se te planteará un sistema con ciertas reglas y herramientas. Posteriormente se te planteará el problema. Deberás de buscar la forma de resolver el problema utilizando las herramientas que se te den y ateniéndote a las reglas del sistema. Lee detenidamente la descripción del sistema y la forma de escribir la solución. DESCRIPCIÓN DEL SISTEMA Se tienen 4 tipos de compuertas lógicas. Una compuerta lógica permi te hacer operaciones con enunciados verdaderos o falsos, dependiendo de la entrada y la operación que se aplique, se obtendrá un resultado que puede ser verdadero o falso. Cada compuerta realiza una operación diferente. Cada compuerta tiene 2 entradas y una salida. Los 4 tipos de compuertas se describen a continuación: COMPUERTA “Y” La compuerta “Y” se representa con el símbolo (Y) y se comporta de la siguiente manera. Si la entrada 1 es verdadero y la entrada 2 es verdadero, entonces el resultado es verdadero. Su tabla de comportamiento es la siguiente:
  7. 7. COMPUERTA “O” La compuerta “O” se representa con el símbolo (O) y se comporta de la siguiente manera. Si la entrada 1 es verdadero ó la entrada 2 es verdadero, entonces el resultado es verdadero. Su tabla de comportamiento es la siguiente: COMPUERTA “NO Y” La compuerta “NO Y” se representa con el símbolo (NY) y se comporta exactamente inverso a la compuerta “Y”. Es decir su salida será falsa cuando ambas entradas sean verdaderas y verdadera en cualquier otro caso. COMPUERTA “NO O” La compuerta “NO O” se representa con el símbolo (NO) y se comporta de manera inversa a la compuerta “O”, es decir su salida será verdadera cuando ambas entradas sean falsas. Además de los cuatro tipos de compuertas con que se cuenta se tienen sensores. Los sensores pueden detectar el color o la forma de un objeto. Cada sensor puede detectar únicamente un tipo de color o un tipo de forma. Cuando a un sensor se le acerca un objeto que cumple con el color o la forma que el sensor detecta, este entrega como salida un valor verdadero, en cualquier otro caso la salida del sensor es falso.
  8. 8. Por ejemplo, el sensor puede detectar objetos de color verde, y el sensor puede detectar objetos en forma de cruz. En cada problema se te darán sensores, una serie de figuras con puntajes positivos y negativos cada una, y una serie de espacios en los que puedes colocar cualquier compuerta. Tu tarea será determinar que compuerta debe ir en cada espacio para que el resultado del sistema en todas las figuras con puntaje positivo sea verdadero y el resultado del sistema en todas las figuras con puntaje negativo sea falso. Si tu solución da resultados verdadero en alguna figura con puntaje negativo o si da resultado falso en alguna figura con puntaje positivo el problema esta incorrecto. RESULTADO Cada uno de los espacios disponibles tendrá un número, cuando escribas tu resultado deberás escribir el símbolo de la compuerta que debe ocupar cada espacio comenzando desde el número 1 y separando cada compuerta por una coma (,). No utilices espacios ni ningún otro carácter que no sea el símbolo de una de las compuertas. EJEMPLO En el sistema que se aprecia en la figura se tienen 2 sensores, uno que detecta objetos de color azul y el otro que detecta objetos que sean redondos. Nuestra tarea es determinar que compuerta debe ir en el espacio 1 de modo que todas las figuras con puntaje positivo obtengan una salida verdadera y todas las figuras con puntaje negativo obtengan una salida falsa. Solución: Se puede apreciar en el dibujo que todas las figuras que sean azules o redondas tienen un puntaje positivo. La compuerta que puede realizar esa operación es la compuerta “O”. Por lo que la respuesta a este problema sería Respuesta: O
  9. 9. 10.- RESUELVE EL SIGUENTE SISTEMA: Respuesta: De la figura se aprecia que sólo se tiene puntajes positivos en los triángulos azules, por lo tanto debe de haber una respuesta correcta solo cuando este en verdadero el sensor de triángulo Y el sensor de color azul. La compurta que efectúa esta operación es la compuerta Y LA RESPUESTA ES Y 11.- RESUELVE EL SIGUENTE SISTEMA:
  10. 10. Respuesta: De la figura se puede apreciar que la respuesta debe ser verdadera en los triángulos que no sean verdes. Conectamos en el primer espacio una compuerta NO para que cuando haya un verde o una cruz nos de un falso y en el segundo espacio una compuerta Y. De ese modo solo se obtendrá un correcto cuando haya triángulos que no sean verdes. LA RESPUESTA ES: NO,Y 12.- RESUELVE EL SIGUENTE SISTEMA: Respuesta: De la figura se observa que hay puntajes positivos en todas las figuras que o son rombos o son morados, pero que no son ambos. Hay varias formas de resolver este caso, una de ellas es NO,Y,NO CUALQUIERA DE LAS RESPUESTAS CORRECTAS OBTIENE EL PUNTO POR ESTE PROBLEMA.

×