SlideShare ist ein Scribd-Unternehmen logo
1 von 72
Downloaden Sie, um offline zu lesen
ENTE VASCO DE LA ENERGÍA
División de Investigación y Recursos
Bilbao, Noviembre de 1995
MINIHIDRÁULICA
EN EL
PAÍS VASCO
MINIHIDRÁULICA
EN EL
PAÍS VASCO
MINIHIDRÁULICA EN EL PAÍS VASCO
1ª Edición: Noviembre 1995
Autor: Ingeniería, Estudios y Proyectos NIP, S.A.
Ente Vasco de la Energía (EVE)
División de Investigación y Recursos
Editor: Ente Vasco de la Energía (EVE)
Edificio Albia I. San Vicente, 8 - Planta 14
48001 - Bilbao
Impresión: Comunicación Gráfica
I.S.B.N.: 84-8129-032-7
Depósito Legal: BI-2658/95
Este libro está realizado en papel Ecológico 100%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ÍNDICE
Página
1. INTRODUCCIÓN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2. MINICENTRALES HIDROELÉCTRICAS EN LA COMUNIDAD AUTÓNOMA DEL
PAÍS VASCO (CAPV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1. EVOLUCIÓN HISTÓRICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2. SITUACIÓN ACTUAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3. ASPECTOS TÉCNICOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1. DEFINICIÓN DE MINICENTRAL HIDROELÉCTRICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2. TIPOS DE MINICENTRALES HIDROELÉCTRICAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1. Centrales de agua fluyente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2. Centrales a pie de presa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3. ELEMENTOS DE UNA MINICENTRAL HIDROELÉCTRICA . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.1. Obra civil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2. Equipamiento electromecánico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.3. Equipos auxiliares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4. TURBINAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.1. Tipos de turbinas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.2. Selección del tipo de turbina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5. PARÁMETROS FUNDAMENTALES PARA EL DISEÑO DE UNA
MINICENTRAL HIDROELÉCTRICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.1. Salto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.2. Caudal de equipamiento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.3. Potencia de la minicentral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4. ASPECTOS ECONÓMICOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1. INVERSIONES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2. COSTES DE EXPLOTACIÓN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3. PRECIO VENTA DE LA ENERGÍA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4. RENTABILIDAD DE LA INVERSIÓN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5. TRÁMITES ADMINISTRATIVOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1. DOCUMENTACIÓN TÉCNICO-ADMINISTRATIVA PARA LA CONCESIÓN DE AGUAS . . . . 34
5.2. DOCUMENTACIÓN PARA LA SOLICITUD DE AUTORIZACIÓN DE LAS
INSTALACIONES ELÉCTRICAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3. DOCUMENTACIÓN TÉCNICO-ADMINISTRATIVA A PRESENTAR EN OTROS ORGANISMOS 37
3
Página
6. EJEMPLO SIMPLIFICADO DE UN ESTUDIO DE VIABILIDAD DE UNA
MINICENTRAL HIDROELÉCTRICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.1. INTRODUCCIÓN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2. ESTUDIO DE VIABILIDAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2.1. Obtención de los datos concesionales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2.2. Obtención de los datos topográficos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2.3. Determinación del salto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2.4. Determinación de la capacidad del canal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2.5. Determinación del caudal de equipamiento . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2.6. Determinación del tipo de turbina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2.7. Alternativas de instalación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2.8. Producción media anual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2.9. Descripción de las instalaciones y de su rehabilitación . . . . . . . . . . . . . . . . . . . . . 44
6.2.10. Presupuesto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2.11. Análisis de rentabilidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2.12. Planos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2.13. Conclusiones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
APÉNDICES
A.1. EJEMPLOS REPRESENTATIVOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
A.2. ALCANCE MÍNIMO ACONSEJABLE PARA LOS ESTUDIOS DE VIABILIDAD DE MINICENTRALES
HIDROELÉCTRICAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
A.3. RELACIÓN DE FABRICANTES DE TURBINAS HIDRÁULICAS . . . . . . . . . . . . . . . . . . . . . . . . . . 64
A.4. DIRECCIONES DE INTERÉS RELACIONADAS CON LAS MINICENTRALES DEL ENTORNO DE
LA CAPV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
A.5. RELACIÓN DE RÍOS DE LA CAPV CLASIFICADOS POR CUENCAS . . . . . . . . . . . . . . . . . . . . . 68
A.6. LEGISLACIÓN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
BIBLIOGRAFÍA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1. INTRODUCCIÓN
A partir de 1973, como consecuencia de la llamada crisis del petróleo, los países desarrollados
iniciaron un claro movimiento dirigido a contener el intenso crecimiento de su consumo energéti-
co y su fuerte dependencia del petróleo.
La Comunidad Autónoma del País Vasco (CAPV) no fue ajena a esta tendencia mundial, y así, el
Ente Vasco de la Energía (EVE), como responsable de la ejecución de la política energética del
Gobierno Vasco, puso en marcha desde su creación en 1982, una serie de líneas de actuación
orientadas a la consecución de los siguientes objetivos:
• Reducir el consumo energético impulsando el ahorro y la eficiencia energéticos;
• Reducir la dependencia energética exterior optimizando el aprovechamiento de los re-
cursos autóctonos convencionales y renovables;
• Diversificar la estructura de la demanda energética promoviendo la utilización de fuen-
tes energéticas distintas del petróleo.
En este contexto de promoción de los recursos autóctonos y de la diversificación energética, se
enmarcan los programas de apoyo a la recuperación y puesta en marcha de minicentrales hi-
droeléctricas desarrollados por el EVE, así como la realización y actualización de inventarios de
este tipo de aprovechamientos, que han hecho posible conocer el potencial hidráulico de gene-
ración eléctrica de la CAPV a partir de estas instalaciones.
En esta publicación se presentan los datos del inventario actualizado en 1995 y se exponen de
manera muy sencilla los principales aspectos técnicos de las minicentrales hidroeléctricas.
5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. MINICENTRALES HIDROELÉCTRICAS EN LA COMUNIDAD
AUTÓNOMA DEL PAÍS VASCO (CAPV)
2.1. Evolución Histórica
Las características hidrográficas y topográficas de las cuencas incluidas en el ámbito de la CAPV,
confieren a este territorio un considerable potencial de aprovechamiento energético hidroeléctri-
co. Esto es particularmente cierto en el Territorio Histórico de Gipuzkoa.
En la CAPV las pequeñas instalaciones hidroeléctricas tienen una gran tradición asociada prin-
cipalmente a los asentamientos industriales y han constituido la base de la electrificación de zo-
nas rurales. Ya desde finales del siglo XIX surgieron numerosas empresas que a partir de insta-
laciones de pequeña y mediana potencia autoproducían la energía eléctrica que necesitaban.
Este fenómeno se generalizaría en el primer tercio de este siglo.
Sin embargo, a partir de la década de los 60 se hizo evidente una paralización en la construcción
de minicentrales hidroeléctricas, debido a que el bajo precio del petróleo favoreció la construc-
ción de centrales térmicas de generación eléctrica. Se cerraron numerosas minicentrales cuyos
costes de explotación resultaban excesivos.
Con la crisis del petróleo vuelven a resurgir las pequeñas centrales y en la década de los 80,
tras la entrada en vigor de la Ley 82/80 sobre Conservación de la Energía que amparaba expre-
samente la construcción, ampliación o adaptación de instalaciones de producción hidroeléctricas
con potencia de hasta 5.000 kVA, comienzan a rehabilitarse numerosas centrales hidroeléctricas
que se encontraban paradas y a automatizarse otras instalaciones en funcionamiento.
En la figura 1 puede observarse la evolución de la rehabilitación de minicentrales en la CAPV en
el periodo 1980-1995. Entre 1980 y 1994 se han rehabilitado 54 minicentrales. En el año 1995 se
han puesto en servicio 7 minicentrales, y para 1996 se prevé la rehabilitación de 3 minicentrales
más.
Figura 1. Evolución de la rehabilitación de minicentrales en el periodo 1980 - 1995.
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
Años
1
3
1
6
5
4 4 4
9 9
5
3
7
0
1
2
3
4
5
6
7
8
9
Nºdeminicentrales
6
2.2. Situación actual
De acuerdo con los datos recogidos en el Inventario de Minicentrales Hidroeléctricas actualizado
en 1995, en el territorio de la CAPV hay un total de 103 minicentrales en funcionamiento que to-
talizan 44,24 MW de potencia instalada.
Para 1996 está prevista la puesta en funcionamiento de 3 minicentrales más. Con estas 3 nue-
vas minicentrales se estima conseguir una potencia adicional de 0,45 MW.
Incluyendo las previsiones para el año 96, el mayor potencial hidroeléctrico corresponde a
Gipuzkoa con 68 minicentrales en funcionamiento y 32,45 MW instalados, lo que supone un 73%
del potencial hidroeléctrico de la CAPV.
En Bizkaia está instalado el 14% del potencial total, 6,41 MW, siendo 25 el número de minicen-
trales en funcionamiento.
En el Territorio Histórico de Araba funcionan 13 minicentrales, que totalizan 5,83 MW de poten-
cia instalada, es decir, el 13% del potencial de la CAPV.
Estos datos aparecen representados de forma gráfica en las figuras 2 y 3.
Figura 2. Distribución por Territorio Histórico de las minicentrales hidroeléctricas en funcionamiento en la CAPV.
(Incluidas las previsiones de puesta en marcha para 1996).
Figura 3. Distribución por Territorio Histórico de la potencia instalada en las minicentrales hidroeléctricas
en funcionamiento en la CAPV. (Incluidas las previsiones de puesta en marcha para 1996).
BIZKAIA
6,41 MW
14%
ARABA
5,83 MW
13%
GIPUZKOA
32,45 MW
73%
ARABA
13
BIZKAIA
25
GIPUZKOA
68
7
En cuanto a la distribución por cuencas, la cuenca del río Oria, con 26 minicentrales en funcio-
namiento y 14,7 MW de potencia instalada, es la de mayor potencial hidroeléctrico. En la tabla 1
se indica la distribución de minicentrales por cuencas ordenadas en función del potencial hidro-
eléctrico en ellas instalado.
8
ORIA 26 14.709
DEBA 16 8.668
ERRIOXA (EBRO) 3 4.376
URUMEA 10 4.141
IBAIZABAL 10 2.983
KADAGUA 8 2.933
UROLA 13 2.107
BIDASOA 2 2.094
OIARTZUN 2 751
INGLARES 1 600
EGA 2 465
ARTIBAI 2 313
ZADORRA 3 269
NERBIOI 4 116
OMECILLO 2 87
OKA 1 66
BAYAS 1 12
CUENCA
Nº DE MINICENTRALES POTENCIA
EN FUNCIONAMIENTO INSTALADA (kW)
Tabla 1. Distribución por cuencas de las minicentrales hidroeléctricas en funcionamiento en la CAPV.
(Incluidas las previsiones de puesta en marcha para 1996)
A continuación se presenta una lista nominal de las minicentrales en funcionamiento en la CAPV,
así como los mapas en los que puede observarse la distribución geográfica de las mismas.
Tabla 2. Lista de las minicentrales hidroeléctricas en funcionamiento en la CAPV.
9
TERRITORIO NOMBRE DE
CUENCA RÍO
TÉRMINO POTENCIA
HISTÓRICO LA MINICENTRAL MUNICIPAL (kW)
ARABA MOLINO DE VILLABEZANA BAYAS BAYAS RIBERA ALTA 12
MOLINO SALEZAN DEBA ARAMAIO ARAMAIO 16
C.H. NTRA. SEÑORA DE IBERNALO EGA EGA CAMPEZO 25
C.H. ANTOÑANA EGA IZKIZ CAMPEZO 440
C.H. ASSA ERRIOXA ERRIOXA LANCIEGO 626
C.H. PUENTELARRA ERRIOXA ERRIOXA LANTARON 3.741
MOLINO LEZA ERRIOXA RABIALGAS LEZA 9
C.H. BERGANZO INGLARES INGLARES ZAMBRANA 600
C.H. NTRA. SEÑORA DEL ANGOSTO OMECILLO HÚMEDO VALDEGOVÍA 62
M. BARRIO PUENTE DE BERGÜENDA OMECILLO OMECILLO LANTARÓN 25
C.H. BERANTEVILLA ZADORRA AYUDA BERANTEVILLA 20
C.H. LACORZANA ZADORRA ZADORRA ARMIÑÓN 100
C.H. ULLIBARRI ZADORRA ZADORRA ARRAZUA-UBARRUNDIA 149
BIZKAIA C.H. ARIZMENDI ARTIBAI ARTIBAI MARKINA-XEMEIN 65
C.H. PLAZAKOLA ARTIBAI ARTIBAI MARKINA-XEMEIN 248
C.H. ARBUYO KADAGUA KADAGUA ALONSOTEGI 460
C.H. LA PENILLA KADAGUA KADAGUA BALMASEDA 189
C.H. IRAUREGUI KADAGUA KADAGUA BARAKALDO 470
C.H. OLAKOAGA KADAGUA KADAGUA GÜEÑES 373
C.H. DE CADAGUA / C.H. LA ANDALUCÍA KADAGUA KADAGUA GÜEÑES 100
C.H. BOLUMBURU KADAGUA KADAGUA ZALLA 250
C.H. LA MELLA KADAGUA KADAGUA ZALLA 360
C.H. SOLLANO KADAGUA ORDUNTE ZALLA 731
C.H. OLABARRI IBAIZABAL ARRATIA IGORRE 22
C.H. LAMBREABE IBAIZABAL ARRATIA ZEANURI 1.050
C.H. PATALA IBAIZABAL GARAY BERRIZ 528
C.H. SAN ANTONIO IBAIZABAL IBAIZABAL AMOREBIETA-ETXANO 80
C.H. BEDIA IBAIZABAL IBAIZABAL BEDIA 402
C.H. INDUSI IBAIZABAL INDUSI DIMA 305
C.H. VENTATXURI IBAIZABAL INDUSI DIMA 260
C.H. SAN LORENZO IBAIZABAL MAÑARIA MAÑARIA 175
C.H. OROBIO IBAIZABAL OROBIO IURRETA 46
C.H. OROBIO / C.H. LARRAÑAGA IBAIZABAL OROBIO IURRETA 115
C.H. BESTE-ALDIE NERBIOI ALTUBE OROZKO 75
C.H. ELECTRA LEKUBARRI NERBIOI ARNAURI OROZKO 24
CASERÍO UGALDE NERBIOI ARNAURI OROZKO 9
CASERÍO USABEL NERBIOI ARNAURI OROZKO 8
C.H. UHARKA OKA GOLAKO GERNIKA-LUMO 66
GIPUZKOA C.H. ELORDI BIDASOA BIDASOA IRUN 466
C.H. IRUGURUTZETA BIDASOA BIDASOA IRUN 1.628
ARGI-ERROTA DE SANTA AGUEDA DEBA ARAMAIO ARRASATE-MONDRAGÓN 55
C.H. TXIRRITA DEBA ARAMAIO ARRASATE-MONDRAGÓN 37
C.H. LAMIATEGI DEBA ARANTZAZU OÑATI 219
C.H. OLATE DEBA ARANTZAZU OÑATI 4.712
C.H. ALTOS HORNOS DE BERGARA DEBA DEBA BERGARA 675
C.H. BOLUBARRI DEBA DEBA BERGARA 95
C.H. AITZETARTE DEBA DEBA ELGOIBAR 556
C.H. BARRENA-BERRI DEBA DEBA ELGOIBAR 621
C.H. LAUPAGO DEBA DEBA ELGOIBAR 295
C.H. SAN ANTOLÍN DEBA DEBA ELGOIBAR 253
C.H. SOLOGOEN DEBA DEBA SORALUZE 400
10
TERRITORIO NOMBRE DE
CUENCA RÍO
TÉRMINO POTENCIA
HISTÓRICO LA MINICENTRAL MUNICIPAL (kW)
GIPUZKOA C.H. ELECTRA BASALDE DEBA DESCARGA ANTZUOLA 5
(Cont.) C.H. URKULU DEBA OÑATE DONOSTIA-SAN SEBASTIÁN 79
C.H. ALTUNA HERMANOS DEBA OÑATE OÑATI 73
C.H. UBAO -TOKILLO DEBA OÑATE OÑATI 577
C.H. MASUSTANEGIKO OIARTZUN OIARTZUN OIARTZUN 560
C.H. PENADEGI OIARTZUN OIARTZUN OIARTZUN 191
C.H. ALKIZA ORIA ALKIZA ALKIZA 78
MOLINO OLA O ARGANIARAS ORIA AMEZKETA AMEZKETA 33
MOLINO UGARTE ORIA AMEZKETA AMEZKETA 11
C.H. LIZARTZA ORIA ARAXES LIZARTZA 468
C.H. SANTA CRUZ ORIA ARAXES OREXA 17
C.H. PAPELERA CALPARSORO ORIA BERASTEGI BERASTEGI 355
ERROTA-ZARRA / C.H. BERROBIKO ORIA BERASTEGI BERROBI 28
C.H. LEIZARAN ORIA LEIZARAN ANDOAIN 3.600
C.H. OLABERRI ORIA LEIZARAN ANDOAIN 200
C.H. AMERAUN ORIA LEIZARAN BERASTEGI 1.000
C.H. ELECTRA PLAZAOLA Nº 1 ORIA LEIZARAN BERASTEGI 736
C.H. ELECTRA PLAZAOLA Nº 2 ORIA LEIZARAN BERASTEGI 430
C.H. OLLOQUI ORIA LEIZARAN ELDUAIN 555
C.H. SANTOLAZ ORIA LEIZARAN ELDUAIN 710
C.H. BERTXIN ORIA LEIZARAN VILLABONA 808
C.H. ABALOZ ORIA ORIA ANDOAIN 1.048
C.H. BAZKARDO ORIA ORIA ANDOAIN 344
C.H. ALDABA ORIA ORIA IKAZTEGIETA 360
C.H. IKAZTEGIETA ORIA ORIA IKAZTEGIETA 620
MOLINO BEROSTEGI ORIA ORIA LEGORRETA 16
C.H. USABAL ORIA ORIA TOLOSA 250
C.H. AGARAITZ ORIA ORIA VILLABONA 240
C.H. ALDAOLA / C.H. SAN ADRIÁN ORIA ORIA ZEGAMA 72
C.H. EZPALEO ORIA ORIA ZEGAMA 500
MOLINO OTZARAIN ORIA SALUBITA TOLOSA 30
C.H. ZALDIBIA ORIA ZALDIBIA BEASAIN 2.200
C.H. ERDOIZTA UROLA ALZOLARAS ZESTOA 115
MOLINO URBIETA UROLA ERREZIL AZPEITIA 14
C.H. BERRIKI UROLA ERREZIL ERREZIL 16
MOLINA REZUSTA UROLA UROLA AIZARNAZABAL 52
C.H. ALTUNA-TXIKI UROLA UROLA AIZARNAZABAL 146
C.H. ANDRONDEGI UROLA UROLA AZKOITIA 315
C.H. AIZPURUTXO UROLA UROLA AZKOITIA 250
C.H. ERROTA-BERRI UROLA UROLA AZKOITIA 360
C.H. IGARAN UROLA UROLA AZKOITIA 264
C.H. IGARAN UROLA UROLA AZKOITIA 25
C.H. BADIOLEGI UROLA UROLA AZPEITIA 350
C.H. IBAI-EDER UROLA UROLA AZPEITIA 90
C.H. ALBERDIKOA UROLA UROLA ZESTOA 110
C.H. BERDABIO URUMEA AÑARBE OIARTZUN 800
C.H. OQUILLEGUI URUMEA AÑARBE OIARTZUN 368
PAPELERA DE ZIKUÑAGA URUMEA URUMEA HERNANI 222
C.H. DE RENTERIA URUMEA URUMEA HERNANI 200
C.H. FAGOLLAGA URUMEA URUMEA HERNANI 130
C.H. LASTAOLA URUMEA URUMEA HERNANI 150
C.H. PIKOAGA URUMEA URUMEA HERNANI 586
C.H. SANTIAGO URUMEA URUMEA HERNANI 666
C.H. ARRANBIDE URUMEA URUMEA RENTERIA 519
C.H. MENDARAZ URUMEA URUMEA RENTERIA 500
11
Figura 4. Minicentrales hidroeléctricas en funcionamiento en la CAPV.
ARABA
13
5,83MW
TERRITORIOHISTÓRICO
NºDEMINICENTRALES
POTENCIAINSTALADA
LÍMITEDECUENCA
LEYENDA
MINICENTRALESHIDROELÉCTRICAS
ENFUNCIONAMIENTOENLACAPV
01000020000300004000050000
Escala
UROLA
13
2.159kW
BIZKAIA
25
6,41MW
UROLA
13
2.159kW
ARABA
13
5,83MW
URUMEA
10
4.098kW
GIPUZKOA
68
32,45MW
5000
12
Figura 5. Minicentrales hidroeléctricas en funcionamiento en Araba.
ERRIOXA
3
4.376kW
CUENCADELRÍO
NºDEMINICENTRALES
POTENCIAINSTALADA
LÍMITEDECUENCA
LEYENDA
MINICENTRALESHIDROELÉCTRICAS
ENFUNCIONAMIENTOENARABA
01000020000
Escala
URUMEA
10
4.098kW
EGA
2
465kW
URUMEA
10
4.098kW
ERRIOXA
3
4.376kW
URUMEA
10
4.098kW
ZADORRA
3
269kW
URUMEA
10
4.098kW
DEBA
1
16kW
URUMEA
10
4.098kW
BAYAS
1
12kW
UROLA
13
2.159kW
INGLARES
1
600kW
UROLA
13
2.159kW
OMECILLO
2
87kW
ARABA
5000
5000
13
Figura 6. Minicentrales hidroeléctricas en funcionamiento en Bizkaia.
01000020000
Escala
URUMEA
10
4.098kW
OKA
1
66kW
URUMEA
10
4.098kW
ARTIBAI
2
313kW
URUMEA
10
4.098kW
IBAIZABAL
10
2.983kW
UROLA
13
2.159kW
KADAGUA
8
2.933kW
UROLA
13
2.159kW
NERBIOI
4
16kW
IBAIZABAL
10
2.983kW
CUENCADELRÍO
NºDEMINICENTRALES
POTENCIAINSTALADA
LÍMITEDECUENCA
LEYENDA
MINICENTRALESHIDROELÉCTRICAS
ENFUNCIONAMIENTOENBIZKAIA
BIZKAIA
MARCANTÁBRICO
URUMEA
10
4.098kW
OIARTZUN
2
751kW
BIDASOA
2
2.094kW
ORIA
26
14.019kW
UROLA
13
2.159kW
DEBA
15
8.616kW
14
Figura 7. Minicentrales hidroeléctricas en funcionamiento en Gipuzkoa.
URUMEA
10
4.141kW
OIARTZUN
2
751kW
BIDASOA
2
2.094kW
ORIA
26
14.709kW
UROLA
13
2.107kW
DEBA
15
8.652kW
ORIA
26
14.709kW
CUENCADELRÍO
NºDEMINICENTRALES
POTENCIAINSTALADA
LÍMITEDECUENCA
LEYENDA
MINICENTRALESHIDROELÉCTRICAS
ENFUNCIONAMIENTOENGIPUZKOA
050001000020000
Escala
GIPUZKOA
MARCANTÁBRICO
En las siguientes tablas se presenta un resumen de la situación del potencial minihidroeléctrico
de la CAPV de acuerdo con el inventario actualizado en 1995 y las previsiones de puesta en fun-
cionamiento para 1996.
15
GIPUZKOA C.H. ALZOLABE DEBA DEBA ELGOIBAR
C.H. LOYOLA UROLA UROLA AZPEITIA
C.H. ZESTONA UROLA UROLA ZESTOA
C.H. LEIZAUR ORIA LEIZARAN ANDOAIN
C.H. LIZARKOLA ORIA LEIZARAN ANDOAIN
C.H. IRURA ORIA ORIA IRURA
C.H. ETXEZARRETA ORIA ORIA LEGORRETA
C.H. ALZAMENDI ORIA UBANE (regata) ANDOAIN
C.H. ZAZPITURRIETA ORIA AMEZKETA AMEZKETA
ARABA C.H. ARAYA ARAIA ARAIA ASPARRENA
TERRITORIO NOMBRE DE LA
CUENCA RÍO
TÉRMINO
HISTÓRICO MINICENTRAL MUNICIPAL
FUNCIONAN 13 25 68 106
NO FUNCIONAN 14 35 54 103
ARABA BIZKAIA GIPUZKOA TOTAL
TOTAL 27 60 122 209
FUNCIONAN 5.825 6.411 32.454 44.690
NO FUNCIONAN 1.728 3.878 6.165 11.771
ARABA BIZKAIA GIPUZKOA TOTAL
TOTAL 7.553 10.289 38.619 56.461
Tabla 3. Número de minicentrales hidroeléctricas en la CAPV.
Tabla 4. Potencias instaladas en kW en las minicentrales hidroeléctricas de la CAPV.
En cuanto a minicentrales hidroeléctricas actualmente fuera de uso, con posibilidades, a priori, de
que su rehabilitación o puesta en funcionamiento resulte rentable, podrían citarse las siguientes:
Tabla 5. Relación de minicentrales hidroeléctricas de la CAPV cuya rehabilitación podría ser rentable.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3. ASPECTOS TÉCNICOS
3.1. Definición de
minicentral hidroeléctrica
Las centrales hidroeléctricas pueden definirse como instalaciones mediante las que se consigue
aprovechar la energía contenida en una masa de agua situada a una cierta altura, transformán-
dola en energía eléctrica. Esto se logra conduciendo el agua desde el nivel en el que se en-
cuentra, hasta un nivel inferior en el que se sitúan una o varias turbinas hidráulicas que son ac-
cionadas por el agua y que a su vez hacen girar uno o varios generadores, produciendo energía
eléctrica. La figura 8 ilustra este esquema.
16
Figura 8. Transformación de energía hidráulica en energía eléctrica.
A las centrales hidroeléctricas cuya potencia instalada es inferior a 5.000 kVA se les denomina
Pequeñas Centrales o Minicentrales hidroeléctricas.
3.2. Tipos de
minicentrales hidroeléctricas
Existen dos tipos básicos de minicentrales hidroeléctricas:
• Centrales de agua fluyente
• Centrales a pie de presa
Energía hidráulica
Turbina/s
Energía mecánica
Generador/es
Energía eléctrica
Pérdidas
Pérdidas
3.2.1. CENTRALES DE AGUA FLUYENTE
En estas centrales, el agua a turbinar se capta del cauce del río por medio de una obra de toma,
y una vez turbinada, se devuelve al río en un punto distinto al de captación.
En la figura 9 puede verse un esquema sencillo de este tipo de centrales.
17
12
3
5
6
7
4
Figura 9. Esquema de una central de agua fluyente.
Los elementos principales de estas instalaciones que pueden observarse en la figura anterior son:
ΠAzud
 Toma de agua
Ž Canal de derivación
 Cámara de carga
 Tubería forzada
‘ Edificio con su equipamiento electromecánico
’ Canal de salida
3.2.2. CENTRALES A PIE DE PRESA
Son centrales con regulación. El agua a turbinar se almacena mediante una presa.
La figura 10 presenta una central a pie de presa.
18
Figura 10. Esquema de una central a pie de presa.
Son elementos principales de estas centrales:
ΠPresa
 Toma de agua
Ž Tubería forzada
 Edificio con su equipamiento electromecánico
 Canal de salida
3.3. Elementos de una
minicentral hidroeléctrica
Una minicentral está constituida por diversos componentes y equipos que pueden clasificarse en
tres grandes grupos:
• Obra civil
• Equipamiento electromecánico
• Equipos auxiliares
3.3.1. OBRA CIVIL
La obra civil engloba aquellas obras e instalaciones necesarias para derivar, conducir y restituir
el agua turbinada, así como para albergar y proteger los equipos electromecánicos. Son obra
civil los siguientes elementos:
• Azudes y presas
• Obra de toma
• Canal de derivación
• Cámara de carga
• Tubería forzada
• Edificio
• Canal de salida
3.3.1.1. Azudes y presas
Son las obras que se construyen en el curso del agua, transversalmente al mismo, para la reten-
ción y desviación hacia la toma del caudal que se deriva hacia la minicentral.
En los azudes se produce una retención del agua sin que haya una variación importante del ni-
vel de agua.
En las presas, el muro se construye para elevar la superficie libre del curso de agua creando un
embalse.
3.3.1.2. Obra de toma
Las obras de toma derivan el agua hacia las conducciones que la transportarán a la minicentral.
Generalmente, en la toma se instala una reja, para impedir el paso de peces y material sólido.
3.3.1.3. Canal de derivación
Es la conducción que transporta el agua que se deriva hacia la minicentral desde la toma hasta
la cámara de carga.
A lo largo del canal, dependiendo de su longitud, puede haber varias compuertas para limpieza
y vaciado del canal en caso necesario.
Al final del canal, antes de la cámara de carga, suelen instalarse una reja de finos con su corres-
pondiente máquina limpiarrejas, así como una compuerta de seguridad.
3.3.1.4. Cámara de carga
Consiste en un depósito situado al final del canal de derivación del que parte la tubería forzada.
19
Esta cámara es necesaria para evitar la entrada de aire en la tubería forzada, que provocaría so-
brepresiones.
3.3.1.5. Tubería forzada
La tubería forzada conduce el agua desde la cámara de carga hasta la turbina. Generalmente la
tubería es de acero.
Al inicio de la tubería se instala un órgano de cierre que permite evitar el paso de agua y vaciar la
tubería poco a poco.
3.3.1.6. Edificio
En el edificio se albergan los equipos electromecánicos de la minicentral.
3.3.1.7. Canal de salida
Es la conducción a través de la que se restituye el agua al cauce.
3.3.2. EQUIPAMIENTO ELECTROMECÁNICO
Se consideran equipos fundamentales los siguientes:
• Órgano de cierre de la turbina
• Turbina/s
• Generador/es
• Elementos de regulación
• Transformador/es
• Celdas y cuadros eléctricos
• Línea eléctrica de interconexión
3.3.2.1. Órgano de cierre de la turbina
Son válvulas o compuertas que aíslan la turbina en caso de parada y permiten el vaciado de la tu-
bería y las labores de reparación y mantenimiento.
3.3.2.2. Turbinas
Son máquinas capaces de transformar la energía hidráulica en energía mecánica en su eje de sa-
lida. Su acoplamiento mediante un eje a un generador permite, finalmente, la generación de ener-
gía eléctrica.
En el siguiente apartado (3.4.) se tratará más ampliamente el tema de las turbinas.
20
3.3.2.3. Generadores
Estas máquinas transforman la energía mecánica de rotación que suministra/n la/s turbina/s en
energía eléctrica en sus bornas o terminales. Pueden ser de dos tipos: síncronos y asíncronos.
Los generadores síncronos suelen emplearse en centrales con potencia superior a 2.000 kVA co-
nectadas a la red, o en centrales de pequeña potencia que funcionan en isla (sin estar conecta-
das a la red).
El generador asíncrono, por el contrario, debe estar siempre conectado a la red eléctrica, de la
que toma la energía necesaria para producir su magnetización. Es usual emplearlos en centra-
les de menos de 500 kVA, siempre acopladas a la red.
Para centrales con potencia aparente entre 500 y 2.000 kVA la elección de un generador síncro-
no o asíncrono, depende de la valoración económica, del sistema de funcionamiento y de los con-
dicionantes técnicos exigidos por la compañía eléctrica.
3.3.2.4. Elementos de regulación
Son aquellos que regulan los componentes móviles de las turbinas y pueden ser de dos tipos:
hidráulicos y electrónicos. Su misión es conseguir adecuar la turbina a las circunstancias exis-
tentes en cada momento (caudal turbinable, demanda eléctrica ....) para que pueda trabajar
con el mejor rendimiento energético posible en cada circunstancia.
3.3.2.5. Transformadores
Son máquinas destinadas a convertir una tensión de entrada en otra distinta a la salida. El objeto
del transformador es elevar la tensión de generación eléctrica para reducir en lo posible las pér-
didas de transporte en la línea.
3.3.2.6. Celdas y cuadros eléctricos
Suelen instalarse generalmente en el interior de la minicentral y están constituidos por diversos
componentes eléctricos de regulación, control, protección y medida.
3.3.2.7. Línea eléctrica de interconexión
La línea eléctrica transporta la energía eléctrica desde la minicentral hasta el punto de conexión
con la compañía eléctrica o hasta el centro de autoconsumo.
21
3.3.3. EQUIPOS AUXILIARES
Estos equipos son también necesarios para el correcto funcionamiento de una minicentral. Entre
los más comunes están:
• Compuertas
• Reja y máquina limpiarrejas
• Grúa para movimiento de máquinas
• Sistema contra-incendios
• Alumbrado
• Caudalímetro
La figura 11 muestra los elementos principales de una minicentral hidroeléctrica.
22
GENERADOR
EQUIPOS ELECTRICOS
GRUPO HIDRAULICO
COMPUERTA DE SALIDA
CANAL DE SALIDA
REJA Y MAQUINA LIMPIA-REJAS
TURBINA KAPLAN
MULTIPLICADOR
COMPUERTA ARENERA
COMPUERTA DE SEGURIDAD
CANAL DE DERIVACION
COMPUERTA ARENERA
PRESA
COMPUERTA DE ENTRADA
Figura 11. Esquema de componentes de una minicentral hidroeléctrica.
3.4. Turbinas
Como se decía anteriormente, las turbinas son máquinas que transforman la energía hidráulica en
energía mecánica de rotación en su eje.
En cuanto a su funcionamiento se pueden clasificar en:
• Turbinas de acción
• Turbinas de reacción
Las turbinas de acción utilizan únicamente la velocidad del flujo de agua para girar, mientras
que las turbinas de reacción emplean tanto la presión como la velocidad del agua.
3.4.1. TIPOS DE TURBINAS
3.4.1.1. Turbinas Pelton
Las turbinas Pelton son las turbinas de acción más utilizadas y están recomendadas en aquellos
aprovechamientos caracterizados por grandes saltos y caudales relativamente bajos.
6
5 4
3
2
1
Este tipo de turbina permite una gran flexibilidad de funcionamiento, al ser capaz de turbinar has-
ta el 10% de su caudal nominal con rendimientos óptimos.
Las posibilidades de montaje son múltiples, siendo posible su instalación con eje horizontal o ver-
tical, con uno o varios inyectores y con uno o dos rodetes.
En general, en las minicentrales se implantan turbinas Pelton con uno o dos inyectores que
actúan sobre un único rodete.
En la figura 12 se pueden observar los componentes principales de una turbina Pelton.
23
Figura 12. Turbina Pelton (cortesía de VOITH).
Œ Tubería de distribución  Carcasa
 Inyector  Eje de turbina
Ž Rodete ‘ Generador
En este tipo de turbinas la admisión del agua se realiza a gran velocidad tangencialmente al ro-
dete (3) a través de la tubería de distribución (1) y el inyector (2), que puede considerarse como
el distribuidor de la turbina Pelton.
El inyector (2) está equipado de una válvula de aguja y un deflector o pantalla deflectora.
La válvula de aguja, con un desplazamiento longitudinal controlado bajo presión de aceite por un
grupo oleohidráulico, permite la regulación del caudal de agua a turbinar así como el cierre es-
tanco del inyector (2).
El deflector, por su parte, impide el golpe de ariete y el embalamiento de la turbina durante las fa-
ses de parada programada o de emergencia de la turbina.
El rodete (3) es una pieza maciza circular, fabricada generalmente en fundición de acero dotada
en su periferia de un conjunto de cucharas con doble cuenco, denominadas álabes, sobre los que
incide el chorro del agua.
3.4.1.2. Turbinas Francis
Las turbinas Francis son turbinas de reacción caracterizadas por incidir el agua sobre el rodete,
al que atraviesa, en dirección radial siendo descargada en paralelo al eje de rotación, en direc-
ción axial, mediante su orientación en un ángulo de 90º.
En la figura 13 se representa una turbina Francis con cámara de entrada cerrada en forma espi-
ral.
24
Figura 13. Turbina Francis con cámara espiral (Cortesía de VOITH).
Œ Cámara espiral  Codo y tubo de descarga
 Alabe móvil  Eje de turbina
Ž Rodete ‘ Generador
La admisión del agua es regulada por el distribuidor que, conjuntamente con la cámara espiral
(1), tiene la misión de dar al agua la velocidad y orientación más adecuadas para entrar en el ro-
dete (3).
El distribuidor puede ser de álabes orientables o fijos. El más utilizado es el de álabes orientables.
El rodete (3) es una pieza troncocónica formada por un conjunto de paletas fijas, denominadas
álabes, cuya disposición da lugar a la formación de unos canales hidráulicos por los que se
descarga el agua turbinada.
Las turbinas Francis pueden ser instaladas en una amplia gama de aprovechamientos, abarcan-
do caudales desde 150 l/s hasta 40.000 l/s en saltos entre 2 y 250 m.
6
5
4
4
32
1
Su rango de funcionamiento es aceptable, pudiendo turbinar a partir del 40% del caudal nomi-
nal de la turbina.
En minicentrales que se instalan turbinas Francis, éstas son generalmente de eje horizontal con
un único rodete.
3.4.1.3. Turbinas Kaplan
Las turbinas Kaplan se adaptan óptimamente a los aprovechamientos caracterizados por pe-
queños saltos, en general inferiores a 30 m, y caudales altos.
La gama de funcionamiento es muy amplia siendo capaz de turbinar hasta el 25% del caudal
nominal de la turbina.
No admite muchas posibilidades de instalación reduciéndose, en la práctica, a turbinas con eje
vertical u horizontal.
25
Figura 14. Turbina Kaplan de eje horizontal, tipo S (Cortesía de VOITH).
ΠDistribuidor y palas distribuidor
 Eje de turbina
Ž Rodete
 Generador
La admisión del agua es regulada por un distribuidor (1) con funcionamiento idéntico al instala-
do en las turbinas Francis.
El rodete (3) tiene forma de hélice siendo orientables los álabes mediante un servomotor gober-
nado por un grupo oleohidráulico.
4
3
2
1
La descarga del agua turbinada se realiza por el tubo de aspiración acodado construido, en ge-
neral, en hormigón y con frecuencia blindado con chapa de acero.
3.4.2. SELECCIÓN DEL TIPO DE TURBINA
Para preseleccionar el tipo de turbina a instalar en una minicentral, se utilizan unos ábacos que
suelen facilitar los fabricantes de turbinas. Con ellos, se determina el tipo de turbina a partir de los
parámetros de salto y caudal.
Tal y como puede verse en la figura 15, entrando en abcisas con el salto en m y en ordenadas
en el caudal de agua en m3
/s, se obtendría el tipo de turbina más adecuado para la instalación.
26
Figura 15. Ábaco de selección del tipo de turbina. (Cortesía de VOEST-ALPINE).
No obstante, para elegir la turbina definitiva garantizando la máxima rentabilidad de la minicen-
tral, se deberán tener en cuenta la curva de caudales clasificados, imprescindible para determi-
nar el caudal de equipamiento, y la infraestructura existente del aprovechamiento.
En el apéndice A.3. se recoge una relación de fabricantes de turbinas hidráulicas.
75
60
50
40
30
20
10
8
6
5
4
3
2
1
0,8
0,6
0,5
0,4
0,3
0,2
0,1
0,08
0,06
0,05
0,04
0,03
0,02
0,01
75
60
50
40
30
20
10
8
6
5
4
3
2
1
0,8
0,6
0,5
0,4
0,3
0,2
0,1
0,08
0,06
0,05
0,04
0,03
0,02
0,01
1 5 10 50 100 500 10002 3 4 20 30 40 200 300 400
1 5 10 50 100 500 10002 3 4 20 30 40 200 300 400
75
60
50
40
30
20
10
8
6
5
4
3
2
1
0,8
0,6
0,5
0,4
0,3
0,2
0,1
0,08
0,06
0,05
0,04
0,03
0,02
0,01
Q
m3/s
H (m)
100 kW
250 kW
500 kW
1000 kW
2500 kW
5000 kW
10000 kW
50 kW
25 kW
10 kW
TURBINAS PELTON
TURBINAS FRANCIS
TURBINAS KAPLAN
3.5. Parámetros fundamentales para
el diseño de una minicentral hidroeléctrica
La potencia eléctrica de una minicentral hidroeléctrica es directamente proporcional a dos mag-
nitudes: el salto y el caudal de agua turbinado.
3.5.1. SALTO
El salto es la diferencia de nivel entre la lámina de agua en la toma y el punto del río en el que se
restituye el agua turbinada.
En realidad, esta definición corresponde a lo que se denomina salto bruto (Hb). Además del sal-
to bruto, se manejan otros dos conceptos de salto, el salto útil (Hu) y el salto neto (Hn). La figura
16 ilustra estos conceptos:
27
Figura 16. Esquema de un salto de agua.
Salto bruto (Hb): Diferencia de altura entre la lámina de agua en la toma y el nivel del río en el pun-
to de descarga del agua turbinada.
Salto útil (Hu): Diferencia entre el nivel de la lámina de agua en la cámara de carga y el nivel de
desagüe de la turbina.
Salto neto (Hn): Es el resultado de restar al salto útil (Hu) las pérdidas de carga (∆H) originadas
por el paso del agua a través de la embocadura de la cámara de carga y de la tubería forzada y
sus accesorios.
El cálculo de las pérdidas de carga se realiza mediante fórmulas empíricas ampliamente difun-
didas. Una consideración aceptable es suponer que la pérdida de carga es del orden de un 5%
a un 10% del salto bruto.
El salto bruto puede estimarse en primera instancia a partir de un plano topográfico. Sin embar-
go, una determinación más exacta requiere un levantamiento taquimétrico.
Hn
AZUD CANAL DE DERIVACION CAMARA DE CARGA
CANAL DE DESAGUE
EDIFICIO DE CENTRAL
RIO
TUBERIA FORZADA
Hu
Hb
∆H
Una vez determinados los años normales se toman los caudales correspondientes a esos años
y se calculan los caudales medios diarios. A partir de estos caudales medios diarios se constru-
ye la curva de caudales clasificados, que indica el número de días del año en los que circula un
caudal determinado por el río. En la figura 18 pueden verse una curva de caudales medios dia-
rios y su correspondiente curva de caudales clasificados.
3.5.2. CAUDAL DE EQUIPAMIENTO
Para poder determinar la potencia a instalar y la energía producible a lo largo del año en una mi-
nicentral hidroeléctrica, es imprescindible conocer el caudal circulante por el río en la zona pró-
xima a la toma de agua.
Aforar es medir el caudal de una corriente de agua en un punto de la misma en un instante de-
terminado. En la CAPV existe una red de estaciones de aforo que proporcionan datos de cauda-
les de un gran número de ríos. Su instalación y control dependen de organismos públicos y pri-
vados entre los que se encuentran las Diputaciones Forales, el Ente Vasco de la Energía (EVE), el
MOPTMA o Iberdrola, S.A.
En aquellos aprovechamientos en los que no existe una estación de aforo próxima a la central, se
realiza un estudio hidrológico aplicando un modelo matemático de simulación basado en los da-
tos de precipitaciones sobre la cuenca y caudales de una cuenca de similares características.
También se pueden estimar los caudales que circulan por el río a partir de los caudales turbina-
dos por una central próxima, siempre y cuando ambas centrales tengan más o menos la misma
aportación y la central de la que se toman los datos esté bien dimensionada y además su cau-
dal de equipamiento no esté condicionado por la infraestructura propia de la central (canal de de-
rivación, tubería forzada etc).
En cualquier caso, se deben obtener datos de caudales correspondientes a una serie de años
lo suficientemente amplia como para incluir años secos, normales y húmedos.
Para caracterizar hidrológicamente los años para los que se dispone de registro de caudales, se
debe recopilar la información de lluvias de las estaciones meteorológicas del entorno, realizan-
do un cálculo correlativo de lluvias y caudales para comprobar si existe relación entre la aporta-
ción de lluvias y los caudales registrados. En la figura 17 se muestra, un ejemplo de distribución
de precipitaciones para una serie de 15 años.
28
Figura 17. Datos de precipitación anual clasificados
AñosAños
Precipitación(mm)
1 3 5 7 9 11 13 15 4 12 8 15 6 7 2 13
0
200
400
600
800
1000
1200
1400
1600
Precipitación(mm)
0
200
400
600
800
1000
1200
1400
1600
2 4 6 8 10 12 14 3 10 11 1 5 14 9
29
Figura 18. Curvas de caudales medios diarios y de caudales clasificados
El caudal de equipamiento de la central se establece a partir de la curva de caudales clasifica-
dos. En esta curva hay que descontar el caudal ecológico, que es el caudal que debe circular co-
mo mínimo por el río durante todo el año.
El caudal ecológico suele indicarlo el Organismo de Cuenca o las Diputaciones Forales. En el ca-
so de no ser así, una buena estimación es considerar el caudal ecológico igual al 10% del caudal
medio interanual.
Una vez que se le ha descontado el caudal ecológico a la curva de caudales clasificados, se
elige el posible caudal de equipamiento en el intervalo de la curva comprendido entre el Q80 y el
Q100, siendo el Q80 el caudal que circula por el río durante 80 días al año y el Q100 el que circula
durante 100 días al año (figura 19).
Figura 19. Curva de caudales clasificados.
Para los posibles caudales comprendidos en este intervalo, se hace una estimación de las horas
de funcionamiento de la central, siempre teniendo en cuenta el tipo de turbina que se proyecte
instalar.
Cada tipo de turbina tiene un rango de funcionamiento con un caudal máximo y otro mínimo por
debajo del cual la turbina no funcionaría con rendimiento aceptable.
Nº de días que se supera el caudal
7.000
6.000
5.000
4.000
3.000
2.000
1.000
0
Caudal(l/s)
0 30 60 90 120 150 180 210 240 270 300 330 360
Caudal ecológico
7.000
6.000
5.000
4.000
3.000
2.000
1.000
0
Oct Nov Dic Ene Feb Mar Abr May Jun Jul Ago Sep1
Caudal(l/s)
Este caudal mínimo es aproximadamente:
• Para turbinas PELTON : 10% Qequipamiento
• Para turbinas KAPLAN : 25% Qequipamiento
• Para turbinas FRANCIS : 40% Qequipamiento
Una vez que se ha elegido el tipo de turbina, se estiman las producciones que se obtendrían
para cada posible caudal de equipamiento.
No siempre se elige el caudal que proporciona mayor producción, ya que hay que tener en cuen-
ta también la inversión necesaria en cada caso. Puede ocurrir que la diferencia de kWh genera-
dos de una a otra variante, no compense el incremento de inversión que hay que realizar.
En ocasiones, el caudal de equipamiento está condicionado por la infraestructura existente en la
minicentral. Este sería el caso de las minicentrales que tienen un canal de derivación con una ca-
pacidad de transporte inferior al caudal de equipamiento deducido a partir de la curva de cau-
dales clasificados. En este caso, la inversión necesaria para acondicionar el canal puede hacer
inviable la reconstrucción de la minicentral y por consiguiente, se opta por un caudal de equipa-
miento igual al caudal máximo que puede transportar el canal de derivación.
3.5.3. POTENCIA DE LA MINICENTRAL
La potencia eléctrica teórica que puede generar una minicentral, viene dada por la expresión:
P = 9,81 · Q · Hn
donde:
P : Potencia instalada en kW
Q : Caudal en m3
/s
Hn : Salto neto en m
La producción de la minicentral puede estimarse, en una primera aproximación, multiplicando es-
ta potencia por el número previsto de horas de funcionamiento.
Sin embargo la potencia a la salida de la minicentral es igual a:
P = 9,81 · Q · Hn · e
siendo e = ηt · ηg · ηtr
donde:
e : Factor de eficiencia de la minicentral
ηt : Rendimiento de la turbina
ηg : Rendimiento del generador
ηtr : Rendimiento del transformador
Los rendimientos de las turbinas, generadores y transformadores son facilitados por los fabri-
cantes de los propios equipos. En un primer estudio, sin embargo, puede tomarse como factor de
eficiencia de la minicentral un valor próximo a 0,8.
30
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4. ASPECTOS ECONÓMICOS
4.1. Inversiones
La inversión necesaria para la puesta en funcionamiento de una minicentral hidroeléctrica debe
incluir la valoración de los siguientes conceptos:
• Obra civil
• Equipos electromecánicos y auxiliares
• Conexión a la red
• Proyectos
• Dirección de obra
• Permisos, tasas y expropiaciones
• Impuestos
4.2. Costes de Explotación
Hay que tener en cuenta que la explotación de una minicentral conlleva unos gastos anuales de-
bidos al mantenimiento y reparación de las instalaciones, que aunque serán casi despreciables
los primeros años de funcionamiento de la central, irán aumentando a lo largo de los años.
Los gastos de explotación a tener en cuenta son:
• Personal de vigilancia y limpieza de las instalaciones.
• Mantenimiento y reparación de los elementos que se han de conservar y reponer, inclu-
yendo mano de obra y repuestos.
• Seguros de las instalaciones.
Se puede estimar que estos gastos son del orden del 2 al 5% de la inversión a realizar.
4.3. Precio venta de
la energía
El precio de venta de la energía viene regulado por el REAL DECRETO 2360/1994, de 9 de di-
ciembre, sobre producción de energía eléctrica por instalaciones hidráulicas, de cogeneración y
otras abastecidas por recursos o fuentes de energías renovables.
31
En el REAL DECRETO citado, las centrales hidroeléctricas quedan recogidas en el Grupo f siem-
pre que la suma de las potencias aparentes de cada grupo, medidas en bornas de generador, no
sea superior a 10 MVA.
La facturación total por la venta de energía será la que resulte de la aplicación total de la fórmu-
la siguiente:
FT = (PF x Tp + Ec Te ± DH ± ER) kf - Al
en la que
FT = Facturación en pesetas
PF = Potencia a facturar expresada en kW
Tp = Término de potencia (Tarifa 1.2)
Ec = Energía cedida en kWh
Te = Término de energía (Tarifa 1.2)
DH = Complemento por discriminación horaria (Tipo 2)
ER = Complemento por energía reactiva
Kf = Coeficiente
Al = Abono por incumplimiento de potencia
PF se puede calcular en el caso de las minicentrales hidroeléctricas, como cociente entre la ener-
gía entregada en el periodo de facturación y el número de horas del citado periodo.
AI es 0, ya que no hay incumplimiento de potencia.
Kf se calculará de acuerdo con la siguiente fórmula:
Kf = Kc x Kp
donde Kc es el coeficiente de costes incluidos en tarifas no evitados y Kp el coeficiente de apor-
tación a la política energética. Para las minicentrales hidroeléctricas Kp= 1,08 y Kc= 0,85.
Los términos de potencia Tp y de energía Te, se asimilan a los de la Tarifa eléctrica 1.2. Para es-
te año 1995, las tarifas establecidas son:Tp = 338 PTA/kW y mes y Te = 11,26 PTA/kWh.
Los complementos por discriminación horaria DH y por energía reactiva ER no suelen afectar de
manera importante a la facturación total. Para el cálculo del DH se considerará que las minicen-
trales hidroeléctricas están incluidas en el Tipo 2.
4.4. Rentabilidad de la inversión
La rentabilidad de una minicentral puede estimarse de una forma sencilla (se obtendrán valores
aproximados), utilizando los siguientes criterios:
32
• Período de Retorno (P.R.); que es el tiempo que se tarda en recuperar la inversión :
• Índice de energía (I. E.); que es el coste del kilovatio hora generado :
• Índice de potencia (I.P.); que es el coste del kilovatio instalado :
Se suelen considerar como rentables aquellos aprovechamientos que tienen valores aproximados
a:
Período de retorno : 4 a 5 años
Índice de energía : 50 PTA/kWh
Índice de potencia: 100.000 a 110.000 PTA/kW
Suelen ser aprovechamientos rentables:
• Saltos altos en ríos de fuerte pendiente, para obra nueva totalmente.
• Saltos totalmente nuevos, en ríos regulados por embalse en cabecera.
• Saltos existentes con obra civil en buen estado o que precisa pequeñas reparaciones.
• En los que existe posibilidad de reparación de las turbinas y equipos de automatismo.
• Que casi toda la energía producida sea utilizable por el propietario.
Suelen ser aprovechamientos de rentabilidad dudosa:
• Saltos bajos en ríos de pendientes media o baja, para obra nueva totalmente.
• Saltos totalmente nuevos, en ríos no regulados por embalse en cabecera.
• Saltos existentes con obra civil muy deteriorada y con canales muy largos.
• Cuando hay que instalar nuevas turbinas y equipos de automatismo.
• Que el propietario utilice poca energía de la que produce.
En cualquier caso, si se decide llevar a cabo el proyecto de rehabilitación o construcción de una
minicentral es necesario realizar un estudio económico-financiero en profundidad.
33
Inversión
Ingresos anuales
Inversión (PTA)
(Ingresos–gastos) PTA/AÑO
=P. R.=
Inversión (PTA)
Energía salida trafo (kWh)
I.E.=
Inversión (PTA)
Potencia instalada (kW)
I.P.=
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5. TRÁMITES ADMINISTRATIVOS
5.1. Documentación Técnico-Administrativa
para la Concesión de Aguas
De acuerdo con la Ley de Aguas, todo uso del agua con fines privados requiere una concesión
administrativa.
El primer paso que debe dar el interesado en la rehabilitación o puesta en marcha de una mini-
central hidroeléctrica, es conocer el estado de la concesión de aguas de dicha minicentral.
Para realizar esta consulta debe dirigirse por escrito al Organismo de Cuenca correspondiente,
solicitando la Certificación de la Concesión de Aguas por la que esté interesado.
En esta solicitud, a modo de carta, se deben indicar los siguientes datos:
• Punto donde se toman las aguas (río y cuenca)
• Término/s Municipal/es donde se encuentran ubicadas las instalaciones
• Territorio/s Histórico/s
• Caudal
• Salto
• Nombre de la Central (si lo tiene)
• Uso para el que se destina el agua
Los Organismos competentes para tramitar y otorgar las concesiones de agua son las Comisarías
de Aguas de las Confederaciones Hidrográficas y la Dirección de Planificación y Obras Hidráuli-
cas del Gobierno Vasco.
34
AGÜERA
BIDASOA
IBAIZABAL
KADAGUA
KARRANTZA
NERBIOI
ORIA
URUMEA
ARAIA
BAYAS
EGA
ERRIOXA (EBRO)
INGLARES
OMECILLO
ZADORRA
ARTIBAI
ASUA
BARBADÚN
BUTROI
GALINDO
GOBELA
LEA
OKA
DEBA
OIARTZUN
UROLA
ORGANISMO DE CUENCA
CONFEDERACIÓN HIDROGRÁFICA
COMISARÍA DE AGUAS
CUENCA NORTE CUENCA DEL EBRO
SERVICIO TERRITORIAL
DE AGUAS DE BIZKAIA
SERVICIO TERRITORIAL
DE AGUAS DE GIPUZKOA
DIRECCIÓN DE PLANIFICACIÓN Y OBRAS
HIDRÁULICAS DEL GOBIERNO VASCO
Tabla 6. Relación de ríos de la CAPV y Organismo de Cuenca al que pertenecen.
Dependiendo de en qué río se encuentre la toma de agua de la minicentral (ver tabla 6) hay que
dirigirse, para cualquier trámite, a uno de estos Organismos. Las direcciones vienen indicadas en
el Apéndice A.4.
En la Certificación de la Concesión de Aguas expedida por el Organismo de Cuenca vendrán
indicados el estado de la concesión y todos los datos concesionales de la central: caudal, salto,
titular de la concesión y fecha de resolución de dicha concesión.
Puede ocurrir que la Concesión esté vigente, caducada o que no exista concesión de aguas pa-
ra ese aprovechamiento.
En cada caso hay que seguir los siguientes trámites:
A) La Concesión está vigente
Si la Concesión está vigente y el titular es el interesado, se puede pasar a la realización del Pro-
yecto Constructivo de la minicentral, en el que se definen las obras civiles a realizar con objeto de
implantar los equipos electromecánicos que se instalarán en la minicentral.
Si el titular no es el interesado, se debe solicitar por escrito un cambio de titularidad, adjuntando
los documentos acreditativos de propiedad del aprovechamiento.
El cambio de titularidad se concede en la casi totalidad de las solicitudes, aunque la Concesión
puede variar en sus cláusulas, generalmente en el número de años concedidos, que pasará de
perpetuidad, si la Concesión es antigua, a un número determinado de años.
Este trámite suele durar un plazo aproximado de seis meses.
B) La Concesión está caducada o no existe Concesión
En este caso se debe solicitar la Concesión de Aguas, para lo cual es necesario un Proyecto de
Concesión. En este Proyecto se define y justifica el caudal y el salto que se solicita, los equipos
electromecánicos y la producción media esperada. Además se rellenará una instancia de solici-
tud de concesión, a modo de carta, haciendo constar los siguientes datos:
• Nombre y apellidos o razón social y domicilio del peticionario
• Objeto del aprovechamiento
• La corriente de donde se proyecta derivar el agua
• Caudal en litros por segundo
• Desnivel que se pretende utilizar
• Potencia a instalar
• Término/s Municipal/es donde radican las obras
El trámite para otorgar una concesión puede durar un plazo máximo de cinco años.
La concesión que se da en un principio es provisional y está condicionada a la visita oficial de re-
conocimiento final de las instalaciones que se realiza cuando ya está en funcionamiento la mini-
central. Con posterioridad a esta visita se otorga la Concesión definitiva.
Una vez que el propietario tiene la Concesión provisional a su nombre, puede pasar a realizar el
Proyecto Constructivo de las instalaciones.
35
La figura 20 resume los pasos explicados anteriormente:
36
Figura 20. Esquema de trámites necesarios para la obtención de la Concesión de Aguas.
Antes de realizar el Proyecto Constructivo de las instalaciones es conveniente realizar un Estu-
dio de Viabilidad, que mediante una inversión mínima permite determinar la rentabilidad técnica
y económica que supone la construcción de una minicentral.
En el Apéndice A.2. se indica el alcance mínimo que el Ente Vasco de la Energía (EVE) aconseja
para los Estudios de Viabilidad.
5.2. Documentación para la solicitud de
autorización de las instalaciones eléctricas
Una vez que se ha obtenido la Concesión de Aguas provisional, es necesario presentar en la
Delegación Territorial de Industria del Gobierno Vasco correspondiente al Territorio Histórico don-
de está ubicada la central, la siguiente documentación:
• Proyecto Electromecánico de las instalaciones de alta y baja tensión en el que se defi-
nen la totalidad de los equipos a instalar tanto principales como auxiliares, conjuntamente
con los informes (separatas) de afecciones a terceros.
Solicitud de la
Certificación de la Concesión
Concesión vigente
El titular es el
interesado
El titular no es el
interesado
Solicitud de cambio
de titularidad
Realización del Proyecto Constructivo de las
instalaciones
Se obtiene la Concesión provisional
Informe favorable Informe desfavorable
No se concede la
Concesión
Realización del Proyecto
Concesional
Solicitud de Concesión
Concesión caducada No existe Concesión
• Proyecto de la Línea Eléctrica de Interconexión de la Central con la Compañía Eléctri-
ca. Este Proyecto generalmente es realizado por la propia Compañía Eléctrica.
Todos estos documentos deben ir suscritos por un Técnico Superior competente y visa-
dos por el Colegio de Ingenieros correspondiente.
Al mismo tiempo se solicitan en la Delegación de Industria:
• El otorgamiento de la autorización administrativa de la instalación.
• El reconocimiento del derecho a acoger la instalación referida al régimen especial esta-
blecido en el Real Decreto 2366/1994 de 9 de diciembre.
• La inclusión de la instalación en el Registro de instalaciones de producción en régimen
especial.
Cuando se han cumplido todos estos trámites, las Delegaciones de Industria publican un anun-
cio en el Boletín Oficial de los Territorios Históricos afectados por las obras de la minicentral, au-
torizando la construcción de las instalaciones electromecánicas indicadas en el Proyecto Elec-
tromecánico.
Posteriormente se realiza un Certificado de Dirección de Obra y se presenta, debidamente visa-
do, en la Delegación de Industria con el fin de conseguir la autorización de pruebas y puesta en
marcha de las instalaciones.
5.3. Documentación técnico-administrativa
a presentar en otros organismos
Suele ser habitual remitir un ejemplar del Proyecto Electromecánico, debidamente visado, a la de-
legación de Iberdrola, S.A. correspondiente, para su aceptación.
La firma del contrato de compra de energía por parte de la Compañía Eléctrica se realiza de acuer-
do con las tarifas vigentes, que se publican anualmente en el B.O.E.. Para realizar este contrato
es necesario presentar:
• Autorización administrativa de la instalación.
• Reconocimiento del régimen especial (condición de autogenerador).
• Acta de puesta en marcha.
• Copia de la inscripción de la instalación en el Registro de instalaciones de producción
en régimen especial.
En los Ayuntamientos afectados por las instalaciones, se solicita el permiso de obras, adjuntando
un ejemplar del Proyecto Constructivo suscrito por un Técnico Superior competente y visado. Una
vez finalizadas las obras, se presenta el Certificado Final de Obras visado, imprescindible para la
obtención de la licencia de actividad.
37
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6. EJEMPLO SIMPLIFICADO DE UN ESTUDIO DE VIABILIDAD
DE UNA MINICENTRAL HIDROELÉCTRICA
6.1. Introducción
Un Estudio de Viabilidad es un documento previo a un Proyecto Constructivo que, mediante una
inversión mínima, permite determinar la rentabilidad técnica y económica que supone la cons-
trucción o rehabilitación de un aprovechamiento hidroeléctrico.
A continuación, mediante un ejemplo, se van a describir a grandes rasgos las etapas que com-
prende un estudio de viabilidad de una minicentral hidroeléctrica.
6.2. Estudio de viabilidad
La Central que se va a estudiar dejó de funcionar en el año 1970 debido al deterioro de su equi-
pamiento y como consecuencia, a su falta de rentabilidad. Sus instalaciones actuales compren-
den azud, canal de derivación, cámara de carga, tubería forzada, edificio y canal de salida. La
mayor parte de estas instalaciones se encuentran en un estado de conservación aceptable, sal-
vo la tubería forzada y el edificio, dentro del cual no queda ningún resto de equipamiento elec-
tromecánico.
6.2.1. OBTENCIÓN DE LOS DATOS CONCESIONALES
Según la certificación de la Confederación Hidrográfica del Norte, la concesión de aguas no es-
tá afectada por expediente de caducidad y fue otorgada al propietario actual por Resolución
Gubernativa de fecha 20 de Marzo de 1954, para aprovechar un caudal de 800 l/s en un salto bru-
to de 183 m.
6.2.2. OBTENCIÓN DE LOS DATOS TOPOGRÁFICOS
Es necesario disponer de una serie de cotas con el fin de determinar la capacidad de transporte
del canal de derivación y el salto bruto del aprovechamiento, que en muchos casos no coincide
con el salto registrado en la concesión.
Los datos de altimetría más significativos del aprovechamiento en metros sobre el nivel del mar
(m.s.n.m.) son:
38
• Cota de la coronación del azud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225,61
• Cota de la lámina de agua en la toma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225,11
• Cota de la solera del canal en varios puntos a lo largo de su trazado,
conjuntamente con su sección total y mojada
• Cota fondo cámara de carga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222,57
• Cota de la lámina de agua en la cámara de carga . . . . . . . . . . . . . . . . . . . . . . 224,50
• Cota de lámina de agua en la zona del río donde se restituye el agua . . . . . . . 41,84
39
Figura 21. Esquema del salto de agua.
6.2.3. DETERMINACIÓN DEL SALTO
El cálculo del salto neto se realiza a partir de los datos topográficos y de las pérdidas de carga.
Éstas están constituidas principalmente por:
• pérdidas en la toma
• pérdidas en el canal de derivación
• pérdidas en la tubería forzada
En el apartado 3.5.1. se indica que estas pérdidas de carga se pueden considerar, en una pri-
mera estimación, entre el 5% y el 10% del salto bruto
El salto neto del aprovechamiento es :
Salto neto (Hn) = salto bruto (Hb) - pérdidas de carga (∆H)
∆H = 7% de Hb
Hb = 225,11 - 41, 84 = 183,27 m
∆H = 183,27 x
7
= 12,83 m
100
Salto neto (Hn) = 183,27 - 12,83 = 170,44 ≅ 170 m
∆H
Hu
Hb
41,84
224,50
222,57
225,11
225,61
6.2.4. DETERMINACIÓN DE LA
CAPACIDAD DEL CANAL
Como se ha indicado anteriormente la central tiene una infraestructura existente (azud, canal, edi-
ficio...) que se intentará aprovechar. Por este motivo la capacidad máxima que puede transpor-
tar el canal de derivación limita el caudal a derivar hacia la central.
La capacidad del canal suele determinarse a partir de fórmulas empíricas. Sin embargo, puede
realizarse una estimación rápida de la misma a partir de la sección mojada mínima del canal.
La sección mojada del canal es:
S = b x a
siendo,
b = altura de la lámina de agua del canal en m
a = anchura del canal en m
40
Figura 22. Sección más desfavorable del canal de derivación.
La capacidad máxima de transporte del canal expresada en m3
/s estará comprendida entre el
80% y el 100% de ese valor.
En este ejemplo:
S = 0,8 x 1,5 = 1,2 m2
y la capacidad del canal estará comprendida en el siguiente intervalo:
Q1 = (1,2 x 0,8) x m3
/s = 960 l/s
Q2 = (1,2 x 1) x m3
/s = 1.200 l/s
Aplicando cualquiera de las fórmulas empíricas existentes para el cálculo de la capacidad de
transporte de canales abiertos, se hubiera obtenido que el canal puede transportar un caudal má-
ximo de 1.000 l/s.
1,5
0,80
a
b
0,15
6.2.5. DETERMINACIÓN DEL CAUDAL
DE EQUIPAMIENTO
Se dispone de una serie continua de caudales medios diarios de siete años registrados en una
estación de aforo situada a 100 m aguas arriba de la central.
Los datos de precipitaciones de los últimos 15 años, facilitados por la estación pluviométrica más
próxima a la central, permiten distribuir esos años en años húmedos, normales y secos.
Con los datos de caudales medios diarios correspondientes a los años normales se construye,
como se señala en el apartado 3.5.2., la curva de caudales clasificados.
41
Figura 23. Curva de caudales clasificados.
El caudal de equipamiento de la turbina se establece a partir de la curva de caudales clasifica-
dos, a la que previamente se le ha descontado el caudal ecológico fijado por el organismo com-
petente. En este caso, el caudal ecológico es de 100 l/s.
Tal como se indica en el apartado 3.5.2., el caudal de equipamiento suele fluctuar entre el Q80 y
el Q100. En este caso se tiene que el caudal concesional, 800 l/s, se corresponde con el Q100 y
la capacidad máxima de transporte del canal, 1.000 l/s, con el Q80. Así, las distintas alternativas
de caudal de equipamiento estarán comprendidas entre 800 l/s y 1.000 l/s.
6.2.6. DETERMINACIÓN DEL TIPO
DE TURBINA
Con los datos de salto y caudal que se tienen, aplicando el ábaco de la figura 15 resulta que el ti-
po de turbina más adecuado para la minicentral del ejemplo es una PELTON.
6.2.7. ALTERNATIVAS DE INSTALACIÓN
Se van a tener en cuenta tres posibles alternativas de instalación:
1ª Alternativa : Caudal de equipamiento igual al caudal concesional Q1= 800 l/s
2ª Alternativa : Caudal intermedio Q2 = 900 l/s
3ª Alternativa : Caudal de equipamiento igual a la máxima capacidad de transporte del canal
Q3 = 1.000 l/s
6.2.8. PRODUCCIÓN MEDIA ANUAL
En las tablas siguientes se indica para cada alternativa las horas de funcionamiento previstas, la
potencia y los rendimientos de la turbina, así como la producción media esperada anual.
Los rendimientos y las potencias para los distintos caudales son facilitados y garantizados por el
fabricante de la turbina. En la figura 24 se representan a modo de ejemplo las curvas de rendi-
mientos y potencias de una turbina Pelton para un Qn = 800 l/s y Hn = 170 m.
Las horas de funcionamiento para cada caudal se obtienen a partir de la curva de caudales cla-
sificados.
42
Figura 24. Curvas de rendimientos y potencias para una turbina Pelton (Qn = 800 l/s y Hn = 170 m)
100 200 300 400 500 600 700 800
90
88
86
84
82
80
70
1200
1100
1000
900
800
700
600
500
400
300
200
100
Caudal (l/s)
Rendimiento(%)
Potencia(kW)
1300
78
76
74
72
1ª Alternativa. Caudal de equipamiento Q1 = 800 l/s
43
Caudal (l/s)
PRODUCCIÓN MEDIA ANUAL (kWh/año) 4.770.024
Rendimiento (%) Potencia (kW)
Nº de horas de
funcionamiento
Producción media
anual (kWh/año)
> 800
800 - 700
700 - 600
600 - 500
500 - 400
400 - 300
300 - 200
200 - 100
100 - 80
87,6
88,4
89,5
89,6
88
88,8
88
84
80,4
1.168
1.105
970
821
660
518
367
210
121
2.592
264
312
336
192
384
696
1.152
408
3.027.456
291.720
302.640
275.856
126.720
198.912
255.432
241.920
49.368
Caudal (l/s)
PRODUCCIÓN MEDIA ANUAL (kWh/año) 5.104.536
Rendimiento (%) Potencia (kW)
Nº de horas de
funcionamiento
Producción media
anual (kWh/año)
> 900
900 - 800
800 - 700
700 - 600
600 - 500
500 - 400
400 - 300
300 - 200
200 - 100
100 - 90
87,6
88,4
89,5
89,6
87,6
88,5
88,8
87,2
84
80
1.314
1.252
1.119
971
803
664
518
363
210
127
2.352
240
264
312
336
192
384
696
1.152
192
3.090.528
300.480
295.416
302.952
269.808
127.488
198.912
252.648
241.920
24.384
Tabla 7. Producción media esperada en la central para un caudal de equipamiento de 800 l/s.
2ª Alternativa. Caudal intermedio Q2 = 900 l/s
Tabla 8. Producción media esperada en la central para un caudal de equipamiento de 900 l/s.
Caudal (l/s)
PRODUCCIÓN MEDIA ANUAL (kWh/año) 5.407.488
Rendimiento (%) Potencia (kW)
Nº de horas de
funcionamiento
Producción media
anual (kWh/año)
> 1.000
1.000 - 900
900 - 800
800 - 700
700 - 600
600 - 500
500 - 400
400 - 300
300 - 200
200 - 100
87,6
88,4
89,5
89,6
89,6
87,6
88,5
88,8
87,2
84
1.460
1.340
1.268
1.120
971
803
664
518
363
210
2.184
168
240
264
312
336
192
384
696
1152
3.188.640
225.120
304.320
295.680
302.952
269.808
127.488
198.912
252.648
241.920
3ª Alternativa. Caudal de equipamiento igual a la máxima capacidad de transporte del canal
Q3 = 1.000 l/s
Tabla 9. Producción media esperada en la central para un caudal de equipamiento de 1.000 l/s.
6.2.9. DESCRIPCIÓN DE LAS INSTALACIONES Y
DE SU REHABILITACIÓN
Una vez definidos el caudal de equipamiento y el salto neto, se realiza una inspección del estado
de las instalaciones siguiendo el curso del agua desde la toma hasta el canal de salida, y se de-
finen las obras que será necesario llevar a cabo para adecuar las instalaciones a las nuevas con-
diciones del aprovechamiento.
6.2.9.1. Obra civil
Azud
Está construido en mampostería revestida de hormigón en masa y situado perpendicularmente al
río. Su anchura es de 5 m y su altura de 3 m. El estado de conservación es bueno aunque habrá
que nivelar la rasante de su coronación.
Obra de toma
En la margen derecha del río, y como prolongación del azud, se sitúa la toma de agua equipada
con una rejilla de gruesos y una compuerta de madera que regula la entrada de agua al canal.
Ambos equipos presentan un buen estado de conservación, por lo que no será necesario su rem-
plazo.
Canal de derivación
El canal tiene una longitud de 1.200 m y una sección rectangular 1,5 x 0,95 m2
, siendo su capa-
cidad de transporte máxima de 1.000 l/s. Está construido en mampostería y se encuentra cu-
bierto de maleza y parcialmente aterrado debido a los desprendimientos y arrastres de agua. Ha-
brá que proceder a su limpieza y a la reparación de grietas con mortero de cemento en muros y
solera.
Cámara de carga
Al final del canal, separada de éste por una compuerta y una rejilla, se inicia la cámara de car-
ga. Antes del comienzo de la cámara de carga, existe también otra compuerta lateral que per-
mite el vaciado del canal. Será necesario sustituir estos equipos por otros nuevos, siendo las nue-
vas compuertas de accionamiento oleohidráulico e incorporando la nueva reja, una máquina
limpiarrejas automática.
Tubería forzada
La tubería forzada está totalmente inservible y por tanto habrá que remplazarla por una nueva
tubería, aunque se aprovechará su actual trazado, los puntos de anclaje y los macizos de re-
fuerzo.
44
La tubería tendrá una longitud de 550 m. En cuanto a su diámetro, éste puede predimensionarse
teniendo en cuenta la limitación de la velocidad del agua que debe existir a la entrada de la vál-
vula de guarda de la turbina.
• Para válvulas de mariposa: v ≤ 4 m/s
• Para válvulas esféricas: v ≤ 7 m/s
Aunque no debe adoptarse como criterio definitivo, en saltos inferiores a 200 m suelen instalarse
válvulas de mariposa y en saltos superiores a 300 m, esféricas.
Conocidos el caudal a turbinar y la máxima velocidad permitida a la entrada de la válvula de guar-
da de turbina puede obtenerse la sección de esta válvula y por tanto, su diámetro:
45
S =
Q
V
Siendo:
Q = caudal en m3
/s
v = velocidad en m/s
S = sección en m2
El diámetro de la válvula da idea del diámetro de tubería a instalar, aunque hay que tener en cuen-
ta que es conveniente que éste sea mayor, con el objeto de disminuir las pérdidas de carga.
Diámetro tubería menor ⇒ Mayor velocidad del agua ⇒ Mayor pérdida de carga ⇒ Disminución
del salto neto
Diámetro tubería mayor ⇒ Menor velocidad del agua ⇒ Menor pérdida de carga ⇒ Menor dis-
minución del salto neto
En este ejemplo (salto inferior a 200 m), se instalará una válvula de mariposa automática.
El diámetro de la válvula será:
La tubería forzada se dimensiona buscando conseguir el mayor salto neto posible, es decir, las
menores pérdidas de carga. Para ello se utilizan programas informáticos que calculan el diáme-
tro de tubería que proporciona un compromiso óptimo entre el coste de la tubería (mayor diáme-
tro ⇒ mayor coste económico) y las pérdidas de carga (mayor diámetro ⇒ menores pérdidas de
carga ⇒ mayor salto neto ⇒ mayor producción eléctrica).
En este ejemplo, la tubería forzada será de acero al carbono y tendrá un diámetro variable entre
700 mm y 800 mm según la alternativa elegida.
Q = 800 l/s;
π
× D2
=
0,8 m3
/s
; D=505 mm; diámetro normalizado 550 mm
4 4 m/s
Q = 900 l/s;
π
× D2
=
0,9 m3
/s
; D=535 mm; diámetro normalizado 550 mm
4 4 m/s
Q = 1.000 l/s;
π
× D2
=
1,0 m3
/s
; D=564 mm; diámetro normalizado 600 mm
4 4 m/s
Para poder aislar en caso necesario la cámara de carga de la tubería, se instalará al inicio de
ésta una válvula.
Edificio
El edificio de la central tiene una sola planta de 7 m de altura y unas dimensiones interiores de
15 m de longitud por 7 m de anchura. Es capaz de albergar todo el equipamiento electromecá-
nico. En general se encuentra en muy mal estado y su reconstrucción conllevará construir el te-
jado completamente nuevo, instalar todas las ventanas y puertas, acondicionar el interior para la
implantación de los equipos y sanear todas las fachadas exteriores.
6.2.9.2. Equipamiento electromecánico
Turbina y generador
Se ha señalado ya que se optaría por una turbina Pelton. La potencia en eje de turbina y del ge-
nerador al que ésta se acople, dependerán de la alternativa seleccionada. En todos los casos el
generador será síncrono con una tensión de generación de 380 V y con las siguientes potencias
en eje:
46
1ª Alternativa Q1 = 800 l/s 1.168 1.115
2ª Alternativa Q2 = 900 l/s 1.314 1.250
3ª Alternativa Q3 = 1.000 l/s 1.460 1.390
Potencia en eje de turbina
(kW)
Potencia del generador
(kW)
Tabla 10. Potencias de turbinas y generadores.
Instalación eléctrica
En líneas generales es común para todas las alternativas y estará constituida por un transforma-
dor de 1.600 kVA, con relación de transformación 13.200/380 V, armarios de medida, armarios de
potencia, control y protecciones.
La central estará totalmente automatizada incorporando todos los equipos de control y gobierno
necesarios.
El acoplamiento a la línea eléctrica se realizará, según las indicaciones de la compañía eléctri-
ca, en la línea de alta tensión de 13,2 kV situada a 200 m de la central, por lo que será necesario
construir 200 m de línea.
6.2.10. PRESUPUESTO
El presupuesto debe incluir la valoración de las siguientes partidas:
• obra civil
• equipos mecánicos
• equipos eléctricos
• elementos auxiliares
Este es el Presupuesto de Ejecución Material. Aplicándole un porcentaje en concepto de Gastos
Generales (13%), otro en concepto de Beneficio Industrial (6%) y el impuesto sobre el valor aña-
dido IVA, se obtiene el Presupuesto de Ejecución por Contrata.
Los presupuestos para cada alternativa son los siguientes:
47
Tabla 11. Presupuestos comparados para las distintas alternativas de instalación.
Obra civil y tubería forzada 45.000.000 45.000.000 53.500.000
Equipos mecánicos 36.200.000 39.500.000 44.700.000
Equipos eléctricos 20.000.000 21.250.000 23.200.000
Línea eléctrica 1.500.000 1.500.000 1.500.000
Elementos auxiliares 7.800.000 7.800.000 7.800.000
Proyectos y Dirección de obra 15.000.000 15.000.000 15.000.000
PRESUPUESTO EJECUCIÓN
MATERIAL
125.500.000 130.050.000 145.700.000
13% Gastos Generales 16.315.000 16.906.500 18.941.000
6% Beneficio Industrial 7.350.000 7.803.000 8.742.000
Total 149.345.000 154.759.500 173.383.000
IVA 16% 23.895.200 24.761.520 27.741.280
PRESUPUESTO EJECUCIÓN
POR CONTRATA
173.240.200 179.521.020 201.124.280
PRESUPUESTO
(PTA)
1ª Alternativa
Q = 800 l/s
2ª Alternativa
Q = 900 l/s
3ª Alternativa
Q = 1.000 l/s
6.2.11. ANÁLISIS DE RENTABILIDAD
Una vez conocida la producción media anual y el valor de la inversión para las alternativas de ins-
talación, se analizará la rentabilidad del proyecto en base al Periodo de Retorno (P.R.), el Índi-
ce de Energía (I.E.) y el Índice de Potencia (I.P.).
Los ingresos anuales previstos se obtienen a partir de la producción media anual considerando
un precio de venta del kWh de 10,5 PTA/kWh.
48
Inversión sin IVA (PTA) 149.345.000 154.759.500 173.383.000
Ingresos por venta de energía (PTA) 50.085.252 53.597.628 56.778.624
Gastos de explotación (PTA) 4.100.000 4.100.000 4.100.000
Ingresos totales (PTA) 45.985.252 49.497.628 52.678.624
Período de Retorno (años) 3,25 3,13 3,29
Índice de Energía (PTA/kWh) 31,31 30,32 32,06
Índice de Potencia (PTA/kW) 127.864 117.777 118.755
ANÁLISIS DE RENTABILIDAD
1ª Alternativa
Q = 800 l/s
2ª Alternativa
Q = 900 l/s
3ª Alternativa
Q = 1.000 l/s
Tabla 12. Análisis de rentabilidad para las distintas alternativas de instalación.
6.2.12. PLANOS
En el Estudio de Viabilidad se incluirán, al menos, los siguientes planos:
• Plano de situación general
• Plano de la topografía existente
• Implantación de equipos en sala de máquinas para cada alternativa
• Implantación de equipos en canal y cámara de carga
• Plano de situación de la interconexión a la red eléctrica
• Esquema unifilar de las instalaciones
6.2.13. CONCLUSIONES
Como puede apreciarse en el análisis de rentabilidad (Tabla 12), tanto el Perí odo de Retorno
como los Índices de Energía y Potencia son bastante similares en todos los casos, por lo que,
en principio, cualquiera de las tres alternativas sería viable.
La primera alternativa, Q = 800 l/s, tiene la ventaja de que la inversión a realizar es menor y de que
al coincidir este caudal con el caudal concesional, los trámites para poner en funcionamiento la
central se reducen considerablemente.
Para las otras dos alternativas, Q = 900 l/s y Q = 1.000 l/s, la inversión es algo superior. De hecho,
la inversión crece a medida que aumenta el caudal de equipamiento. Sin embargo, el tiempo de
recuperación de la inversión es similar en los tres casos, y hay que tener en cuenta que una vez
recuperada la inversión, los ingresos anuales previstos para las alternativas 2ª y 3ª son mayores.
El inconveniente que presentan estas dos alternativas es la necesidad de solicitar un aumento del
caudal concesional, puesto que este trámite puede durar entre dos y tres años.
Considerando todo lo expuesto, se considera que la alternativa más adecuada es la que con-
templa un caudal de equipamiento de 1.000 l/s, es decir, la tercera.
49
APÉNDICES
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
APÉNDICE A.1. EJEMPLOS REPRESENTATIVOS
CENTRAL HIDROELÉCTRICA: ULLIBARRI
DATOS UBICACIÓN: Municipio: ARRAZUA - UBARRUNDIA
T. Histórico: ARABA
Río: EMBALSE DE ULLIBARRI
Cuenca: ZADORRA
DATOS TÉCNICOS:
Caudal (l/s): 800 Potencia instalada (kW): 149
Salto bruto (m): 25 a 27 Producción media (kWh/año): 500.000
Equipamiento: Una turbina Francis acoplada a un generador síncrono de 170 kVA y en para-
lelo con la red a 13,0 kV.
Observaciones: La Central se puso en funcionamiento en el año 1959 y aprovecha el caudal eco-
lógico que deja el embalse de ULLIBARRI.
52
Foto 1. Grupo turbina - generador C.H. Ullibarri
(Cortesía de Iberdrola, S.A.)
CENTRAL HIDROELÉCTRICA: IRAUREGUI
DATOS UBICACIÓN: Municipio: BARAKALDO
T. Histórico: BIZKAIA
Río: KADAGUA
Cuenca: KADAGUA
DATOS TÉCNICOS:
Caudal (l/s): 6.100 Potencia instalada (kW): 470
Salto bruto (m): 9,68 Producción media (kWh/año): –
Equipamiento: Dos turbinas Francis acopladas a dos alternadores asíncronos de 276 kVA
cada uno, y en paralelo con la red a 13,0 kV.
Observaciones: La Central se ha rehabilitado, poniéndose de nuevo en funcionamiento en Mar-
zo de 1995. Se ha aprovechado una de las turbinas antiguas y se han instala-
do la otra turbina, los dos generadores y los cuadros eléctricos nuevos.
53
Foto 2. Interior de la C.H. Irauregui, periodo de obras
(Cortesía de Irauregui, S.L.)
CENTRAL HIDROELÉCTRICA: LA MELLA
DATOS UBICACIÓN: Municipio: ZALLA
T. Histórico: BIZKAIA
Río: KADAGUA
Cuenca: KADAGUA
DATOS TÉCNICOS:
Caudal (l/s): 4.000 Potencia instalada (kW): 360
Salto bruto (m): 11,62 Producción media (kWh/año): 1.400.000
Equipamiento: Dos turbinas Francis acopladas a generadores asíncronos y en paralelo con la
red 13,2 kV.
Observaciones: La Central se automatizó en el año 1990. Se han instalado los generadores y los
cuadros eléctricos nuevos y se han reparado las turbinas antiguas.
54
Foto 3. Canal de derivación y cámara de carga C.H. La Mella
(Cortesía de Electra La Mella, S.A.)
CENTRAL HIDROELÉCTRICA: PATALA
DATOS UBICACIÓN: Municipio: BERRIZ
T. Histórico: BIZKAIA
Río: GARAI (arroyos Urcillo, Arlaban, Akelkorta ...)
Cuenca: IBAIZABAL
DATOS TÉCNICOS:
Caudal (l/s): 240 y 130 Potencia instalada (kW): 528
Salto bruto (m): 208 y 104 Producción media (kWh/año): 2.500.000
Equipamiento: Tres turbinas Pelton acopladas a tres generadores asíncronos; dos de 316
kVA y uno de 250 kVA y en paralelo con la red a 13,0 kV.
Observaciones: La Central se puso en funcionamiento, con la maquinaria descrita, en 1951. Tie-
ne dos saltos de agua denominados salto grande y salto pequeño de Garai.
55
Foto 4. Grupos turbina - generador C.H. Patala
(Cortesía de Elektra Larrañaga, S.A.)
CENTRAL HIDROELÉCTRICA: BERTXIN
DATOS UBICACIÓN: Municipio: VILLABONA
T. Histórico: GIPUZKOA
Río: LEIZARAN
Cuenca: ORIA
DATOS TÉCNICOS:
Caudal (l/s): 1.000 Potencia instalada (kW): 808
Salto bruto (m): 103 Producción media (kWh/año): 3.600.000
Equipamiento: Una turbina Francis de eje horizontal de 808 kW acoplada a un generador asín-
crono de 1.000 kVA y en paralelo con la red a 30 kV.
Observaciones: La Central se rehabilitó en el año 1988. Se acondicionó el edificio y se instaló
todo el equipamiento electromecánico nuevo.
56
Foto 5. Grupo turbina - generador C.H. Bertxin
(Cortesía de C.H. Bertxin, S.A.)
CENTRAL HIDROELÉCTRICA: BARRENA - BERRI
DATOS UBICACIÓN: Municipio: ELGOIBAR
T. Histórico: GIPUZKOA
Río: DEBA
Cuenca: DEBA
DATOS TÉCNICOS:
Caudal (l/s): 7.000 Potencia instalada (kW): 621
Salto bruto (m): 9,61 Producción media (kWh/año): 2.250.000
Equipamiento: Una turbina Kaplan de eje horizontal de 621 kW, acoplada a un generador sín-
crono de 781 kVA y en paralelo con la red a 30 kV.
Observaciones: La Central se rehabilitó en el año 1991, instalándose todo el equipamiento elec-
tromecánico nuevo y construyendo un nuevo edificio y el canal de salida.
57
Foto 6. Canal de derivación y transformador C.H. Barrena-Berri
(Cortesía de Saltos del Deva, S.R.L.)
CENTRAL HIDROELÉCTRICA: LEIZARAN
DATOS UBICACIÓN: Municipio: ANDOAIN
T. Histórico: GIPUZKOA
Río: LEIZARAN
Cuenca: ORIA
DATOS TÉCNICOS:
Caudal (l/s): 3.000 Potencia instalada (kW): 3.600
Salto bruto (m): 208 Producción media (kWh/año): 17.000.000
Equipamiento: Una turbina Francis de eje horizontal de 3.600 kW acoplada a un generador sín-
crono de 4.500 kVA y en paralelo con la red a 30 kV.
Observaciones: La Central se puso en funcionamiento en 1904 y las instalaciones se moderni-
zaron en 1964.
58
Foto 7. Edificio y canal de salida C.H. Leizarán
(Cortesía de Iberdrola, S.A.)
CENTRAL HIDROELÉCTRICA: SOLOGOEN
DATOS UBICACIÓN: Municipio: SORALUZE
T. Histórico: GIPUZKOA
Río: DEBA
Cuenca: DEBA
DATOS TÉCNICOS:
Caudal (l/s): 5.000 Potencia instalada (kW): 400
Salto bruto (m): 9,7 Producción media (kWh/año): 800.000
Equipamiento: Una turbina Kaplan de eje vertical de 400 kW acoplada a un generador asín-
crono de 425 kW, en paralelo con la red a 13,2 kV.
Observaciones: La Central se rehabilitó en el año 1991, construyéndose un nuevo edificio e ins-
talándose todo el equipamiento electromecánico nuevo.
59
Foto 8. Cámara de carga y edificio C.H. Sologoen
(Cortesía de C.H. Sologoen, S.A.)
CENTRAL HIDROELÉCTRICA: OLATE
DATOS UBICACIÓN: Municipio: OÑATI
T. Histórico: GIPUZKOA
Río: ARANTZAZU
Cuenca: DEBA
DATOS TÉCNICOS:
Caudal (l/s): 1.100 - 325 - 220 - 1.000 Potencia instalada (kW): 4.712
Salto bruto (m): 103,5 - 217,8 - 460,2 - 270,7 Producción media (kWh/año): 12.500.000
Equipamiento: Una turbina Francis y tres turbinas Pelton acopladas a generadores síncronos
en paralelo y en isla con la red a 13,2 kV.
Observaciones: La Central se rehabilitó en el año 1991, se acondicionó el edificio existente y se
instaló todo el equipamiento nuevo.
60
Foto 10. Entrada tuberías forzadas
en el edificio de la C.H. Olate
(Cortesía de Oñatiko Ur-Jausiak, S.A.)
Foto 9. Interior del edificio de la C.H. Olate
(Cortesía de Oñatiko Ur-Jausiak, S.A.)
CENTRAL HIDROELÉCTRICA: UBAO - TOKILLO
DATOS UBICACIÓN: Municipio: OÑATI
T. Histórico: GIPUZKOA
Río: OÑATE
Cuenca: DEBA
DATOS TÉCNICOS:
Caudal (l/s): 225 Potencia instalada (kW): 577
Salto bruto (m): 305,5 Producción media (kWh/año): 800.000
Equipamiento: Una turbina Pelton acoplada a un generador asíncrono de 756 kVA, en pa-
ralelo y en isla con la red a 13,2 kV.
Observaciones: Esta Central es de nueva construcción y está formada por la unión de los saltos
de UBAO y TOKILLO. Se ha construido un nuevo edificio donde estaba situada
la antigua Central de Tokillo y su puesta en funcionamiento se ha realizado a
principios de 1995.
61
Foto 11. Grupo turbina - generador y cuadros eléctricos de la C.H. Ubao-Tokillo
(Cortesía de Oñatiko Ur-Jausiak, S.A.)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
APÉNDICE A.2. ALCANCE MÍNIMO ACONSEJABLE PARA LOS
ESTUDIOS DE VIABILIDAD DE MINICENTRALES HIDROELÉCTRICAS
I. ANÁLISIS Y SELECCIÓN DE ALTERNATIVAS
1. IDENTIFICACIÓN Y ANÁLISIS DE LA INFORMACIÓN DISPONIBLE
1.1. Datos concesionales. Situación actual
1.2. Datos topográficos
1.3. Datos hidrológicos
1.4. Estudios realizados por
• Ingenierías
• Suministradores
2. MEDICIONES TOPOGRÁFICAS E HIDROLÓGICAS
2.1. Topográficas
• Altimetría
• Planimetría
2.2. Hidrológicas
• Curvas de caudales clasificados
3. DESCRIPCIÓN DEL ESTADO ACTUAL DE LAS INSTALACIONES
3.1. Presa de regulación
3.2. Azud de derivación
3.3. Canal
3.4. Cámara de carga
3.5. Tubería forzada
3.6. Edificio de la central
3.7. Equipos existentes (turbina, generador,...)
3.8. Línea de salida
4. DEFINICIÓN TÉCNICA DE ALTERNATIVAS
4.1. Equipos
• Turbinas. Potencias nominales
• Generador
• Resto
4.2. Producciones
5. CONEXIÓN A LA RED
5.1. Condiciones reglamentarias
5.2. Definición técnico-económica
6. EVALUACIÓN ECONÓMICA
6.1. Inversiones
• Obras y equipos comunes
• Equipamiento específico
• Inversiones totales
62
6.2. Ingresos
6.3. Costos adicionales de explotación (Mantenimiento, personal, seguros, etc.)
7. BENEFICIOS SECUNDARIOS
7.1. Aspectos fiscales
8. ANÁLISIS TÉCNICO-ECONÓMICO
8.1. Evaluación de los siguientes parámetros para cada alternativa
• Inversión total
• Plazo de recuperación
• TIR
8.2. Índices económicos
• Índice de energía (PTA/kWh)
• Coste específico de la potencia instalada (PTA/kW)
• Cuadro comparativo
9. PROPUESTA DE ACTUACIÓN
9.1. Selección de alternativas. Comparaciones
9.2. Conclusiones
9.3. Recomendaciones
10. PLANOS, GRÁFICOS Y DOCUMENTACIÓN
10.1. Planos
• De situación general
• De implantación del canal y de la central
• De la cuenca del río
• De disposición de máquinas y de equipos, para cada una de las alternativas.
10.2. Gráficos
• Caudales clasificados
• Para cada una de las alternativas, curvas de rendimiento
10.3. Documentación técnico-administrativa
II. PROFUNDIZACIÓN EN LA SOLUCIÓN ELEGIDA
1. ASPECTOS TÉCNICOS
2. NEGOCIACIONES CON AGENTES IMPLICADOS
2.1. Comisaría de Aguas
2.2. Empresa suministradora de electricidad
2.3. Organismos públicos
• Subvenciones
• Aspectos fiscales
3. ESTUDIO ECONÓMICO-FINANCIERO
3.1. Inversión
3.2. Subvenciones
3.3. Ingresos anuales previstos
3.4. Gastos anuales previstos
3.5. Plazo de Recuperación
3.6. TIR
3.7. Costo del kWh a lo largo del tiempo
3.8. Tabla económico-financiera
4. ESQUEMAS, PLANOS, GRÁFICOS Y DOCUMENTACIÓN
63
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
APÉNDICE A.3. RELACIÓN DE FABRICANTES DE
TURBINAS HIDRÁULICAS
64
• AVERLY, S.A.
Paseo Mª Agustín 57 - 59
50004 Zaragoza (Zaragoza)
Teléfono: (976) 44 50 72
• BALIÑO, S.A.
La Gándara - Corujo
36280 Vigo (Pontevedra)
Teléfono: (986) 29 60 00
Fax: (986) 29 21 50
• BABCOCK HYDRO
Parque Tecnológico - Pabellón 105 -
Edificio Estrella 2ª planta
48016 Zamudio (Bizkaia)
Teléfono: (94) 420 94 26
Fax: (94) 420 94 30
• KÖSSLER IBÉRICA, S.A.
Madaripe Bidea, 2
48950 Erandio (Bizkaia)
Teléfono: (94) 467 60 12
Fax: (94) 467 65 69
• MECÁNICA DE LA PEÑA, S.A.
Aita Gotzon, 37
48610 Urduliz (Bizkaia)
Teléfono: (94) 676 10 11
Fax: (94) 676 28 81
• NEYRPIC ESPAÑOLA, S.A.
Ctra. D´Esplugues, 191 - 217
08940 Cornella de Llobregat (Barcelona)
Teléfono: (93) 376 10 00
Fax: (93) 376 14 50
• SERVO SHIP, S.L.
Avda. Cataluña 35 - 37 bloque 4, 1º Izda.
50014 Zaragoza (Zaragoza)
Teléfono: (976) 29 80 39
Fax: (976) 29 21 34
• SULZER ESPAÑA, S.A.
Paseo de la Castellana, 163
28046 Madrid (Madrid)
Teléfono: (91) 571 33 56
Fax: (91) 571 32 72
• TALLERES MERCIER, S.A.
Argualas, s/n
50012 Zaragoza (Zaragoza)
Teléfono: (976) 56 10 17
Fax: (976) 56 38 55
• VOITH HYDRO TOLOSA, S.L.
Padre Larramendi, 8
20400 Tolosa (Gipuzkoa)
Teléfono: (943) 67 37 99
Fax: (943) 67 28 48
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
APÉNDICE A.4. DIRECCIONES DE INTERÉS RELACIONADAS CON
LAS MINICENTRALES DEL ENTORNO DE LA CAPV
• MINISTERIO DE OBRAS PÚBLICAS TRANSPORTES Y MEDIO AMBIENTE
CONFEDERACIÓN HIDROGRÁFICA DEL EBRO - COMISARÍA DE AGUAS
Sagasta 24,
50006 Zaragoza (Zaragoza)
Teléfono: (976) 22 19 91
Fax: (976) 21 45 96
• MINISTERIO DE OBRAS PÚBLICAS TRANSPORTES Y MEDIO AMBIENTE
CONFEDERACIÓN HIDROGRÁFICA DEL NORTE - COMISARÍA DE AGUAS
Plaza de España, 2
33007 Oviedo (Asturias)
Teléfono: (985) 23 63 00
Fax: (985) 23 65 46
Gran Vía, 57 -7º izda
48011 Bilbao (Bizkaia)
Teléfono: (94) 441 17 00
Fax: (94) 441 50 19
Paseo de Errotaburu, 1 - 8ª planta
20071 Donostia - San Sebastián (Gipuzkoa)
Teléfono: (943) 31 18 19
Fax: (943) 31 19 64
• GOBIERNO VASCO
DEPARTAMENTO DE TRANSPORTES Y OBRAS PÚBLICAS
DIRECCIÓN DE PLANIFICACIÓN Y OBRAS HIDRÁULICAS
Olaguibel, 38
01004 Vitoria-Gasteiz (Araba)
Teléfono: (945) 18 97 33
Fax: (945) 18 97 42
65
• GOBIERNO VASCO
DEPARTAMENTO DE TRANSPORTES Y OBRAS PÚBLICAS
SERVICIO TERRITORIAL DE AGUAS DE BIZKAIA
Lehendakari Agirre, 9 - 6ª planta
48014 Bilbao (Bizkaia)
Teléfono: (94) 475 33 00
Fax: (94) 476 30 02
• GOBIERNO VASCO
DEPARTAMENTO DE TRANSPORTES Y OBRAS PÚBLICAS
SERVICIO TERRITORIAL DE AGUAS DE GIPUZKOA
Fueros, 1 - 2ª planta
20005 Donostia - San Sebastián (Gipuzkoa)
Teléfono: (943) 42 45 20
Fax: (943) 42 38 10
• ENTE VASCO DE LA ENERGÍA (EVE)
San Vicente, 8 (Edificio Albia), planta 14
48001 Bilbao (Bizkaia)
Teléfono: (94) 423 50 50
Fax: (94) 424 97 33
• GOBIERNO VASCO
DEPARTAMENTO DE INDUSTRIA, AGRICULTURA Y PESCA
DELEGACIÓN TERRITORIAL DE BIZKAIA
Máximo Aguirre, 18 bis - 2ª planta
48011 Bilbao (Bizkaia)
Teléfono: (94) 488 14 00
Fax: (94) 488 14 45
• GOBIERNO VASCO
DEPARTAMENTO DE INDUSTRIA, AGRICULTURA Y PESCA
DELEGACIÓN TERRITORIAL DE GIPUZKOA
Easo, 10
20006 Donostia - San Sebastián (Gipuzkoa)
Teléfono: (943) 41 25 00
Fax: (943) 41 25 42
66
• GOBIERNO VASCO
DEPARTAMENTO DE INDUSTRIA, AGRICULTURA Y PESCA
DELEGACIÓN TERRITORIAL DE ARABA
Avda. Gazteiz, 59
01008 Vitoria - Gasteiz (Araba)
Teléfono: (945) 22 42 12
Fax: (945) 18 77 87
• IBERDROLA, S.A.
Gardoqui, 8
48008 Bilbao (Bizkaia)
Teléfono: (94) 415 14 11
Fax: (94) 415 45 79/479 01 93
Guetaria, 13
20005 Donostia - San Sebastián (Gipuzkoa)
Teléfono: (943) 42 36 80
Fax: (943) 43 16 55
Urartea, 2
01010 Vitoria - Gasteiz (Araba)
Teléfono: (945) 22 90 00
Fax: (945) 22 40 79
67
68
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
APÉNDICE A.5. RELACIÓN DE RÍOS DE LA CAPV
CLASIFICADOS POR CUENCAS
CUENCA RÍOS
AGÜERA AGÜERA
ARAIA ANARRI
ARAIA
ARTIBAI ARTIBAI
BARBADÚN BARBADÚN
GALDAMES
GORITZA
MERCADILLO
BAYAS BAYAS
BIDASOA BIDASOA
BUTROI BUTROI
INFIERNO
DEBA ANTZUOLA
ARAMAIO
ARANTZAZU
DEBA
DESCARGA
EGO
KILIMON
OÑATE
EGA BERNEDO
CONTRASTA
EGA
IZKIZ
ERRIOXA (EBRO) OION
RABIALGAS
GINÉS
IBAIZABAL ARRATIA
ARRIA
GARAY
IBAIZABAL
INDUSI
MAÑARIA
OROBIO
ZALDU
69
CUENCA RÍOS
INGLARES INGLARES
KADAGUA KADAGUA
HERRERÍAS
ORDUNTE
KARRANTZA KARRANTZA
LEA LEA
NERBIOI ALTUBE
ARNAURI
NERBIOI
NERBIOI-IBAIZABAL ASUA
GALINDO
GOBELA
OIARTZUN OIARTZUN
OKA EA
GOLAKO
OKA
OMECILLO HÚMEDO
OMECILLO
ORIA AGAUNTZA
ALKASU
ALKIZA
AMEZKETA
ARAXES
BERASTEGI
LEIZARAN
ORIA
SALUBITA
ZALDIBIA
PURÓN PURÓN
UROLA ALZOLARAS
ERREZIL
UROLA
URUMEA AÑARBE
URUMEA
ZADORRA AYUDA
STA. ENGRACIA
ZADORRA
70
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
APÉNDICE A.6. LEGISLACIÓN
• LEY 82/1980, de 30 de diciembre, sobre Conservación de Energía. (BOE núm. 23, de 27 de ene-
ro de 1981).
• LEY 29/1985, de 2 de agosto, de Aguas. (BOE núm. 189, de 8 de agosto de 1985).
• DECRETO 297/1994, de 12 de julio, por el que se aprueba el Acuerdo de la Comisión Mixta
de Transferencias de 31 de mayo de 1994, sobre traspaso a la Comunidad Autónoma del País
Vasco de las funciones y servicios en materia de Recursos y Aprovechamientos Hidráulicos.
(BOPV núm. 140, de 22 de julio de 1994).
• LEY 40/1994, de 30 de diciembre, de ordenación del Sistema Eléctrico Nacional. (BOE núm.
313, de 31 de diciembre de 1994).
• REAL DECRETO 2366/1994, de 9 de diciembre, sobre producción de energía eléctrica por ins-
talaciones hidráulicas, de cogeneración y otras abastecidas por recursos o fuentes de ener-
gía renovables. (BOE núm. 313, de 31 de diciembre de 1994).
• ORDEN de 12 de enero de 1995 por la que se establecen las tarifas eléctricas. (BOE núm. 12,
de 14 de enero de 1995).
71
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
BIBLIOGRAFÍA
• J COTILLON (1978): L´hydroélectricité dans le monde. La Houille Blanche, reuve internationa-
le de L´eau, numéro spécial 1-2. Ed. Société Hydrotechnique de France.
• G. ZOPPETTI (1982): Centrales hidroeléctricas, quinta edición. Ed. G. Gili, S.A.
• DEPARTEMENT D´INDUSTRIA I ENERGÍA. GENERALITAT DE CATALUNYA (1983): Petites Cen-
trals Hidroeléctriques.
• CADEM (1985): Manual de Eficiencia Energética eléctrica en la industria, Tomo I y Tomo II. Ed.
Servicio Central de Publicaciones del Gobierno Vasco.
• CLAUDIO MATAIX (1986): Mecánica de Fluidos y Máquinas Hidráulicas, segunda edición. Ed.
del Castillo, S.A.
• MOPU, DIRECCIÓN GENERAL DE OBRAS HIDRÁULICAS (1986): Pequeñas centrales hidroe-
léctricas. Manual. Ed. Centro de publicaciones Secretaría General Técnica, Ministerio de Obras
Públicas y Urbanismo.
• IDAE (1987): II Jornadas de energía minihidráulica.
• CEE, ESHA, IDAE (1989): Hidroenergía 89. Conferencia y Exposición Internacional de Energía
Hidráulica.
• EVE (1989): Inventario de Aprovechamientos Hidroeléctricos en la CAPV.
• SECRETARÍA GENERAL DE LA ENERGÍA Y RECURSOS MINERALES, IDAE (1992): Minicen-
trales hidroeléctricas. Manual de Energías Renovables/3. Ed. Cinco días.
• GRUPO DE FORMACIÓN DE EMPRESAS ELÉCTRICAS (1994): Centrales Hidroeléctricas.
• GRUPO FORMACIÓN DE EMPRESAS ELÉCTRICAS (1994): Centrales Hidroeléctricas Tomo I,
Conceptos y Componentes Hidráulicos, Tomo II, Turbinas Hidráulicas. Ed. PARANINFO, S.A.
• EVE (1994): Inventario de Minicentrales Hidroeléctricas en la CAPV.
• EVE (1995): Inventario de Minicentrales Hidroeléctricas de la CAPV.
EUSKO JAURLARITZA
GOBIERNO VASCO
Herri-Baltzua
Ente Público del

Weitere ähnliche Inhalte

Was ist angesagt?

Mô hình tổ chức không gian phố chuyên doanh - Khu vực Chợ Lớn
Mô hình tổ chức không gian phố chuyên doanh - Khu vực Chợ LớnMô hình tổ chức không gian phố chuyên doanh - Khu vực Chợ Lớn
Mô hình tổ chức không gian phố chuyên doanh - Khu vực Chợ Lớnthuhoanhuynh
 
Luận văn: Phát triển năng lực giải quyết vấn đề của học sinh trong dạy học lị...
Luận văn: Phát triển năng lực giải quyết vấn đề của học sinh trong dạy học lị...Luận văn: Phát triển năng lực giải quyết vấn đề của học sinh trong dạy học lị...
Luận văn: Phát triển năng lực giải quyết vấn đề của học sinh trong dạy học lị...Dịch vụ viết bài trọn gói ZALO: 0936 885 877
 
Nx 10 for engineering design
Nx 10 for engineering designNx 10 for engineering design
Nx 10 for engineering designSergio Barrios
 
Thuyết minh dự án đầu tư Nuôi thủy sản, sản xuất cây giống chất lượng cao, mô...
Thuyết minh dự án đầu tư Nuôi thủy sản, sản xuất cây giống chất lượng cao, mô...Thuyết minh dự án đầu tư Nuôi thủy sản, sản xuất cây giống chất lượng cao, mô...
Thuyết minh dự án đầu tư Nuôi thủy sản, sản xuất cây giống chất lượng cao, mô...Dịch vụ Lập dự án chuyên nghiệp
 
Nhiệm vụ và dự toán Quy hoạch xây dựng vùng huyện Trà Bồng, tỉnh Quảng Ngãi
Nhiệm vụ và dự toán Quy hoạch xây dựng vùng huyện Trà Bồng, tỉnh Quảng Ngãi Nhiệm vụ và dự toán Quy hoạch xây dựng vùng huyện Trà Bồng, tỉnh Quảng Ngãi
Nhiệm vụ và dự toán Quy hoạch xây dựng vùng huyện Trà Bồng, tỉnh Quảng Ngãi nataliej4
 
Luận văn: Dạy học làm văn tự sự ở Trung học phổ thông theo hướng phát triển n...
Luận văn: Dạy học làm văn tự sự ở Trung học phổ thông theo hướng phát triển n...Luận văn: Dạy học làm văn tự sự ở Trung học phổ thông theo hướng phát triển n...
Luận văn: Dạy học làm văn tự sự ở Trung học phổ thông theo hướng phát triển n...Dịch vụ viết bài trọn gói ZALO: 0936 885 877
 
Luận văn; Quản lý hoạt động kiểm tra, đánh giá kết quả học tập của học sinh ở...
Luận văn; Quản lý hoạt động kiểm tra, đánh giá kết quả học tập của học sinh ở...Luận văn; Quản lý hoạt động kiểm tra, đánh giá kết quả học tập của học sinh ở...
Luận văn; Quản lý hoạt động kiểm tra, đánh giá kết quả học tập của học sinh ở...Dịch vụ viết bài trọn gói ZALO: 0936 885 877
 
Proyecto final de carrera Frío industrial e instalación fotovoltaica
Proyecto final de carrera Frío industrial e instalación fotovoltaicaProyecto final de carrera Frío industrial e instalación fotovoltaica
Proyecto final de carrera Frío industrial e instalación fotovoltaicaManuel Jose Ballesteros
 
Luận văn Nghiên cứu xây dựng mô hình giám sát mất rừng và suy thoái rừng
Luận văn Nghiên cứu xây dựng mô hình giám sát mất rừng và suy thoái rừngLuận văn Nghiên cứu xây dựng mô hình giám sát mất rừng và suy thoái rừng
Luận văn Nghiên cứu xây dựng mô hình giám sát mất rừng và suy thoái rừngDịch vụ Làm Luận Văn 0936885877
 

Was ist angesagt? (20)

Đề tài: Dạy môn Hình họa cho học sinh trường Trung cấp Văn hóa
Đề tài: Dạy môn Hình họa cho học sinh trường Trung cấp Văn hóaĐề tài: Dạy môn Hình họa cho học sinh trường Trung cấp Văn hóa
Đề tài: Dạy môn Hình họa cho học sinh trường Trung cấp Văn hóa
 
Mô hình tổ chức không gian phố chuyên doanh - Khu vực Chợ Lớn
Mô hình tổ chức không gian phố chuyên doanh - Khu vực Chợ LớnMô hình tổ chức không gian phố chuyên doanh - Khu vực Chợ Lớn
Mô hình tổ chức không gian phố chuyên doanh - Khu vực Chợ Lớn
 
Luận văn: Phát triển năng lực giải quyết vấn đề của học sinh trong dạy học lị...
Luận văn: Phát triển năng lực giải quyết vấn đề của học sinh trong dạy học lị...Luận văn: Phát triển năng lực giải quyết vấn đề của học sinh trong dạy học lị...
Luận văn: Phát triển năng lực giải quyết vấn đề của học sinh trong dạy học lị...
 
Nx 10 for engineering design
Nx 10 for engineering designNx 10 for engineering design
Nx 10 for engineering design
 
Luận văn: Phát triển năng lực tự học qua bài tập phần phi kim hoá học
Luận văn: Phát triển năng lực tự học qua bài tập phần phi kim hoá họcLuận văn: Phát triển năng lực tự học qua bài tập phần phi kim hoá học
Luận văn: Phát triển năng lực tự học qua bài tập phần phi kim hoá học
 
Thuyết minh dự án đầu tư Nuôi thủy sản, sản xuất cây giống chất lượng cao, mô...
Thuyết minh dự án đầu tư Nuôi thủy sản, sản xuất cây giống chất lượng cao, mô...Thuyết minh dự án đầu tư Nuôi thủy sản, sản xuất cây giống chất lượng cao, mô...
Thuyết minh dự án đầu tư Nuôi thủy sản, sản xuất cây giống chất lượng cao, mô...
 
Nhiệm vụ và dự toán Quy hoạch xây dựng vùng huyện Trà Bồng, tỉnh Quảng Ngãi
Nhiệm vụ và dự toán Quy hoạch xây dựng vùng huyện Trà Bồng, tỉnh Quảng Ngãi Nhiệm vụ và dự toán Quy hoạch xây dựng vùng huyện Trà Bồng, tỉnh Quảng Ngãi
Nhiệm vụ và dự toán Quy hoạch xây dựng vùng huyện Trà Bồng, tỉnh Quảng Ngãi
 
Báo cáo ĐTM Dự án "Khu du lịch nghỉ dưỡng Mekong Pearl"
Báo cáo ĐTM Dự án "Khu du lịch nghỉ dưỡng Mekong Pearl"Báo cáo ĐTM Dự án "Khu du lịch nghỉ dưỡng Mekong Pearl"
Báo cáo ĐTM Dự án "Khu du lịch nghỉ dưỡng Mekong Pearl"
 
Luận án: Ngôn ngữ thơ Nguyễn Bính (dựa trên cứ liệu trước 1945)
Luận án: Ngôn ngữ thơ Nguyễn Bính (dựa trên cứ liệu trước 1945)Luận án: Ngôn ngữ thơ Nguyễn Bính (dựa trên cứ liệu trước 1945)
Luận án: Ngôn ngữ thơ Nguyễn Bính (dựa trên cứ liệu trước 1945)
 
Yếu tố văn hóa dân gian trong tiểu thuyết Việt Nam (1986 - 2000)
Yếu tố văn hóa dân gian trong tiểu thuyết Việt Nam (1986 - 2000)Yếu tố văn hóa dân gian trong tiểu thuyết Việt Nam (1986 - 2000)
Yếu tố văn hóa dân gian trong tiểu thuyết Việt Nam (1986 - 2000)
 
Luận văn: Phương pháp kiểm tra, đánh giá trong dạy học Địa lí lớp 11
Luận văn: Phương pháp kiểm tra, đánh giá trong dạy học Địa lí lớp 11Luận văn: Phương pháp kiểm tra, đánh giá trong dạy học Địa lí lớp 11
Luận văn: Phương pháp kiểm tra, đánh giá trong dạy học Địa lí lớp 11
 
ĐTM Cụm công trình Trung tâm Thương Mại - Dịch vụ - Khách sạn - Văn phòng - K...
ĐTM Cụm công trình Trung tâm Thương Mại - Dịch vụ - Khách sạn - Văn phòng - K...ĐTM Cụm công trình Trung tâm Thương Mại - Dịch vụ - Khách sạn - Văn phòng - K...
ĐTM Cụm công trình Trung tâm Thương Mại - Dịch vụ - Khách sạn - Văn phòng - K...
 
Luận văn: Dạy học làm văn tự sự ở Trung học phổ thông theo hướng phát triển n...
Luận văn: Dạy học làm văn tự sự ở Trung học phổ thông theo hướng phát triển n...Luận văn: Dạy học làm văn tự sự ở Trung học phổ thông theo hướng phát triển n...
Luận văn: Dạy học làm văn tự sự ở Trung học phổ thông theo hướng phát triển n...
 
Luận văn: Dạy học đọc hiểu văn bản thơ trữ tình trong THPT, HAY
Luận văn: Dạy học đọc hiểu văn bản thơ trữ tình trong THPT, HAYLuận văn: Dạy học đọc hiểu văn bản thơ trữ tình trong THPT, HAY
Luận văn: Dạy học đọc hiểu văn bản thơ trữ tình trong THPT, HAY
 
Luận văn: Đọc hiểu văn bản tự sự ở trường THPT phát triển năng lực HS
Luận văn: Đọc hiểu văn bản tự sự ở trường THPT phát triển năng lực HSLuận văn: Đọc hiểu văn bản tự sự ở trường THPT phát triển năng lực HS
Luận văn: Đọc hiểu văn bản tự sự ở trường THPT phát triển năng lực HS
 
Luận án: Kịch bản chèo đầu thế kỷ XX - truyền thống và biến đổi
Luận án: Kịch bản chèo đầu thế kỷ XX - truyền thống và biến đổiLuận án: Kịch bản chèo đầu thế kỷ XX - truyền thống và biến đổi
Luận án: Kịch bản chèo đầu thế kỷ XX - truyền thống và biến đổi
 
Luận văn; Quản lý hoạt động kiểm tra, đánh giá kết quả học tập của học sinh ở...
Luận văn; Quản lý hoạt động kiểm tra, đánh giá kết quả học tập của học sinh ở...Luận văn; Quản lý hoạt động kiểm tra, đánh giá kết quả học tập của học sinh ở...
Luận văn; Quản lý hoạt động kiểm tra, đánh giá kết quả học tập của học sinh ở...
 
Dấu ấn hiện sinh trong tiểu thuyết “Một thế giới không có đàn bà”, HAY
Dấu ấn hiện sinh trong tiểu thuyết “Một thế giới không có đàn bà”, HAYDấu ấn hiện sinh trong tiểu thuyết “Một thế giới không có đàn bà”, HAY
Dấu ấn hiện sinh trong tiểu thuyết “Một thế giới không có đàn bà”, HAY
 
Proyecto final de carrera Frío industrial e instalación fotovoltaica
Proyecto final de carrera Frío industrial e instalación fotovoltaicaProyecto final de carrera Frío industrial e instalación fotovoltaica
Proyecto final de carrera Frío industrial e instalación fotovoltaica
 
Luận văn Nghiên cứu xây dựng mô hình giám sát mất rừng và suy thoái rừng
Luận văn Nghiên cứu xây dựng mô hình giám sát mất rừng và suy thoái rừngLuận văn Nghiên cứu xây dựng mô hình giám sát mất rừng và suy thoái rừng
Luận văn Nghiên cứu xây dựng mô hình giám sát mất rừng và suy thoái rừng
 

Ähnlich wie Minihidraulica pv

Minicentrales hidroelectricas
Minicentrales hidroelectricasMinicentrales hidroelectricas
Minicentrales hidroelectricasjiron19
 
Solucion problemas sist electrico freightliner
Solucion problemas sist electrico freightlinerSolucion problemas sist electrico freightliner
Solucion problemas sist electrico freightlinerVictor Rivas
 
Unidad 5. Energías renovables. Minicentrales hidroelectricas
Unidad 5. Energías renovables. Minicentrales hidroelectricasUnidad 5. Energías renovables. Minicentrales hidroelectricas
Unidad 5. Energías renovables. Minicentrales hidroelectricasmartuki85
 
Acta de recibo (reparado) 2
Acta de recibo (reparado) 2Acta de recibo (reparado) 2
Acta de recibo (reparado) 2mjperezvasco
 
Manual pequenas presas v1 v1 01
Manual pequenas presas v1 v1 01Manual pequenas presas v1 v1 01
Manual pequenas presas v1 v1 01tuki777
 
Bases adm lic púb especialidades map ant def 14 feb 08
Bases adm lic púb especialidades map   ant def 14 feb 08Bases adm lic púb especialidades map   ant def 14 feb 08
Bases adm lic púb especialidades map ant def 14 feb 08Julio Lazcano
 
Energía de la biomasa
Energía de la biomasaEnergía de la biomasa
Energía de la biomasaeHabilita
 
Segundo corte ttrabnajote
Segundo corte ttrabnajoteSegundo corte ttrabnajote
Segundo corte ttrabnajoteMarco Peña
 
Costos y presupuestos_en_edificacion_-_capeco
Costos y presupuestos_en_edificacion_-_capecoCostos y presupuestos_en_edificacion_-_capeco
Costos y presupuestos_en_edificacion_-_capecoVictoria Salazar Bazan
 
Construcción de Segunda Calzada, Repavimentación y Ensanche de Calzada Existe...
Construcción de Segunda Calzada, Repavimentación y Ensanche de Calzada Existe...Construcción de Segunda Calzada, Repavimentación y Ensanche de Calzada Existe...
Construcción de Segunda Calzada, Repavimentación y Ensanche de Calzada Existe...LauraHordas
 
Guía de diseño de alcantarillado por vacío
Guía de diseño de alcantarillado por vacío Guía de diseño de alcantarillado por vacío
Guía de diseño de alcantarillado por vacío Napoleón JIMENEZ
 

Ähnlich wie Minihidraulica pv (20)

Minicentrales hidroelectricas
Minicentrales hidroelectricasMinicentrales hidroelectricas
Minicentrales hidroelectricas
 
Solucion problemas sist electrico freightliner
Solucion problemas sist electrico freightlinerSolucion problemas sist electrico freightliner
Solucion problemas sist electrico freightliner
 
Manual Minicentrales Hidroelectricas
Manual Minicentrales HidroelectricasManual Minicentrales Hidroelectricas
Manual Minicentrales Hidroelectricas
 
Unidad 5. Energías renovables. Minicentrales hidroelectricas
Unidad 5. Energías renovables. Minicentrales hidroelectricasUnidad 5. Energías renovables. Minicentrales hidroelectricas
Unidad 5. Energías renovables. Minicentrales hidroelectricas
 
Edgar
EdgarEdgar
Edgar
 
LIBRO LANCHA SOLAR A ESCALA REAL
LIBRO LANCHA SOLAR A ESCALA REALLIBRO LANCHA SOLAR A ESCALA REAL
LIBRO LANCHA SOLAR A ESCALA REAL
 
Acta de recibo (reparado) 2
Acta de recibo (reparado) 2Acta de recibo (reparado) 2
Acta de recibo (reparado) 2
 
pt562.pdf
pt562.pdfpt562.pdf
pt562.pdf
 
Eolica
EolicaEolica
Eolica
 
Manual pequenas presas v1 v1 01
Manual pequenas presas v1 v1 01Manual pequenas presas v1 v1 01
Manual pequenas presas v1 v1 01
 
Infraestructura peru
Infraestructura peruInfraestructura peru
Infraestructura peru
 
Bases adm lic púb especialidades map ant def 14 feb 08
Bases adm lic púb especialidades map   ant def 14 feb 08Bases adm lic púb especialidades map   ant def 14 feb 08
Bases adm lic púb especialidades map ant def 14 feb 08
 
Energía de la biomasa
Energía de la biomasaEnergía de la biomasa
Energía de la biomasa
 
Segundo corte ttrabnajote
Segundo corte ttrabnajoteSegundo corte ttrabnajote
Segundo corte ttrabnajote
 
Costos y presupuestos_en_edificacion_-_capeco
Costos y presupuestos_en_edificacion_-_capecoCostos y presupuestos_en_edificacion_-_capeco
Costos y presupuestos_en_edificacion_-_capeco
 
Costos y presupuestos en edificacion capeco
Costos y presupuestos en edificacion   capecoCostos y presupuestos en edificacion   capeco
Costos y presupuestos en edificacion capeco
 
Construcción de Segunda Calzada, Repavimentación y Ensanche de Calzada Existe...
Construcción de Segunda Calzada, Repavimentación y Ensanche de Calzada Existe...Construcción de Segunda Calzada, Repavimentación y Ensanche de Calzada Existe...
Construcción de Segunda Calzada, Repavimentación y Ensanche de Calzada Existe...
 
AUDITORÍA ENERGÉTICA EN INSTALACIÓN TERCIARIA
AUDITORÍA ENERGÉTICA EN INSTALACIÓN TERCIARIA AUDITORÍA ENERGÉTICA EN INSTALACIÓN TERCIARIA
AUDITORÍA ENERGÉTICA EN INSTALACIÓN TERCIARIA
 
Guía de diseño de alcantarillado por vacío
Guía de diseño de alcantarillado por vacío Guía de diseño de alcantarillado por vacío
Guía de diseño de alcantarillado por vacío
 
Trabajo aislacion
Trabajo aislacionTrabajo aislacion
Trabajo aislacion
 

Kürzlich hochgeladen

Comandos Autocad Español Autodesk Autocad.pdf
Comandos Autocad Español Autodesk Autocad.pdfComandos Autocad Español Autodesk Autocad.pdf
Comandos Autocad Español Autodesk Autocad.pdfjuandavidbello432
 
Diapositiva de la ansiedad...para poder enfrentarlo
Diapositiva de la ansiedad...para poder enfrentarloDiapositiva de la ansiedad...para poder enfrentarlo
Diapositiva de la ansiedad...para poder enfrentarlojefeer060122
 
CRITERIOS_GENERALES_DE_ISOPTICA_Y_ACUSTI.pdf
CRITERIOS_GENERALES_DE_ISOPTICA_Y_ACUSTI.pdfCRITERIOS_GENERALES_DE_ISOPTICA_Y_ACUSTI.pdf
CRITERIOS_GENERALES_DE_ISOPTICA_Y_ACUSTI.pdfpaulmaqueda395
 
TÉCNICAS GRÁFICAS PARA ARQUITECTOS Y DISEÑADORES.pdf
TÉCNICAS GRÁFICAS PARA ARQUITECTOS Y DISEÑADORES.pdfTÉCNICAS GRÁFICAS PARA ARQUITECTOS Y DISEÑADORES.pdf
TÉCNICAS GRÁFICAS PARA ARQUITECTOS Y DISEÑADORES.pdfkevinramirezd069bps
 
Miriam Tello / Interdisciplinariedad en el diseño / tfm uned 2015
Miriam Tello / Interdisciplinariedad en el diseño / tfm uned 2015Miriam Tello / Interdisciplinariedad en el diseño / tfm uned 2015
Miriam Tello / Interdisciplinariedad en el diseño / tfm uned 2015Miriam Tello
 
669852196-Manejo-de-Las-Principales-Cuentas-Contables-pptx.pdf
669852196-Manejo-de-Las-Principales-Cuentas-Contables-pptx.pdf669852196-Manejo-de-Las-Principales-Cuentas-Contables-pptx.pdf
669852196-Manejo-de-Las-Principales-Cuentas-Contables-pptx.pdfyolandavalencia19
 
REVESTIMIENTON PROCESO CONSTRUCTIVO DDDDDDDDD
REVESTIMIENTON PROCESO CONSTRUCTIVO DDDDDDDDDREVESTIMIENTON PROCESO CONSTRUCTIVO DDDDDDDDD
REVESTIMIENTON PROCESO CONSTRUCTIVO DDDDDDDDDElenitaIriarte1
 
DISIPADORES-DE-ENERGIA-DIAPOSITIVAS.pptx
DISIPADORES-DE-ENERGIA-DIAPOSITIVAS.pptxDISIPADORES-DE-ENERGIA-DIAPOSITIVAS.pptx
DISIPADORES-DE-ENERGIA-DIAPOSITIVAS.pptxPercyTineoPongo1
 
CARACTERIZACIÓN MEDICINA ALTERNATIVA Y TERAPIAS COMPLEMENTARIAS.pdf
CARACTERIZACIÓN MEDICINA ALTERNATIVA Y TERAPIAS COMPLEMENTARIAS.pdfCARACTERIZACIÓN MEDICINA ALTERNATIVA Y TERAPIAS COMPLEMENTARIAS.pdf
CARACTERIZACIÓN MEDICINA ALTERNATIVA Y TERAPIAS COMPLEMENTARIAS.pdfsolidalilaalvaradoro
 
dia del niño peruano para cartulina.pdf.
dia del niño peruano para cartulina.pdf.dia del niño peruano para cartulina.pdf.
dia del niño peruano para cartulina.pdf.JimenaPozo3
 
Que es un sistema integrado de Seguridad.pptx
Que es un sistema integrado de Seguridad.pptxQue es un sistema integrado de Seguridad.pptx
Que es un sistema integrado de Seguridad.pptxYeissonRINCONRIVERA
 
Hitos de la Historia de la universidad de Cartagena 2024
Hitos de la Historia de la universidad de Cartagena 2024Hitos de la Historia de la universidad de Cartagena 2024
Hitos de la Historia de la universidad de Cartagena 20242024 GCA
 
Material de Apoyo - Acelerador de Carrera con Power BI.pdf
Material de Apoyo - Acelerador de Carrera con Power BI.pdfMaterial de Apoyo - Acelerador de Carrera con Power BI.pdf
Material de Apoyo - Acelerador de Carrera con Power BI.pdfTpicoAcerosArequipa
 
decoración día del idioma, MARIPOSAS Y FESTONES
decoración día del idioma, MARIPOSAS Y FESTONESdecoración día del idioma, MARIPOSAS Y FESTONES
decoración día del idioma, MARIPOSAS Y FESTONESMairaLasso1
 
Plantilla árbol de problemas psico..pptx
Plantilla árbol de problemas psico..pptxPlantilla árbol de problemas psico..pptx
Plantilla árbol de problemas psico..pptxYasmilia
 
Presentación trastornos mentales en niños.pptx
Presentación trastornos mentales en niños.pptxPresentación trastornos mentales en niños.pptx
Presentación trastornos mentales en niños.pptxissacicsem
 
INSTRUCTIVO PARA RIESGOS DE TRABAJO SART2 iess.pdf
INSTRUCTIVO PARA RIESGOS DE TRABAJO SART2 iess.pdfINSTRUCTIVO PARA RIESGOS DE TRABAJO SART2 iess.pdf
INSTRUCTIVO PARA RIESGOS DE TRABAJO SART2 iess.pdfautomatechcv
 
elracismoati-131016234518-phpapp01.jjjpptx
elracismoati-131016234518-phpapp01.jjjpptxelracismoati-131016234518-phpapp01.jjjpptx
elracismoati-131016234518-phpapp01.jjjpptxFAngelChaupisGarcia
 
Diseño y concepto DOC-20240412-WA0023..pdf
Diseño y concepto DOC-20240412-WA0023..pdfDiseño y concepto DOC-20240412-WA0023..pdf
Diseño y concepto DOC-20240412-WA0023..pdfSharonSmis
 
2DA SEMANA ABRIL proyecto nivel inicial 3 y 4 años
2DA SEMANA ABRIL proyecto nivel inicial 3 y 4 años2DA SEMANA ABRIL proyecto nivel inicial 3 y 4 años
2DA SEMANA ABRIL proyecto nivel inicial 3 y 4 añosMilagrosMnstx
 

Kürzlich hochgeladen (20)

Comandos Autocad Español Autodesk Autocad.pdf
Comandos Autocad Español Autodesk Autocad.pdfComandos Autocad Español Autodesk Autocad.pdf
Comandos Autocad Español Autodesk Autocad.pdf
 
Diapositiva de la ansiedad...para poder enfrentarlo
Diapositiva de la ansiedad...para poder enfrentarloDiapositiva de la ansiedad...para poder enfrentarlo
Diapositiva de la ansiedad...para poder enfrentarlo
 
CRITERIOS_GENERALES_DE_ISOPTICA_Y_ACUSTI.pdf
CRITERIOS_GENERALES_DE_ISOPTICA_Y_ACUSTI.pdfCRITERIOS_GENERALES_DE_ISOPTICA_Y_ACUSTI.pdf
CRITERIOS_GENERALES_DE_ISOPTICA_Y_ACUSTI.pdf
 
TÉCNICAS GRÁFICAS PARA ARQUITECTOS Y DISEÑADORES.pdf
TÉCNICAS GRÁFICAS PARA ARQUITECTOS Y DISEÑADORES.pdfTÉCNICAS GRÁFICAS PARA ARQUITECTOS Y DISEÑADORES.pdf
TÉCNICAS GRÁFICAS PARA ARQUITECTOS Y DISEÑADORES.pdf
 
Miriam Tello / Interdisciplinariedad en el diseño / tfm uned 2015
Miriam Tello / Interdisciplinariedad en el diseño / tfm uned 2015Miriam Tello / Interdisciplinariedad en el diseño / tfm uned 2015
Miriam Tello / Interdisciplinariedad en el diseño / tfm uned 2015
 
669852196-Manejo-de-Las-Principales-Cuentas-Contables-pptx.pdf
669852196-Manejo-de-Las-Principales-Cuentas-Contables-pptx.pdf669852196-Manejo-de-Las-Principales-Cuentas-Contables-pptx.pdf
669852196-Manejo-de-Las-Principales-Cuentas-Contables-pptx.pdf
 
REVESTIMIENTON PROCESO CONSTRUCTIVO DDDDDDDDD
REVESTIMIENTON PROCESO CONSTRUCTIVO DDDDDDDDDREVESTIMIENTON PROCESO CONSTRUCTIVO DDDDDDDDD
REVESTIMIENTON PROCESO CONSTRUCTIVO DDDDDDDDD
 
DISIPADORES-DE-ENERGIA-DIAPOSITIVAS.pptx
DISIPADORES-DE-ENERGIA-DIAPOSITIVAS.pptxDISIPADORES-DE-ENERGIA-DIAPOSITIVAS.pptx
DISIPADORES-DE-ENERGIA-DIAPOSITIVAS.pptx
 
CARACTERIZACIÓN MEDICINA ALTERNATIVA Y TERAPIAS COMPLEMENTARIAS.pdf
CARACTERIZACIÓN MEDICINA ALTERNATIVA Y TERAPIAS COMPLEMENTARIAS.pdfCARACTERIZACIÓN MEDICINA ALTERNATIVA Y TERAPIAS COMPLEMENTARIAS.pdf
CARACTERIZACIÓN MEDICINA ALTERNATIVA Y TERAPIAS COMPLEMENTARIAS.pdf
 
dia del niño peruano para cartulina.pdf.
dia del niño peruano para cartulina.pdf.dia del niño peruano para cartulina.pdf.
dia del niño peruano para cartulina.pdf.
 
Que es un sistema integrado de Seguridad.pptx
Que es un sistema integrado de Seguridad.pptxQue es un sistema integrado de Seguridad.pptx
Que es un sistema integrado de Seguridad.pptx
 
Hitos de la Historia de la universidad de Cartagena 2024
Hitos de la Historia de la universidad de Cartagena 2024Hitos de la Historia de la universidad de Cartagena 2024
Hitos de la Historia de la universidad de Cartagena 2024
 
Material de Apoyo - Acelerador de Carrera con Power BI.pdf
Material de Apoyo - Acelerador de Carrera con Power BI.pdfMaterial de Apoyo - Acelerador de Carrera con Power BI.pdf
Material de Apoyo - Acelerador de Carrera con Power BI.pdf
 
decoración día del idioma, MARIPOSAS Y FESTONES
decoración día del idioma, MARIPOSAS Y FESTONESdecoración día del idioma, MARIPOSAS Y FESTONES
decoración día del idioma, MARIPOSAS Y FESTONES
 
Plantilla árbol de problemas psico..pptx
Plantilla árbol de problemas psico..pptxPlantilla árbol de problemas psico..pptx
Plantilla árbol de problemas psico..pptx
 
Presentación trastornos mentales en niños.pptx
Presentación trastornos mentales en niños.pptxPresentación trastornos mentales en niños.pptx
Presentación trastornos mentales en niños.pptx
 
INSTRUCTIVO PARA RIESGOS DE TRABAJO SART2 iess.pdf
INSTRUCTIVO PARA RIESGOS DE TRABAJO SART2 iess.pdfINSTRUCTIVO PARA RIESGOS DE TRABAJO SART2 iess.pdf
INSTRUCTIVO PARA RIESGOS DE TRABAJO SART2 iess.pdf
 
elracismoati-131016234518-phpapp01.jjjpptx
elracismoati-131016234518-phpapp01.jjjpptxelracismoati-131016234518-phpapp01.jjjpptx
elracismoati-131016234518-phpapp01.jjjpptx
 
Diseño y concepto DOC-20240412-WA0023..pdf
Diseño y concepto DOC-20240412-WA0023..pdfDiseño y concepto DOC-20240412-WA0023..pdf
Diseño y concepto DOC-20240412-WA0023..pdf
 
2DA SEMANA ABRIL proyecto nivel inicial 3 y 4 años
2DA SEMANA ABRIL proyecto nivel inicial 3 y 4 años2DA SEMANA ABRIL proyecto nivel inicial 3 y 4 años
2DA SEMANA ABRIL proyecto nivel inicial 3 y 4 años
 

Minihidraulica pv

  • 1.
  • 2. ENTE VASCO DE LA ENERGÍA División de Investigación y Recursos Bilbao, Noviembre de 1995 MINIHIDRÁULICA EN EL PAÍS VASCO MINIHIDRÁULICA EN EL PAÍS VASCO
  • 3. MINIHIDRÁULICA EN EL PAÍS VASCO 1ª Edición: Noviembre 1995 Autor: Ingeniería, Estudios y Proyectos NIP, S.A. Ente Vasco de la Energía (EVE) División de Investigación y Recursos Editor: Ente Vasco de la Energía (EVE) Edificio Albia I. San Vicente, 8 - Planta 14 48001 - Bilbao Impresión: Comunicación Gráfica I.S.B.N.: 84-8129-032-7 Depósito Legal: BI-2658/95 Este libro está realizado en papel Ecológico 100%
  • 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ÍNDICE Página 1. INTRODUCCIÓN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. MINICENTRALES HIDROELÉCTRICAS EN LA COMUNIDAD AUTÓNOMA DEL PAÍS VASCO (CAPV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1. EVOLUCIÓN HISTÓRICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2. SITUACIÓN ACTUAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3. ASPECTOS TÉCNICOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1. DEFINICIÓN DE MINICENTRAL HIDROELÉCTRICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2. TIPOS DE MINICENTRALES HIDROELÉCTRICAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.1. Centrales de agua fluyente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.2. Centrales a pie de presa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3. ELEMENTOS DE UNA MINICENTRAL HIDROELÉCTRICA . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.1. Obra civil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.2. Equipamiento electromecánico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3.3. Equipos auxiliares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.4. TURBINAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.4.1. Tipos de turbinas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.4.2. Selección del tipo de turbina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.5. PARÁMETROS FUNDAMENTALES PARA EL DISEÑO DE UNA MINICENTRAL HIDROELÉCTRICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.5.1. Salto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.5.2. Caudal de equipamiento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.5.3. Potencia de la minicentral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4. ASPECTOS ECONÓMICOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.1. INVERSIONES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2. COSTES DE EXPLOTACIÓN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.3. PRECIO VENTA DE LA ENERGÍA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.4. RENTABILIDAD DE LA INVERSIÓN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5. TRÁMITES ADMINISTRATIVOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.1. DOCUMENTACIÓN TÉCNICO-ADMINISTRATIVA PARA LA CONCESIÓN DE AGUAS . . . . 34 5.2. DOCUMENTACIÓN PARA LA SOLICITUD DE AUTORIZACIÓN DE LAS INSTALACIONES ELÉCTRICAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.3. DOCUMENTACIÓN TÉCNICO-ADMINISTRATIVA A PRESENTAR EN OTROS ORGANISMOS 37 3
  • 5. Página 6. EJEMPLO SIMPLIFICADO DE UN ESTUDIO DE VIABILIDAD DE UNA MINICENTRAL HIDROELÉCTRICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.1. INTRODUCCIÓN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.2. ESTUDIO DE VIABILIDAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.2.1. Obtención de los datos concesionales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.2.2. Obtención de los datos topográficos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.2.3. Determinación del salto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.2.4. Determinación de la capacidad del canal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6.2.5. Determinación del caudal de equipamiento . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.2.6. Determinación del tipo de turbina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.2.7. Alternativas de instalación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.2.8. Producción media anual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.2.9. Descripción de las instalaciones y de su rehabilitación . . . . . . . . . . . . . . . . . . . . . 44 6.2.10. Presupuesto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.2.11. Análisis de rentabilidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.2.12. Planos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.2.13. Conclusiones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 APÉNDICES A.1. EJEMPLOS REPRESENTATIVOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 A.2. ALCANCE MÍNIMO ACONSEJABLE PARA LOS ESTUDIOS DE VIABILIDAD DE MINICENTRALES HIDROELÉCTRICAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 A.3. RELACIÓN DE FABRICANTES DE TURBINAS HIDRÁULICAS . . . . . . . . . . . . . . . . . . . . . . . . . . 64 A.4. DIRECCIONES DE INTERÉS RELACIONADAS CON LAS MINICENTRALES DEL ENTORNO DE LA CAPV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 A.5. RELACIÓN DE RÍOS DE LA CAPV CLASIFICADOS POR CUENCAS . . . . . . . . . . . . . . . . . . . . . 68 A.6. LEGISLACIÓN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 BIBLIOGRAFÍA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4
  • 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. INTRODUCCIÓN A partir de 1973, como consecuencia de la llamada crisis del petróleo, los países desarrollados iniciaron un claro movimiento dirigido a contener el intenso crecimiento de su consumo energéti- co y su fuerte dependencia del petróleo. La Comunidad Autónoma del País Vasco (CAPV) no fue ajena a esta tendencia mundial, y así, el Ente Vasco de la Energía (EVE), como responsable de la ejecución de la política energética del Gobierno Vasco, puso en marcha desde su creación en 1982, una serie de líneas de actuación orientadas a la consecución de los siguientes objetivos: • Reducir el consumo energético impulsando el ahorro y la eficiencia energéticos; • Reducir la dependencia energética exterior optimizando el aprovechamiento de los re- cursos autóctonos convencionales y renovables; • Diversificar la estructura de la demanda energética promoviendo la utilización de fuen- tes energéticas distintas del petróleo. En este contexto de promoción de los recursos autóctonos y de la diversificación energética, se enmarcan los programas de apoyo a la recuperación y puesta en marcha de minicentrales hi- droeléctricas desarrollados por el EVE, así como la realización y actualización de inventarios de este tipo de aprovechamientos, que han hecho posible conocer el potencial hidráulico de gene- ración eléctrica de la CAPV a partir de estas instalaciones. En esta publicación se presentan los datos del inventario actualizado en 1995 y se exponen de manera muy sencilla los principales aspectos técnicos de las minicentrales hidroeléctricas. 5
  • 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. MINICENTRALES HIDROELÉCTRICAS EN LA COMUNIDAD AUTÓNOMA DEL PAÍS VASCO (CAPV) 2.1. Evolución Histórica Las características hidrográficas y topográficas de las cuencas incluidas en el ámbito de la CAPV, confieren a este territorio un considerable potencial de aprovechamiento energético hidroeléctri- co. Esto es particularmente cierto en el Territorio Histórico de Gipuzkoa. En la CAPV las pequeñas instalaciones hidroeléctricas tienen una gran tradición asociada prin- cipalmente a los asentamientos industriales y han constituido la base de la electrificación de zo- nas rurales. Ya desde finales del siglo XIX surgieron numerosas empresas que a partir de insta- laciones de pequeña y mediana potencia autoproducían la energía eléctrica que necesitaban. Este fenómeno se generalizaría en el primer tercio de este siglo. Sin embargo, a partir de la década de los 60 se hizo evidente una paralización en la construcción de minicentrales hidroeléctricas, debido a que el bajo precio del petróleo favoreció la construc- ción de centrales térmicas de generación eléctrica. Se cerraron numerosas minicentrales cuyos costes de explotación resultaban excesivos. Con la crisis del petróleo vuelven a resurgir las pequeñas centrales y en la década de los 80, tras la entrada en vigor de la Ley 82/80 sobre Conservación de la Energía que amparaba expre- samente la construcción, ampliación o adaptación de instalaciones de producción hidroeléctricas con potencia de hasta 5.000 kVA, comienzan a rehabilitarse numerosas centrales hidroeléctricas que se encontraban paradas y a automatizarse otras instalaciones en funcionamiento. En la figura 1 puede observarse la evolución de la rehabilitación de minicentrales en la CAPV en el periodo 1980-1995. Entre 1980 y 1994 se han rehabilitado 54 minicentrales. En el año 1995 se han puesto en servicio 7 minicentrales, y para 1996 se prevé la rehabilitación de 3 minicentrales más. Figura 1. Evolución de la rehabilitación de minicentrales en el periodo 1980 - 1995. 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 Años 1 3 1 6 5 4 4 4 9 9 5 3 7 0 1 2 3 4 5 6 7 8 9 Nºdeminicentrales 6
  • 8. 2.2. Situación actual De acuerdo con los datos recogidos en el Inventario de Minicentrales Hidroeléctricas actualizado en 1995, en el territorio de la CAPV hay un total de 103 minicentrales en funcionamiento que to- talizan 44,24 MW de potencia instalada. Para 1996 está prevista la puesta en funcionamiento de 3 minicentrales más. Con estas 3 nue- vas minicentrales se estima conseguir una potencia adicional de 0,45 MW. Incluyendo las previsiones para el año 96, el mayor potencial hidroeléctrico corresponde a Gipuzkoa con 68 minicentrales en funcionamiento y 32,45 MW instalados, lo que supone un 73% del potencial hidroeléctrico de la CAPV. En Bizkaia está instalado el 14% del potencial total, 6,41 MW, siendo 25 el número de minicen- trales en funcionamiento. En el Territorio Histórico de Araba funcionan 13 minicentrales, que totalizan 5,83 MW de poten- cia instalada, es decir, el 13% del potencial de la CAPV. Estos datos aparecen representados de forma gráfica en las figuras 2 y 3. Figura 2. Distribución por Territorio Histórico de las minicentrales hidroeléctricas en funcionamiento en la CAPV. (Incluidas las previsiones de puesta en marcha para 1996). Figura 3. Distribución por Territorio Histórico de la potencia instalada en las minicentrales hidroeléctricas en funcionamiento en la CAPV. (Incluidas las previsiones de puesta en marcha para 1996). BIZKAIA 6,41 MW 14% ARABA 5,83 MW 13% GIPUZKOA 32,45 MW 73% ARABA 13 BIZKAIA 25 GIPUZKOA 68 7
  • 9. En cuanto a la distribución por cuencas, la cuenca del río Oria, con 26 minicentrales en funcio- namiento y 14,7 MW de potencia instalada, es la de mayor potencial hidroeléctrico. En la tabla 1 se indica la distribución de minicentrales por cuencas ordenadas en función del potencial hidro- eléctrico en ellas instalado. 8 ORIA 26 14.709 DEBA 16 8.668 ERRIOXA (EBRO) 3 4.376 URUMEA 10 4.141 IBAIZABAL 10 2.983 KADAGUA 8 2.933 UROLA 13 2.107 BIDASOA 2 2.094 OIARTZUN 2 751 INGLARES 1 600 EGA 2 465 ARTIBAI 2 313 ZADORRA 3 269 NERBIOI 4 116 OMECILLO 2 87 OKA 1 66 BAYAS 1 12 CUENCA Nº DE MINICENTRALES POTENCIA EN FUNCIONAMIENTO INSTALADA (kW) Tabla 1. Distribución por cuencas de las minicentrales hidroeléctricas en funcionamiento en la CAPV. (Incluidas las previsiones de puesta en marcha para 1996) A continuación se presenta una lista nominal de las minicentrales en funcionamiento en la CAPV, así como los mapas en los que puede observarse la distribución geográfica de las mismas.
  • 10. Tabla 2. Lista de las minicentrales hidroeléctricas en funcionamiento en la CAPV. 9 TERRITORIO NOMBRE DE CUENCA RÍO TÉRMINO POTENCIA HISTÓRICO LA MINICENTRAL MUNICIPAL (kW) ARABA MOLINO DE VILLABEZANA BAYAS BAYAS RIBERA ALTA 12 MOLINO SALEZAN DEBA ARAMAIO ARAMAIO 16 C.H. NTRA. SEÑORA DE IBERNALO EGA EGA CAMPEZO 25 C.H. ANTOÑANA EGA IZKIZ CAMPEZO 440 C.H. ASSA ERRIOXA ERRIOXA LANCIEGO 626 C.H. PUENTELARRA ERRIOXA ERRIOXA LANTARON 3.741 MOLINO LEZA ERRIOXA RABIALGAS LEZA 9 C.H. BERGANZO INGLARES INGLARES ZAMBRANA 600 C.H. NTRA. SEÑORA DEL ANGOSTO OMECILLO HÚMEDO VALDEGOVÍA 62 M. BARRIO PUENTE DE BERGÜENDA OMECILLO OMECILLO LANTARÓN 25 C.H. BERANTEVILLA ZADORRA AYUDA BERANTEVILLA 20 C.H. LACORZANA ZADORRA ZADORRA ARMIÑÓN 100 C.H. ULLIBARRI ZADORRA ZADORRA ARRAZUA-UBARRUNDIA 149 BIZKAIA C.H. ARIZMENDI ARTIBAI ARTIBAI MARKINA-XEMEIN 65 C.H. PLAZAKOLA ARTIBAI ARTIBAI MARKINA-XEMEIN 248 C.H. ARBUYO KADAGUA KADAGUA ALONSOTEGI 460 C.H. LA PENILLA KADAGUA KADAGUA BALMASEDA 189 C.H. IRAUREGUI KADAGUA KADAGUA BARAKALDO 470 C.H. OLAKOAGA KADAGUA KADAGUA GÜEÑES 373 C.H. DE CADAGUA / C.H. LA ANDALUCÍA KADAGUA KADAGUA GÜEÑES 100 C.H. BOLUMBURU KADAGUA KADAGUA ZALLA 250 C.H. LA MELLA KADAGUA KADAGUA ZALLA 360 C.H. SOLLANO KADAGUA ORDUNTE ZALLA 731 C.H. OLABARRI IBAIZABAL ARRATIA IGORRE 22 C.H. LAMBREABE IBAIZABAL ARRATIA ZEANURI 1.050 C.H. PATALA IBAIZABAL GARAY BERRIZ 528 C.H. SAN ANTONIO IBAIZABAL IBAIZABAL AMOREBIETA-ETXANO 80 C.H. BEDIA IBAIZABAL IBAIZABAL BEDIA 402 C.H. INDUSI IBAIZABAL INDUSI DIMA 305 C.H. VENTATXURI IBAIZABAL INDUSI DIMA 260 C.H. SAN LORENZO IBAIZABAL MAÑARIA MAÑARIA 175 C.H. OROBIO IBAIZABAL OROBIO IURRETA 46 C.H. OROBIO / C.H. LARRAÑAGA IBAIZABAL OROBIO IURRETA 115 C.H. BESTE-ALDIE NERBIOI ALTUBE OROZKO 75 C.H. ELECTRA LEKUBARRI NERBIOI ARNAURI OROZKO 24 CASERÍO UGALDE NERBIOI ARNAURI OROZKO 9 CASERÍO USABEL NERBIOI ARNAURI OROZKO 8 C.H. UHARKA OKA GOLAKO GERNIKA-LUMO 66 GIPUZKOA C.H. ELORDI BIDASOA BIDASOA IRUN 466 C.H. IRUGURUTZETA BIDASOA BIDASOA IRUN 1.628 ARGI-ERROTA DE SANTA AGUEDA DEBA ARAMAIO ARRASATE-MONDRAGÓN 55 C.H. TXIRRITA DEBA ARAMAIO ARRASATE-MONDRAGÓN 37 C.H. LAMIATEGI DEBA ARANTZAZU OÑATI 219 C.H. OLATE DEBA ARANTZAZU OÑATI 4.712 C.H. ALTOS HORNOS DE BERGARA DEBA DEBA BERGARA 675 C.H. BOLUBARRI DEBA DEBA BERGARA 95 C.H. AITZETARTE DEBA DEBA ELGOIBAR 556 C.H. BARRENA-BERRI DEBA DEBA ELGOIBAR 621 C.H. LAUPAGO DEBA DEBA ELGOIBAR 295 C.H. SAN ANTOLÍN DEBA DEBA ELGOIBAR 253 C.H. SOLOGOEN DEBA DEBA SORALUZE 400
  • 11. 10 TERRITORIO NOMBRE DE CUENCA RÍO TÉRMINO POTENCIA HISTÓRICO LA MINICENTRAL MUNICIPAL (kW) GIPUZKOA C.H. ELECTRA BASALDE DEBA DESCARGA ANTZUOLA 5 (Cont.) C.H. URKULU DEBA OÑATE DONOSTIA-SAN SEBASTIÁN 79 C.H. ALTUNA HERMANOS DEBA OÑATE OÑATI 73 C.H. UBAO -TOKILLO DEBA OÑATE OÑATI 577 C.H. MASUSTANEGIKO OIARTZUN OIARTZUN OIARTZUN 560 C.H. PENADEGI OIARTZUN OIARTZUN OIARTZUN 191 C.H. ALKIZA ORIA ALKIZA ALKIZA 78 MOLINO OLA O ARGANIARAS ORIA AMEZKETA AMEZKETA 33 MOLINO UGARTE ORIA AMEZKETA AMEZKETA 11 C.H. LIZARTZA ORIA ARAXES LIZARTZA 468 C.H. SANTA CRUZ ORIA ARAXES OREXA 17 C.H. PAPELERA CALPARSORO ORIA BERASTEGI BERASTEGI 355 ERROTA-ZARRA / C.H. BERROBIKO ORIA BERASTEGI BERROBI 28 C.H. LEIZARAN ORIA LEIZARAN ANDOAIN 3.600 C.H. OLABERRI ORIA LEIZARAN ANDOAIN 200 C.H. AMERAUN ORIA LEIZARAN BERASTEGI 1.000 C.H. ELECTRA PLAZAOLA Nº 1 ORIA LEIZARAN BERASTEGI 736 C.H. ELECTRA PLAZAOLA Nº 2 ORIA LEIZARAN BERASTEGI 430 C.H. OLLOQUI ORIA LEIZARAN ELDUAIN 555 C.H. SANTOLAZ ORIA LEIZARAN ELDUAIN 710 C.H. BERTXIN ORIA LEIZARAN VILLABONA 808 C.H. ABALOZ ORIA ORIA ANDOAIN 1.048 C.H. BAZKARDO ORIA ORIA ANDOAIN 344 C.H. ALDABA ORIA ORIA IKAZTEGIETA 360 C.H. IKAZTEGIETA ORIA ORIA IKAZTEGIETA 620 MOLINO BEROSTEGI ORIA ORIA LEGORRETA 16 C.H. USABAL ORIA ORIA TOLOSA 250 C.H. AGARAITZ ORIA ORIA VILLABONA 240 C.H. ALDAOLA / C.H. SAN ADRIÁN ORIA ORIA ZEGAMA 72 C.H. EZPALEO ORIA ORIA ZEGAMA 500 MOLINO OTZARAIN ORIA SALUBITA TOLOSA 30 C.H. ZALDIBIA ORIA ZALDIBIA BEASAIN 2.200 C.H. ERDOIZTA UROLA ALZOLARAS ZESTOA 115 MOLINO URBIETA UROLA ERREZIL AZPEITIA 14 C.H. BERRIKI UROLA ERREZIL ERREZIL 16 MOLINA REZUSTA UROLA UROLA AIZARNAZABAL 52 C.H. ALTUNA-TXIKI UROLA UROLA AIZARNAZABAL 146 C.H. ANDRONDEGI UROLA UROLA AZKOITIA 315 C.H. AIZPURUTXO UROLA UROLA AZKOITIA 250 C.H. ERROTA-BERRI UROLA UROLA AZKOITIA 360 C.H. IGARAN UROLA UROLA AZKOITIA 264 C.H. IGARAN UROLA UROLA AZKOITIA 25 C.H. BADIOLEGI UROLA UROLA AZPEITIA 350 C.H. IBAI-EDER UROLA UROLA AZPEITIA 90 C.H. ALBERDIKOA UROLA UROLA ZESTOA 110 C.H. BERDABIO URUMEA AÑARBE OIARTZUN 800 C.H. OQUILLEGUI URUMEA AÑARBE OIARTZUN 368 PAPELERA DE ZIKUÑAGA URUMEA URUMEA HERNANI 222 C.H. DE RENTERIA URUMEA URUMEA HERNANI 200 C.H. FAGOLLAGA URUMEA URUMEA HERNANI 130 C.H. LASTAOLA URUMEA URUMEA HERNANI 150 C.H. PIKOAGA URUMEA URUMEA HERNANI 586 C.H. SANTIAGO URUMEA URUMEA HERNANI 666 C.H. ARRANBIDE URUMEA URUMEA RENTERIA 519 C.H. MENDARAZ URUMEA URUMEA RENTERIA 500
  • 12. 11 Figura 4. Minicentrales hidroeléctricas en funcionamiento en la CAPV. ARABA 13 5,83MW TERRITORIOHISTÓRICO NºDEMINICENTRALES POTENCIAINSTALADA LÍMITEDECUENCA LEYENDA MINICENTRALESHIDROELÉCTRICAS ENFUNCIONAMIENTOENLACAPV 01000020000300004000050000 Escala UROLA 13 2.159kW BIZKAIA 25 6,41MW UROLA 13 2.159kW ARABA 13 5,83MW URUMEA 10 4.098kW GIPUZKOA 68 32,45MW 5000
  • 13. 12 Figura 5. Minicentrales hidroeléctricas en funcionamiento en Araba. ERRIOXA 3 4.376kW CUENCADELRÍO NºDEMINICENTRALES POTENCIAINSTALADA LÍMITEDECUENCA LEYENDA MINICENTRALESHIDROELÉCTRICAS ENFUNCIONAMIENTOENARABA 01000020000 Escala URUMEA 10 4.098kW EGA 2 465kW URUMEA 10 4.098kW ERRIOXA 3 4.376kW URUMEA 10 4.098kW ZADORRA 3 269kW URUMEA 10 4.098kW DEBA 1 16kW URUMEA 10 4.098kW BAYAS 1 12kW UROLA 13 2.159kW INGLARES 1 600kW UROLA 13 2.159kW OMECILLO 2 87kW ARABA 5000
  • 14. 5000 13 Figura 6. Minicentrales hidroeléctricas en funcionamiento en Bizkaia. 01000020000 Escala URUMEA 10 4.098kW OKA 1 66kW URUMEA 10 4.098kW ARTIBAI 2 313kW URUMEA 10 4.098kW IBAIZABAL 10 2.983kW UROLA 13 2.159kW KADAGUA 8 2.933kW UROLA 13 2.159kW NERBIOI 4 16kW IBAIZABAL 10 2.983kW CUENCADELRÍO NºDEMINICENTRALES POTENCIAINSTALADA LÍMITEDECUENCA LEYENDA MINICENTRALESHIDROELÉCTRICAS ENFUNCIONAMIENTOENBIZKAIA BIZKAIA MARCANTÁBRICO
  • 15. URUMEA 10 4.098kW OIARTZUN 2 751kW BIDASOA 2 2.094kW ORIA 26 14.019kW UROLA 13 2.159kW DEBA 15 8.616kW 14 Figura 7. Minicentrales hidroeléctricas en funcionamiento en Gipuzkoa. URUMEA 10 4.141kW OIARTZUN 2 751kW BIDASOA 2 2.094kW ORIA 26 14.709kW UROLA 13 2.107kW DEBA 15 8.652kW ORIA 26 14.709kW CUENCADELRÍO NºDEMINICENTRALES POTENCIAINSTALADA LÍMITEDECUENCA LEYENDA MINICENTRALESHIDROELÉCTRICAS ENFUNCIONAMIENTOENGIPUZKOA 050001000020000 Escala GIPUZKOA MARCANTÁBRICO
  • 16. En las siguientes tablas se presenta un resumen de la situación del potencial minihidroeléctrico de la CAPV de acuerdo con el inventario actualizado en 1995 y las previsiones de puesta en fun- cionamiento para 1996. 15 GIPUZKOA C.H. ALZOLABE DEBA DEBA ELGOIBAR C.H. LOYOLA UROLA UROLA AZPEITIA C.H. ZESTONA UROLA UROLA ZESTOA C.H. LEIZAUR ORIA LEIZARAN ANDOAIN C.H. LIZARKOLA ORIA LEIZARAN ANDOAIN C.H. IRURA ORIA ORIA IRURA C.H. ETXEZARRETA ORIA ORIA LEGORRETA C.H. ALZAMENDI ORIA UBANE (regata) ANDOAIN C.H. ZAZPITURRIETA ORIA AMEZKETA AMEZKETA ARABA C.H. ARAYA ARAIA ARAIA ASPARRENA TERRITORIO NOMBRE DE LA CUENCA RÍO TÉRMINO HISTÓRICO MINICENTRAL MUNICIPAL FUNCIONAN 13 25 68 106 NO FUNCIONAN 14 35 54 103 ARABA BIZKAIA GIPUZKOA TOTAL TOTAL 27 60 122 209 FUNCIONAN 5.825 6.411 32.454 44.690 NO FUNCIONAN 1.728 3.878 6.165 11.771 ARABA BIZKAIA GIPUZKOA TOTAL TOTAL 7.553 10.289 38.619 56.461 Tabla 3. Número de minicentrales hidroeléctricas en la CAPV. Tabla 4. Potencias instaladas en kW en las minicentrales hidroeléctricas de la CAPV. En cuanto a minicentrales hidroeléctricas actualmente fuera de uso, con posibilidades, a priori, de que su rehabilitación o puesta en funcionamiento resulte rentable, podrían citarse las siguientes: Tabla 5. Relación de minicentrales hidroeléctricas de la CAPV cuya rehabilitación podría ser rentable.
  • 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. ASPECTOS TÉCNICOS 3.1. Definición de minicentral hidroeléctrica Las centrales hidroeléctricas pueden definirse como instalaciones mediante las que se consigue aprovechar la energía contenida en una masa de agua situada a una cierta altura, transformán- dola en energía eléctrica. Esto se logra conduciendo el agua desde el nivel en el que se en- cuentra, hasta un nivel inferior en el que se sitúan una o varias turbinas hidráulicas que son ac- cionadas por el agua y que a su vez hacen girar uno o varios generadores, produciendo energía eléctrica. La figura 8 ilustra este esquema. 16 Figura 8. Transformación de energía hidráulica en energía eléctrica. A las centrales hidroeléctricas cuya potencia instalada es inferior a 5.000 kVA se les denomina Pequeñas Centrales o Minicentrales hidroeléctricas. 3.2. Tipos de minicentrales hidroeléctricas Existen dos tipos básicos de minicentrales hidroeléctricas: • Centrales de agua fluyente • Centrales a pie de presa Energía hidráulica Turbina/s Energía mecánica Generador/es Energía eléctrica Pérdidas Pérdidas
  • 18. 3.2.1. CENTRALES DE AGUA FLUYENTE En estas centrales, el agua a turbinar se capta del cauce del río por medio de una obra de toma, y una vez turbinada, se devuelve al río en un punto distinto al de captación. En la figura 9 puede verse un esquema sencillo de este tipo de centrales. 17 12 3 5 6 7 4 Figura 9. Esquema de una central de agua fluyente. Los elementos principales de estas instalaciones que pueden observarse en la figura anterior son: Œ Azud  Toma de agua Ž Canal de derivación  Cámara de carga  Tubería forzada ‘ Edificio con su equipamiento electromecánico ’ Canal de salida
  • 19. 3.2.2. CENTRALES A PIE DE PRESA Son centrales con regulación. El agua a turbinar se almacena mediante una presa. La figura 10 presenta una central a pie de presa. 18 Figura 10. Esquema de una central a pie de presa. Son elementos principales de estas centrales: Œ Presa  Toma de agua Ž Tubería forzada  Edificio con su equipamiento electromecánico  Canal de salida 3.3. Elementos de una minicentral hidroeléctrica Una minicentral está constituida por diversos componentes y equipos que pueden clasificarse en tres grandes grupos: • Obra civil • Equipamiento electromecánico • Equipos auxiliares
  • 20. 3.3.1. OBRA CIVIL La obra civil engloba aquellas obras e instalaciones necesarias para derivar, conducir y restituir el agua turbinada, así como para albergar y proteger los equipos electromecánicos. Son obra civil los siguientes elementos: • Azudes y presas • Obra de toma • Canal de derivación • Cámara de carga • Tubería forzada • Edificio • Canal de salida 3.3.1.1. Azudes y presas Son las obras que se construyen en el curso del agua, transversalmente al mismo, para la reten- ción y desviación hacia la toma del caudal que se deriva hacia la minicentral. En los azudes se produce una retención del agua sin que haya una variación importante del ni- vel de agua. En las presas, el muro se construye para elevar la superficie libre del curso de agua creando un embalse. 3.3.1.2. Obra de toma Las obras de toma derivan el agua hacia las conducciones que la transportarán a la minicentral. Generalmente, en la toma se instala una reja, para impedir el paso de peces y material sólido. 3.3.1.3. Canal de derivación Es la conducción que transporta el agua que se deriva hacia la minicentral desde la toma hasta la cámara de carga. A lo largo del canal, dependiendo de su longitud, puede haber varias compuertas para limpieza y vaciado del canal en caso necesario. Al final del canal, antes de la cámara de carga, suelen instalarse una reja de finos con su corres- pondiente máquina limpiarrejas, así como una compuerta de seguridad. 3.3.1.4. Cámara de carga Consiste en un depósito situado al final del canal de derivación del que parte la tubería forzada. 19
  • 21. Esta cámara es necesaria para evitar la entrada de aire en la tubería forzada, que provocaría so- brepresiones. 3.3.1.5. Tubería forzada La tubería forzada conduce el agua desde la cámara de carga hasta la turbina. Generalmente la tubería es de acero. Al inicio de la tubería se instala un órgano de cierre que permite evitar el paso de agua y vaciar la tubería poco a poco. 3.3.1.6. Edificio En el edificio se albergan los equipos electromecánicos de la minicentral. 3.3.1.7. Canal de salida Es la conducción a través de la que se restituye el agua al cauce. 3.3.2. EQUIPAMIENTO ELECTROMECÁNICO Se consideran equipos fundamentales los siguientes: • Órgano de cierre de la turbina • Turbina/s • Generador/es • Elementos de regulación • Transformador/es • Celdas y cuadros eléctricos • Línea eléctrica de interconexión 3.3.2.1. Órgano de cierre de la turbina Son válvulas o compuertas que aíslan la turbina en caso de parada y permiten el vaciado de la tu- bería y las labores de reparación y mantenimiento. 3.3.2.2. Turbinas Son máquinas capaces de transformar la energía hidráulica en energía mecánica en su eje de sa- lida. Su acoplamiento mediante un eje a un generador permite, finalmente, la generación de ener- gía eléctrica. En el siguiente apartado (3.4.) se tratará más ampliamente el tema de las turbinas. 20
  • 22. 3.3.2.3. Generadores Estas máquinas transforman la energía mecánica de rotación que suministra/n la/s turbina/s en energía eléctrica en sus bornas o terminales. Pueden ser de dos tipos: síncronos y asíncronos. Los generadores síncronos suelen emplearse en centrales con potencia superior a 2.000 kVA co- nectadas a la red, o en centrales de pequeña potencia que funcionan en isla (sin estar conecta- das a la red). El generador asíncrono, por el contrario, debe estar siempre conectado a la red eléctrica, de la que toma la energía necesaria para producir su magnetización. Es usual emplearlos en centra- les de menos de 500 kVA, siempre acopladas a la red. Para centrales con potencia aparente entre 500 y 2.000 kVA la elección de un generador síncro- no o asíncrono, depende de la valoración económica, del sistema de funcionamiento y de los con- dicionantes técnicos exigidos por la compañía eléctrica. 3.3.2.4. Elementos de regulación Son aquellos que regulan los componentes móviles de las turbinas y pueden ser de dos tipos: hidráulicos y electrónicos. Su misión es conseguir adecuar la turbina a las circunstancias exis- tentes en cada momento (caudal turbinable, demanda eléctrica ....) para que pueda trabajar con el mejor rendimiento energético posible en cada circunstancia. 3.3.2.5. Transformadores Son máquinas destinadas a convertir una tensión de entrada en otra distinta a la salida. El objeto del transformador es elevar la tensión de generación eléctrica para reducir en lo posible las pér- didas de transporte en la línea. 3.3.2.6. Celdas y cuadros eléctricos Suelen instalarse generalmente en el interior de la minicentral y están constituidos por diversos componentes eléctricos de regulación, control, protección y medida. 3.3.2.7. Línea eléctrica de interconexión La línea eléctrica transporta la energía eléctrica desde la minicentral hasta el punto de conexión con la compañía eléctrica o hasta el centro de autoconsumo. 21
  • 23. 3.3.3. EQUIPOS AUXILIARES Estos equipos son también necesarios para el correcto funcionamiento de una minicentral. Entre los más comunes están: • Compuertas • Reja y máquina limpiarrejas • Grúa para movimiento de máquinas • Sistema contra-incendios • Alumbrado • Caudalímetro La figura 11 muestra los elementos principales de una minicentral hidroeléctrica. 22 GENERADOR EQUIPOS ELECTRICOS GRUPO HIDRAULICO COMPUERTA DE SALIDA CANAL DE SALIDA REJA Y MAQUINA LIMPIA-REJAS TURBINA KAPLAN MULTIPLICADOR COMPUERTA ARENERA COMPUERTA DE SEGURIDAD CANAL DE DERIVACION COMPUERTA ARENERA PRESA COMPUERTA DE ENTRADA Figura 11. Esquema de componentes de una minicentral hidroeléctrica. 3.4. Turbinas Como se decía anteriormente, las turbinas son máquinas que transforman la energía hidráulica en energía mecánica de rotación en su eje. En cuanto a su funcionamiento se pueden clasificar en: • Turbinas de acción • Turbinas de reacción Las turbinas de acción utilizan únicamente la velocidad del flujo de agua para girar, mientras que las turbinas de reacción emplean tanto la presión como la velocidad del agua. 3.4.1. TIPOS DE TURBINAS 3.4.1.1. Turbinas Pelton Las turbinas Pelton son las turbinas de acción más utilizadas y están recomendadas en aquellos aprovechamientos caracterizados por grandes saltos y caudales relativamente bajos.
  • 24. 6 5 4 3 2 1 Este tipo de turbina permite una gran flexibilidad de funcionamiento, al ser capaz de turbinar has- ta el 10% de su caudal nominal con rendimientos óptimos. Las posibilidades de montaje son múltiples, siendo posible su instalación con eje horizontal o ver- tical, con uno o varios inyectores y con uno o dos rodetes. En general, en las minicentrales se implantan turbinas Pelton con uno o dos inyectores que actúan sobre un único rodete. En la figura 12 se pueden observar los componentes principales de una turbina Pelton. 23 Figura 12. Turbina Pelton (cortesía de VOITH). Œ Tubería de distribución  Carcasa  Inyector  Eje de turbina Ž Rodete ‘ Generador En este tipo de turbinas la admisión del agua se realiza a gran velocidad tangencialmente al ro- dete (3) a través de la tubería de distribución (1) y el inyector (2), que puede considerarse como el distribuidor de la turbina Pelton. El inyector (2) está equipado de una válvula de aguja y un deflector o pantalla deflectora. La válvula de aguja, con un desplazamiento longitudinal controlado bajo presión de aceite por un grupo oleohidráulico, permite la regulación del caudal de agua a turbinar así como el cierre es- tanco del inyector (2). El deflector, por su parte, impide el golpe de ariete y el embalamiento de la turbina durante las fa- ses de parada programada o de emergencia de la turbina.
  • 25. El rodete (3) es una pieza maciza circular, fabricada generalmente en fundición de acero dotada en su periferia de un conjunto de cucharas con doble cuenco, denominadas álabes, sobre los que incide el chorro del agua. 3.4.1.2. Turbinas Francis Las turbinas Francis son turbinas de reacción caracterizadas por incidir el agua sobre el rodete, al que atraviesa, en dirección radial siendo descargada en paralelo al eje de rotación, en direc- ción axial, mediante su orientación en un ángulo de 90º. En la figura 13 se representa una turbina Francis con cámara de entrada cerrada en forma espi- ral. 24 Figura 13. Turbina Francis con cámara espiral (Cortesía de VOITH). Œ Cámara espiral  Codo y tubo de descarga  Alabe móvil  Eje de turbina Ž Rodete ‘ Generador La admisión del agua es regulada por el distribuidor que, conjuntamente con la cámara espiral (1), tiene la misión de dar al agua la velocidad y orientación más adecuadas para entrar en el ro- dete (3). El distribuidor puede ser de álabes orientables o fijos. El más utilizado es el de álabes orientables. El rodete (3) es una pieza troncocónica formada por un conjunto de paletas fijas, denominadas álabes, cuya disposición da lugar a la formación de unos canales hidráulicos por los que se descarga el agua turbinada. Las turbinas Francis pueden ser instaladas en una amplia gama de aprovechamientos, abarcan- do caudales desde 150 l/s hasta 40.000 l/s en saltos entre 2 y 250 m. 6 5 4 4 32 1
  • 26. Su rango de funcionamiento es aceptable, pudiendo turbinar a partir del 40% del caudal nomi- nal de la turbina. En minicentrales que se instalan turbinas Francis, éstas son generalmente de eje horizontal con un único rodete. 3.4.1.3. Turbinas Kaplan Las turbinas Kaplan se adaptan óptimamente a los aprovechamientos caracterizados por pe- queños saltos, en general inferiores a 30 m, y caudales altos. La gama de funcionamiento es muy amplia siendo capaz de turbinar hasta el 25% del caudal nominal de la turbina. No admite muchas posibilidades de instalación reduciéndose, en la práctica, a turbinas con eje vertical u horizontal. 25 Figura 14. Turbina Kaplan de eje horizontal, tipo S (Cortesía de VOITH). Œ Distribuidor y palas distribuidor  Eje de turbina Ž Rodete  Generador La admisión del agua es regulada por un distribuidor (1) con funcionamiento idéntico al instala- do en las turbinas Francis. El rodete (3) tiene forma de hélice siendo orientables los álabes mediante un servomotor gober- nado por un grupo oleohidráulico. 4 3 2 1
  • 27. La descarga del agua turbinada se realiza por el tubo de aspiración acodado construido, en ge- neral, en hormigón y con frecuencia blindado con chapa de acero. 3.4.2. SELECCIÓN DEL TIPO DE TURBINA Para preseleccionar el tipo de turbina a instalar en una minicentral, se utilizan unos ábacos que suelen facilitar los fabricantes de turbinas. Con ellos, se determina el tipo de turbina a partir de los parámetros de salto y caudal. Tal y como puede verse en la figura 15, entrando en abcisas con el salto en m y en ordenadas en el caudal de agua en m3 /s, se obtendría el tipo de turbina más adecuado para la instalación. 26 Figura 15. Ábaco de selección del tipo de turbina. (Cortesía de VOEST-ALPINE). No obstante, para elegir la turbina definitiva garantizando la máxima rentabilidad de la minicen- tral, se deberán tener en cuenta la curva de caudales clasificados, imprescindible para determi- nar el caudal de equipamiento, y la infraestructura existente del aprovechamiento. En el apéndice A.3. se recoge una relación de fabricantes de turbinas hidráulicas. 75 60 50 40 30 20 10 8 6 5 4 3 2 1 0,8 0,6 0,5 0,4 0,3 0,2 0,1 0,08 0,06 0,05 0,04 0,03 0,02 0,01 75 60 50 40 30 20 10 8 6 5 4 3 2 1 0,8 0,6 0,5 0,4 0,3 0,2 0,1 0,08 0,06 0,05 0,04 0,03 0,02 0,01 1 5 10 50 100 500 10002 3 4 20 30 40 200 300 400 1 5 10 50 100 500 10002 3 4 20 30 40 200 300 400 75 60 50 40 30 20 10 8 6 5 4 3 2 1 0,8 0,6 0,5 0,4 0,3 0,2 0,1 0,08 0,06 0,05 0,04 0,03 0,02 0,01 Q m3/s H (m) 100 kW 250 kW 500 kW 1000 kW 2500 kW 5000 kW 10000 kW 50 kW 25 kW 10 kW TURBINAS PELTON TURBINAS FRANCIS TURBINAS KAPLAN
  • 28. 3.5. Parámetros fundamentales para el diseño de una minicentral hidroeléctrica La potencia eléctrica de una minicentral hidroeléctrica es directamente proporcional a dos mag- nitudes: el salto y el caudal de agua turbinado. 3.5.1. SALTO El salto es la diferencia de nivel entre la lámina de agua en la toma y el punto del río en el que se restituye el agua turbinada. En realidad, esta definición corresponde a lo que se denomina salto bruto (Hb). Además del sal- to bruto, se manejan otros dos conceptos de salto, el salto útil (Hu) y el salto neto (Hn). La figura 16 ilustra estos conceptos: 27 Figura 16. Esquema de un salto de agua. Salto bruto (Hb): Diferencia de altura entre la lámina de agua en la toma y el nivel del río en el pun- to de descarga del agua turbinada. Salto útil (Hu): Diferencia entre el nivel de la lámina de agua en la cámara de carga y el nivel de desagüe de la turbina. Salto neto (Hn): Es el resultado de restar al salto útil (Hu) las pérdidas de carga (∆H) originadas por el paso del agua a través de la embocadura de la cámara de carga y de la tubería forzada y sus accesorios. El cálculo de las pérdidas de carga se realiza mediante fórmulas empíricas ampliamente difun- didas. Una consideración aceptable es suponer que la pérdida de carga es del orden de un 5% a un 10% del salto bruto. El salto bruto puede estimarse en primera instancia a partir de un plano topográfico. Sin embar- go, una determinación más exacta requiere un levantamiento taquimétrico. Hn AZUD CANAL DE DERIVACION CAMARA DE CARGA CANAL DE DESAGUE EDIFICIO DE CENTRAL RIO TUBERIA FORZADA Hu Hb ∆H
  • 29. Una vez determinados los años normales se toman los caudales correspondientes a esos años y se calculan los caudales medios diarios. A partir de estos caudales medios diarios se constru- ye la curva de caudales clasificados, que indica el número de días del año en los que circula un caudal determinado por el río. En la figura 18 pueden verse una curva de caudales medios dia- rios y su correspondiente curva de caudales clasificados. 3.5.2. CAUDAL DE EQUIPAMIENTO Para poder determinar la potencia a instalar y la energía producible a lo largo del año en una mi- nicentral hidroeléctrica, es imprescindible conocer el caudal circulante por el río en la zona pró- xima a la toma de agua. Aforar es medir el caudal de una corriente de agua en un punto de la misma en un instante de- terminado. En la CAPV existe una red de estaciones de aforo que proporcionan datos de cauda- les de un gran número de ríos. Su instalación y control dependen de organismos públicos y pri- vados entre los que se encuentran las Diputaciones Forales, el Ente Vasco de la Energía (EVE), el MOPTMA o Iberdrola, S.A. En aquellos aprovechamientos en los que no existe una estación de aforo próxima a la central, se realiza un estudio hidrológico aplicando un modelo matemático de simulación basado en los da- tos de precipitaciones sobre la cuenca y caudales de una cuenca de similares características. También se pueden estimar los caudales que circulan por el río a partir de los caudales turbina- dos por una central próxima, siempre y cuando ambas centrales tengan más o menos la misma aportación y la central de la que se toman los datos esté bien dimensionada y además su cau- dal de equipamiento no esté condicionado por la infraestructura propia de la central (canal de de- rivación, tubería forzada etc). En cualquier caso, se deben obtener datos de caudales correspondientes a una serie de años lo suficientemente amplia como para incluir años secos, normales y húmedos. Para caracterizar hidrológicamente los años para los que se dispone de registro de caudales, se debe recopilar la información de lluvias de las estaciones meteorológicas del entorno, realizan- do un cálculo correlativo de lluvias y caudales para comprobar si existe relación entre la aporta- ción de lluvias y los caudales registrados. En la figura 17 se muestra, un ejemplo de distribución de precipitaciones para una serie de 15 años. 28 Figura 17. Datos de precipitación anual clasificados AñosAños Precipitación(mm) 1 3 5 7 9 11 13 15 4 12 8 15 6 7 2 13 0 200 400 600 800 1000 1200 1400 1600 Precipitación(mm) 0 200 400 600 800 1000 1200 1400 1600 2 4 6 8 10 12 14 3 10 11 1 5 14 9
  • 30. 29 Figura 18. Curvas de caudales medios diarios y de caudales clasificados El caudal de equipamiento de la central se establece a partir de la curva de caudales clasifica- dos. En esta curva hay que descontar el caudal ecológico, que es el caudal que debe circular co- mo mínimo por el río durante todo el año. El caudal ecológico suele indicarlo el Organismo de Cuenca o las Diputaciones Forales. En el ca- so de no ser así, una buena estimación es considerar el caudal ecológico igual al 10% del caudal medio interanual. Una vez que se le ha descontado el caudal ecológico a la curva de caudales clasificados, se elige el posible caudal de equipamiento en el intervalo de la curva comprendido entre el Q80 y el Q100, siendo el Q80 el caudal que circula por el río durante 80 días al año y el Q100 el que circula durante 100 días al año (figura 19). Figura 19. Curva de caudales clasificados. Para los posibles caudales comprendidos en este intervalo, se hace una estimación de las horas de funcionamiento de la central, siempre teniendo en cuenta el tipo de turbina que se proyecte instalar. Cada tipo de turbina tiene un rango de funcionamiento con un caudal máximo y otro mínimo por debajo del cual la turbina no funcionaría con rendimiento aceptable. Nº de días que se supera el caudal 7.000 6.000 5.000 4.000 3.000 2.000 1.000 0 Caudal(l/s) 0 30 60 90 120 150 180 210 240 270 300 330 360 Caudal ecológico 7.000 6.000 5.000 4.000 3.000 2.000 1.000 0 Oct Nov Dic Ene Feb Mar Abr May Jun Jul Ago Sep1 Caudal(l/s)
  • 31. Este caudal mínimo es aproximadamente: • Para turbinas PELTON : 10% Qequipamiento • Para turbinas KAPLAN : 25% Qequipamiento • Para turbinas FRANCIS : 40% Qequipamiento Una vez que se ha elegido el tipo de turbina, se estiman las producciones que se obtendrían para cada posible caudal de equipamiento. No siempre se elige el caudal que proporciona mayor producción, ya que hay que tener en cuen- ta también la inversión necesaria en cada caso. Puede ocurrir que la diferencia de kWh genera- dos de una a otra variante, no compense el incremento de inversión que hay que realizar. En ocasiones, el caudal de equipamiento está condicionado por la infraestructura existente en la minicentral. Este sería el caso de las minicentrales que tienen un canal de derivación con una ca- pacidad de transporte inferior al caudal de equipamiento deducido a partir de la curva de cau- dales clasificados. En este caso, la inversión necesaria para acondicionar el canal puede hacer inviable la reconstrucción de la minicentral y por consiguiente, se opta por un caudal de equipa- miento igual al caudal máximo que puede transportar el canal de derivación. 3.5.3. POTENCIA DE LA MINICENTRAL La potencia eléctrica teórica que puede generar una minicentral, viene dada por la expresión: P = 9,81 · Q · Hn donde: P : Potencia instalada en kW Q : Caudal en m3 /s Hn : Salto neto en m La producción de la minicentral puede estimarse, en una primera aproximación, multiplicando es- ta potencia por el número previsto de horas de funcionamiento. Sin embargo la potencia a la salida de la minicentral es igual a: P = 9,81 · Q · Hn · e siendo e = ηt · ηg · ηtr donde: e : Factor de eficiencia de la minicentral ηt : Rendimiento de la turbina ηg : Rendimiento del generador ηtr : Rendimiento del transformador Los rendimientos de las turbinas, generadores y transformadores son facilitados por los fabri- cantes de los propios equipos. En un primer estudio, sin embargo, puede tomarse como factor de eficiencia de la minicentral un valor próximo a 0,8. 30
  • 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. ASPECTOS ECONÓMICOS 4.1. Inversiones La inversión necesaria para la puesta en funcionamiento de una minicentral hidroeléctrica debe incluir la valoración de los siguientes conceptos: • Obra civil • Equipos electromecánicos y auxiliares • Conexión a la red • Proyectos • Dirección de obra • Permisos, tasas y expropiaciones • Impuestos 4.2. Costes de Explotación Hay que tener en cuenta que la explotación de una minicentral conlleva unos gastos anuales de- bidos al mantenimiento y reparación de las instalaciones, que aunque serán casi despreciables los primeros años de funcionamiento de la central, irán aumentando a lo largo de los años. Los gastos de explotación a tener en cuenta son: • Personal de vigilancia y limpieza de las instalaciones. • Mantenimiento y reparación de los elementos que se han de conservar y reponer, inclu- yendo mano de obra y repuestos. • Seguros de las instalaciones. Se puede estimar que estos gastos son del orden del 2 al 5% de la inversión a realizar. 4.3. Precio venta de la energía El precio de venta de la energía viene regulado por el REAL DECRETO 2360/1994, de 9 de di- ciembre, sobre producción de energía eléctrica por instalaciones hidráulicas, de cogeneración y otras abastecidas por recursos o fuentes de energías renovables. 31
  • 33. En el REAL DECRETO citado, las centrales hidroeléctricas quedan recogidas en el Grupo f siem- pre que la suma de las potencias aparentes de cada grupo, medidas en bornas de generador, no sea superior a 10 MVA. La facturación total por la venta de energía será la que resulte de la aplicación total de la fórmu- la siguiente: FT = (PF x Tp + Ec Te ± DH ± ER) kf - Al en la que FT = Facturación en pesetas PF = Potencia a facturar expresada en kW Tp = Término de potencia (Tarifa 1.2) Ec = Energía cedida en kWh Te = Término de energía (Tarifa 1.2) DH = Complemento por discriminación horaria (Tipo 2) ER = Complemento por energía reactiva Kf = Coeficiente Al = Abono por incumplimiento de potencia PF se puede calcular en el caso de las minicentrales hidroeléctricas, como cociente entre la ener- gía entregada en el periodo de facturación y el número de horas del citado periodo. AI es 0, ya que no hay incumplimiento de potencia. Kf se calculará de acuerdo con la siguiente fórmula: Kf = Kc x Kp donde Kc es el coeficiente de costes incluidos en tarifas no evitados y Kp el coeficiente de apor- tación a la política energética. Para las minicentrales hidroeléctricas Kp= 1,08 y Kc= 0,85. Los términos de potencia Tp y de energía Te, se asimilan a los de la Tarifa eléctrica 1.2. Para es- te año 1995, las tarifas establecidas son:Tp = 338 PTA/kW y mes y Te = 11,26 PTA/kWh. Los complementos por discriminación horaria DH y por energía reactiva ER no suelen afectar de manera importante a la facturación total. Para el cálculo del DH se considerará que las minicen- trales hidroeléctricas están incluidas en el Tipo 2. 4.4. Rentabilidad de la inversión La rentabilidad de una minicentral puede estimarse de una forma sencilla (se obtendrán valores aproximados), utilizando los siguientes criterios: 32
  • 34. • Período de Retorno (P.R.); que es el tiempo que se tarda en recuperar la inversión : • Índice de energía (I. E.); que es el coste del kilovatio hora generado : • Índice de potencia (I.P.); que es el coste del kilovatio instalado : Se suelen considerar como rentables aquellos aprovechamientos que tienen valores aproximados a: Período de retorno : 4 a 5 años Índice de energía : 50 PTA/kWh Índice de potencia: 100.000 a 110.000 PTA/kW Suelen ser aprovechamientos rentables: • Saltos altos en ríos de fuerte pendiente, para obra nueva totalmente. • Saltos totalmente nuevos, en ríos regulados por embalse en cabecera. • Saltos existentes con obra civil en buen estado o que precisa pequeñas reparaciones. • En los que existe posibilidad de reparación de las turbinas y equipos de automatismo. • Que casi toda la energía producida sea utilizable por el propietario. Suelen ser aprovechamientos de rentabilidad dudosa: • Saltos bajos en ríos de pendientes media o baja, para obra nueva totalmente. • Saltos totalmente nuevos, en ríos no regulados por embalse en cabecera. • Saltos existentes con obra civil muy deteriorada y con canales muy largos. • Cuando hay que instalar nuevas turbinas y equipos de automatismo. • Que el propietario utilice poca energía de la que produce. En cualquier caso, si se decide llevar a cabo el proyecto de rehabilitación o construcción de una minicentral es necesario realizar un estudio económico-financiero en profundidad. 33 Inversión Ingresos anuales Inversión (PTA) (Ingresos–gastos) PTA/AÑO =P. R.= Inversión (PTA) Energía salida trafo (kWh) I.E.= Inversión (PTA) Potencia instalada (kW) I.P.=
  • 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. TRÁMITES ADMINISTRATIVOS 5.1. Documentación Técnico-Administrativa para la Concesión de Aguas De acuerdo con la Ley de Aguas, todo uso del agua con fines privados requiere una concesión administrativa. El primer paso que debe dar el interesado en la rehabilitación o puesta en marcha de una mini- central hidroeléctrica, es conocer el estado de la concesión de aguas de dicha minicentral. Para realizar esta consulta debe dirigirse por escrito al Organismo de Cuenca correspondiente, solicitando la Certificación de la Concesión de Aguas por la que esté interesado. En esta solicitud, a modo de carta, se deben indicar los siguientes datos: • Punto donde se toman las aguas (río y cuenca) • Término/s Municipal/es donde se encuentran ubicadas las instalaciones • Territorio/s Histórico/s • Caudal • Salto • Nombre de la Central (si lo tiene) • Uso para el que se destina el agua Los Organismos competentes para tramitar y otorgar las concesiones de agua son las Comisarías de Aguas de las Confederaciones Hidrográficas y la Dirección de Planificación y Obras Hidráuli- cas del Gobierno Vasco. 34 AGÜERA BIDASOA IBAIZABAL KADAGUA KARRANTZA NERBIOI ORIA URUMEA ARAIA BAYAS EGA ERRIOXA (EBRO) INGLARES OMECILLO ZADORRA ARTIBAI ASUA BARBADÚN BUTROI GALINDO GOBELA LEA OKA DEBA OIARTZUN UROLA ORGANISMO DE CUENCA CONFEDERACIÓN HIDROGRÁFICA COMISARÍA DE AGUAS CUENCA NORTE CUENCA DEL EBRO SERVICIO TERRITORIAL DE AGUAS DE BIZKAIA SERVICIO TERRITORIAL DE AGUAS DE GIPUZKOA DIRECCIÓN DE PLANIFICACIÓN Y OBRAS HIDRÁULICAS DEL GOBIERNO VASCO Tabla 6. Relación de ríos de la CAPV y Organismo de Cuenca al que pertenecen.
  • 36. Dependiendo de en qué río se encuentre la toma de agua de la minicentral (ver tabla 6) hay que dirigirse, para cualquier trámite, a uno de estos Organismos. Las direcciones vienen indicadas en el Apéndice A.4. En la Certificación de la Concesión de Aguas expedida por el Organismo de Cuenca vendrán indicados el estado de la concesión y todos los datos concesionales de la central: caudal, salto, titular de la concesión y fecha de resolución de dicha concesión. Puede ocurrir que la Concesión esté vigente, caducada o que no exista concesión de aguas pa- ra ese aprovechamiento. En cada caso hay que seguir los siguientes trámites: A) La Concesión está vigente Si la Concesión está vigente y el titular es el interesado, se puede pasar a la realización del Pro- yecto Constructivo de la minicentral, en el que se definen las obras civiles a realizar con objeto de implantar los equipos electromecánicos que se instalarán en la minicentral. Si el titular no es el interesado, se debe solicitar por escrito un cambio de titularidad, adjuntando los documentos acreditativos de propiedad del aprovechamiento. El cambio de titularidad se concede en la casi totalidad de las solicitudes, aunque la Concesión puede variar en sus cláusulas, generalmente en el número de años concedidos, que pasará de perpetuidad, si la Concesión es antigua, a un número determinado de años. Este trámite suele durar un plazo aproximado de seis meses. B) La Concesión está caducada o no existe Concesión En este caso se debe solicitar la Concesión de Aguas, para lo cual es necesario un Proyecto de Concesión. En este Proyecto se define y justifica el caudal y el salto que se solicita, los equipos electromecánicos y la producción media esperada. Además se rellenará una instancia de solici- tud de concesión, a modo de carta, haciendo constar los siguientes datos: • Nombre y apellidos o razón social y domicilio del peticionario • Objeto del aprovechamiento • La corriente de donde se proyecta derivar el agua • Caudal en litros por segundo • Desnivel que se pretende utilizar • Potencia a instalar • Término/s Municipal/es donde radican las obras El trámite para otorgar una concesión puede durar un plazo máximo de cinco años. La concesión que se da en un principio es provisional y está condicionada a la visita oficial de re- conocimiento final de las instalaciones que se realiza cuando ya está en funcionamiento la mini- central. Con posterioridad a esta visita se otorga la Concesión definitiva. Una vez que el propietario tiene la Concesión provisional a su nombre, puede pasar a realizar el Proyecto Constructivo de las instalaciones. 35
  • 37. La figura 20 resume los pasos explicados anteriormente: 36 Figura 20. Esquema de trámites necesarios para la obtención de la Concesión de Aguas. Antes de realizar el Proyecto Constructivo de las instalaciones es conveniente realizar un Estu- dio de Viabilidad, que mediante una inversión mínima permite determinar la rentabilidad técnica y económica que supone la construcción de una minicentral. En el Apéndice A.2. se indica el alcance mínimo que el Ente Vasco de la Energía (EVE) aconseja para los Estudios de Viabilidad. 5.2. Documentación para la solicitud de autorización de las instalaciones eléctricas Una vez que se ha obtenido la Concesión de Aguas provisional, es necesario presentar en la Delegación Territorial de Industria del Gobierno Vasco correspondiente al Territorio Histórico don- de está ubicada la central, la siguiente documentación: • Proyecto Electromecánico de las instalaciones de alta y baja tensión en el que se defi- nen la totalidad de los equipos a instalar tanto principales como auxiliares, conjuntamente con los informes (separatas) de afecciones a terceros. Solicitud de la Certificación de la Concesión Concesión vigente El titular es el interesado El titular no es el interesado Solicitud de cambio de titularidad Realización del Proyecto Constructivo de las instalaciones Se obtiene la Concesión provisional Informe favorable Informe desfavorable No se concede la Concesión Realización del Proyecto Concesional Solicitud de Concesión Concesión caducada No existe Concesión
  • 38. • Proyecto de la Línea Eléctrica de Interconexión de la Central con la Compañía Eléctri- ca. Este Proyecto generalmente es realizado por la propia Compañía Eléctrica. Todos estos documentos deben ir suscritos por un Técnico Superior competente y visa- dos por el Colegio de Ingenieros correspondiente. Al mismo tiempo se solicitan en la Delegación de Industria: • El otorgamiento de la autorización administrativa de la instalación. • El reconocimiento del derecho a acoger la instalación referida al régimen especial esta- blecido en el Real Decreto 2366/1994 de 9 de diciembre. • La inclusión de la instalación en el Registro de instalaciones de producción en régimen especial. Cuando se han cumplido todos estos trámites, las Delegaciones de Industria publican un anun- cio en el Boletín Oficial de los Territorios Históricos afectados por las obras de la minicentral, au- torizando la construcción de las instalaciones electromecánicas indicadas en el Proyecto Elec- tromecánico. Posteriormente se realiza un Certificado de Dirección de Obra y se presenta, debidamente visa- do, en la Delegación de Industria con el fin de conseguir la autorización de pruebas y puesta en marcha de las instalaciones. 5.3. Documentación técnico-administrativa a presentar en otros organismos Suele ser habitual remitir un ejemplar del Proyecto Electromecánico, debidamente visado, a la de- legación de Iberdrola, S.A. correspondiente, para su aceptación. La firma del contrato de compra de energía por parte de la Compañía Eléctrica se realiza de acuer- do con las tarifas vigentes, que se publican anualmente en el B.O.E.. Para realizar este contrato es necesario presentar: • Autorización administrativa de la instalación. • Reconocimiento del régimen especial (condición de autogenerador). • Acta de puesta en marcha. • Copia de la inscripción de la instalación en el Registro de instalaciones de producción en régimen especial. En los Ayuntamientos afectados por las instalaciones, se solicita el permiso de obras, adjuntando un ejemplar del Proyecto Constructivo suscrito por un Técnico Superior competente y visado. Una vez finalizadas las obras, se presenta el Certificado Final de Obras visado, imprescindible para la obtención de la licencia de actividad. 37
  • 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. EJEMPLO SIMPLIFICADO DE UN ESTUDIO DE VIABILIDAD DE UNA MINICENTRAL HIDROELÉCTRICA 6.1. Introducción Un Estudio de Viabilidad es un documento previo a un Proyecto Constructivo que, mediante una inversión mínima, permite determinar la rentabilidad técnica y económica que supone la cons- trucción o rehabilitación de un aprovechamiento hidroeléctrico. A continuación, mediante un ejemplo, se van a describir a grandes rasgos las etapas que com- prende un estudio de viabilidad de una minicentral hidroeléctrica. 6.2. Estudio de viabilidad La Central que se va a estudiar dejó de funcionar en el año 1970 debido al deterioro de su equi- pamiento y como consecuencia, a su falta de rentabilidad. Sus instalaciones actuales compren- den azud, canal de derivación, cámara de carga, tubería forzada, edificio y canal de salida. La mayor parte de estas instalaciones se encuentran en un estado de conservación aceptable, sal- vo la tubería forzada y el edificio, dentro del cual no queda ningún resto de equipamiento elec- tromecánico. 6.2.1. OBTENCIÓN DE LOS DATOS CONCESIONALES Según la certificación de la Confederación Hidrográfica del Norte, la concesión de aguas no es- tá afectada por expediente de caducidad y fue otorgada al propietario actual por Resolución Gubernativa de fecha 20 de Marzo de 1954, para aprovechar un caudal de 800 l/s en un salto bru- to de 183 m. 6.2.2. OBTENCIÓN DE LOS DATOS TOPOGRÁFICOS Es necesario disponer de una serie de cotas con el fin de determinar la capacidad de transporte del canal de derivación y el salto bruto del aprovechamiento, que en muchos casos no coincide con el salto registrado en la concesión. Los datos de altimetría más significativos del aprovechamiento en metros sobre el nivel del mar (m.s.n.m.) son: 38
  • 40. • Cota de la coronación del azud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225,61 • Cota de la lámina de agua en la toma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225,11 • Cota de la solera del canal en varios puntos a lo largo de su trazado, conjuntamente con su sección total y mojada • Cota fondo cámara de carga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222,57 • Cota de la lámina de agua en la cámara de carga . . . . . . . . . . . . . . . . . . . . . . 224,50 • Cota de lámina de agua en la zona del río donde se restituye el agua . . . . . . . 41,84 39 Figura 21. Esquema del salto de agua. 6.2.3. DETERMINACIÓN DEL SALTO El cálculo del salto neto se realiza a partir de los datos topográficos y de las pérdidas de carga. Éstas están constituidas principalmente por: • pérdidas en la toma • pérdidas en el canal de derivación • pérdidas en la tubería forzada En el apartado 3.5.1. se indica que estas pérdidas de carga se pueden considerar, en una pri- mera estimación, entre el 5% y el 10% del salto bruto El salto neto del aprovechamiento es : Salto neto (Hn) = salto bruto (Hb) - pérdidas de carga (∆H) ∆H = 7% de Hb Hb = 225,11 - 41, 84 = 183,27 m ∆H = 183,27 x 7 = 12,83 m 100 Salto neto (Hn) = 183,27 - 12,83 = 170,44 ≅ 170 m ∆H Hu Hb 41,84 224,50 222,57 225,11 225,61
  • 41. 6.2.4. DETERMINACIÓN DE LA CAPACIDAD DEL CANAL Como se ha indicado anteriormente la central tiene una infraestructura existente (azud, canal, edi- ficio...) que se intentará aprovechar. Por este motivo la capacidad máxima que puede transpor- tar el canal de derivación limita el caudal a derivar hacia la central. La capacidad del canal suele determinarse a partir de fórmulas empíricas. Sin embargo, puede realizarse una estimación rápida de la misma a partir de la sección mojada mínima del canal. La sección mojada del canal es: S = b x a siendo, b = altura de la lámina de agua del canal en m a = anchura del canal en m 40 Figura 22. Sección más desfavorable del canal de derivación. La capacidad máxima de transporte del canal expresada en m3 /s estará comprendida entre el 80% y el 100% de ese valor. En este ejemplo: S = 0,8 x 1,5 = 1,2 m2 y la capacidad del canal estará comprendida en el siguiente intervalo: Q1 = (1,2 x 0,8) x m3 /s = 960 l/s Q2 = (1,2 x 1) x m3 /s = 1.200 l/s Aplicando cualquiera de las fórmulas empíricas existentes para el cálculo de la capacidad de transporte de canales abiertos, se hubiera obtenido que el canal puede transportar un caudal má- ximo de 1.000 l/s. 1,5 0,80 a b 0,15
  • 42. 6.2.5. DETERMINACIÓN DEL CAUDAL DE EQUIPAMIENTO Se dispone de una serie continua de caudales medios diarios de siete años registrados en una estación de aforo situada a 100 m aguas arriba de la central. Los datos de precipitaciones de los últimos 15 años, facilitados por la estación pluviométrica más próxima a la central, permiten distribuir esos años en años húmedos, normales y secos. Con los datos de caudales medios diarios correspondientes a los años normales se construye, como se señala en el apartado 3.5.2., la curva de caudales clasificados. 41 Figura 23. Curva de caudales clasificados. El caudal de equipamiento de la turbina se establece a partir de la curva de caudales clasifica- dos, a la que previamente se le ha descontado el caudal ecológico fijado por el organismo com- petente. En este caso, el caudal ecológico es de 100 l/s. Tal como se indica en el apartado 3.5.2., el caudal de equipamiento suele fluctuar entre el Q80 y el Q100. En este caso se tiene que el caudal concesional, 800 l/s, se corresponde con el Q100 y la capacidad máxima de transporte del canal, 1.000 l/s, con el Q80. Así, las distintas alternativas de caudal de equipamiento estarán comprendidas entre 800 l/s y 1.000 l/s. 6.2.6. DETERMINACIÓN DEL TIPO DE TURBINA Con los datos de salto y caudal que se tienen, aplicando el ábaco de la figura 15 resulta que el ti- po de turbina más adecuado para la minicentral del ejemplo es una PELTON.
  • 43. 6.2.7. ALTERNATIVAS DE INSTALACIÓN Se van a tener en cuenta tres posibles alternativas de instalación: 1ª Alternativa : Caudal de equipamiento igual al caudal concesional Q1= 800 l/s 2ª Alternativa : Caudal intermedio Q2 = 900 l/s 3ª Alternativa : Caudal de equipamiento igual a la máxima capacidad de transporte del canal Q3 = 1.000 l/s 6.2.8. PRODUCCIÓN MEDIA ANUAL En las tablas siguientes se indica para cada alternativa las horas de funcionamiento previstas, la potencia y los rendimientos de la turbina, así como la producción media esperada anual. Los rendimientos y las potencias para los distintos caudales son facilitados y garantizados por el fabricante de la turbina. En la figura 24 se representan a modo de ejemplo las curvas de rendi- mientos y potencias de una turbina Pelton para un Qn = 800 l/s y Hn = 170 m. Las horas de funcionamiento para cada caudal se obtienen a partir de la curva de caudales cla- sificados. 42 Figura 24. Curvas de rendimientos y potencias para una turbina Pelton (Qn = 800 l/s y Hn = 170 m) 100 200 300 400 500 600 700 800 90 88 86 84 82 80 70 1200 1100 1000 900 800 700 600 500 400 300 200 100 Caudal (l/s) Rendimiento(%) Potencia(kW) 1300 78 76 74 72
  • 44. 1ª Alternativa. Caudal de equipamiento Q1 = 800 l/s 43 Caudal (l/s) PRODUCCIÓN MEDIA ANUAL (kWh/año) 4.770.024 Rendimiento (%) Potencia (kW) Nº de horas de funcionamiento Producción media anual (kWh/año) > 800 800 - 700 700 - 600 600 - 500 500 - 400 400 - 300 300 - 200 200 - 100 100 - 80 87,6 88,4 89,5 89,6 88 88,8 88 84 80,4 1.168 1.105 970 821 660 518 367 210 121 2.592 264 312 336 192 384 696 1.152 408 3.027.456 291.720 302.640 275.856 126.720 198.912 255.432 241.920 49.368 Caudal (l/s) PRODUCCIÓN MEDIA ANUAL (kWh/año) 5.104.536 Rendimiento (%) Potencia (kW) Nº de horas de funcionamiento Producción media anual (kWh/año) > 900 900 - 800 800 - 700 700 - 600 600 - 500 500 - 400 400 - 300 300 - 200 200 - 100 100 - 90 87,6 88,4 89,5 89,6 87,6 88,5 88,8 87,2 84 80 1.314 1.252 1.119 971 803 664 518 363 210 127 2.352 240 264 312 336 192 384 696 1.152 192 3.090.528 300.480 295.416 302.952 269.808 127.488 198.912 252.648 241.920 24.384 Tabla 7. Producción media esperada en la central para un caudal de equipamiento de 800 l/s. 2ª Alternativa. Caudal intermedio Q2 = 900 l/s Tabla 8. Producción media esperada en la central para un caudal de equipamiento de 900 l/s. Caudal (l/s) PRODUCCIÓN MEDIA ANUAL (kWh/año) 5.407.488 Rendimiento (%) Potencia (kW) Nº de horas de funcionamiento Producción media anual (kWh/año) > 1.000 1.000 - 900 900 - 800 800 - 700 700 - 600 600 - 500 500 - 400 400 - 300 300 - 200 200 - 100 87,6 88,4 89,5 89,6 89,6 87,6 88,5 88,8 87,2 84 1.460 1.340 1.268 1.120 971 803 664 518 363 210 2.184 168 240 264 312 336 192 384 696 1152 3.188.640 225.120 304.320 295.680 302.952 269.808 127.488 198.912 252.648 241.920 3ª Alternativa. Caudal de equipamiento igual a la máxima capacidad de transporte del canal Q3 = 1.000 l/s Tabla 9. Producción media esperada en la central para un caudal de equipamiento de 1.000 l/s.
  • 45. 6.2.9. DESCRIPCIÓN DE LAS INSTALACIONES Y DE SU REHABILITACIÓN Una vez definidos el caudal de equipamiento y el salto neto, se realiza una inspección del estado de las instalaciones siguiendo el curso del agua desde la toma hasta el canal de salida, y se de- finen las obras que será necesario llevar a cabo para adecuar las instalaciones a las nuevas con- diciones del aprovechamiento. 6.2.9.1. Obra civil Azud Está construido en mampostería revestida de hormigón en masa y situado perpendicularmente al río. Su anchura es de 5 m y su altura de 3 m. El estado de conservación es bueno aunque habrá que nivelar la rasante de su coronación. Obra de toma En la margen derecha del río, y como prolongación del azud, se sitúa la toma de agua equipada con una rejilla de gruesos y una compuerta de madera que regula la entrada de agua al canal. Ambos equipos presentan un buen estado de conservación, por lo que no será necesario su rem- plazo. Canal de derivación El canal tiene una longitud de 1.200 m y una sección rectangular 1,5 x 0,95 m2 , siendo su capa- cidad de transporte máxima de 1.000 l/s. Está construido en mampostería y se encuentra cu- bierto de maleza y parcialmente aterrado debido a los desprendimientos y arrastres de agua. Ha- brá que proceder a su limpieza y a la reparación de grietas con mortero de cemento en muros y solera. Cámara de carga Al final del canal, separada de éste por una compuerta y una rejilla, se inicia la cámara de car- ga. Antes del comienzo de la cámara de carga, existe también otra compuerta lateral que per- mite el vaciado del canal. Será necesario sustituir estos equipos por otros nuevos, siendo las nue- vas compuertas de accionamiento oleohidráulico e incorporando la nueva reja, una máquina limpiarrejas automática. Tubería forzada La tubería forzada está totalmente inservible y por tanto habrá que remplazarla por una nueva tubería, aunque se aprovechará su actual trazado, los puntos de anclaje y los macizos de re- fuerzo. 44
  • 46. La tubería tendrá una longitud de 550 m. En cuanto a su diámetro, éste puede predimensionarse teniendo en cuenta la limitación de la velocidad del agua que debe existir a la entrada de la vál- vula de guarda de la turbina. • Para válvulas de mariposa: v ≤ 4 m/s • Para válvulas esféricas: v ≤ 7 m/s Aunque no debe adoptarse como criterio definitivo, en saltos inferiores a 200 m suelen instalarse válvulas de mariposa y en saltos superiores a 300 m, esféricas. Conocidos el caudal a turbinar y la máxima velocidad permitida a la entrada de la válvula de guar- da de turbina puede obtenerse la sección de esta válvula y por tanto, su diámetro: 45 S = Q V Siendo: Q = caudal en m3 /s v = velocidad en m/s S = sección en m2 El diámetro de la válvula da idea del diámetro de tubería a instalar, aunque hay que tener en cuen- ta que es conveniente que éste sea mayor, con el objeto de disminuir las pérdidas de carga. Diámetro tubería menor ⇒ Mayor velocidad del agua ⇒ Mayor pérdida de carga ⇒ Disminución del salto neto Diámetro tubería mayor ⇒ Menor velocidad del agua ⇒ Menor pérdida de carga ⇒ Menor dis- minución del salto neto En este ejemplo (salto inferior a 200 m), se instalará una válvula de mariposa automática. El diámetro de la válvula será: La tubería forzada se dimensiona buscando conseguir el mayor salto neto posible, es decir, las menores pérdidas de carga. Para ello se utilizan programas informáticos que calculan el diáme- tro de tubería que proporciona un compromiso óptimo entre el coste de la tubería (mayor diáme- tro ⇒ mayor coste económico) y las pérdidas de carga (mayor diámetro ⇒ menores pérdidas de carga ⇒ mayor salto neto ⇒ mayor producción eléctrica). En este ejemplo, la tubería forzada será de acero al carbono y tendrá un diámetro variable entre 700 mm y 800 mm según la alternativa elegida. Q = 800 l/s; π × D2 = 0,8 m3 /s ; D=505 mm; diámetro normalizado 550 mm 4 4 m/s Q = 900 l/s; π × D2 = 0,9 m3 /s ; D=535 mm; diámetro normalizado 550 mm 4 4 m/s Q = 1.000 l/s; π × D2 = 1,0 m3 /s ; D=564 mm; diámetro normalizado 600 mm 4 4 m/s
  • 47. Para poder aislar en caso necesario la cámara de carga de la tubería, se instalará al inicio de ésta una válvula. Edificio El edificio de la central tiene una sola planta de 7 m de altura y unas dimensiones interiores de 15 m de longitud por 7 m de anchura. Es capaz de albergar todo el equipamiento electromecá- nico. En general se encuentra en muy mal estado y su reconstrucción conllevará construir el te- jado completamente nuevo, instalar todas las ventanas y puertas, acondicionar el interior para la implantación de los equipos y sanear todas las fachadas exteriores. 6.2.9.2. Equipamiento electromecánico Turbina y generador Se ha señalado ya que se optaría por una turbina Pelton. La potencia en eje de turbina y del ge- nerador al que ésta se acople, dependerán de la alternativa seleccionada. En todos los casos el generador será síncrono con una tensión de generación de 380 V y con las siguientes potencias en eje: 46 1ª Alternativa Q1 = 800 l/s 1.168 1.115 2ª Alternativa Q2 = 900 l/s 1.314 1.250 3ª Alternativa Q3 = 1.000 l/s 1.460 1.390 Potencia en eje de turbina (kW) Potencia del generador (kW) Tabla 10. Potencias de turbinas y generadores. Instalación eléctrica En líneas generales es común para todas las alternativas y estará constituida por un transforma- dor de 1.600 kVA, con relación de transformación 13.200/380 V, armarios de medida, armarios de potencia, control y protecciones. La central estará totalmente automatizada incorporando todos los equipos de control y gobierno necesarios. El acoplamiento a la línea eléctrica se realizará, según las indicaciones de la compañía eléctri- ca, en la línea de alta tensión de 13,2 kV situada a 200 m de la central, por lo que será necesario construir 200 m de línea.
  • 48. 6.2.10. PRESUPUESTO El presupuesto debe incluir la valoración de las siguientes partidas: • obra civil • equipos mecánicos • equipos eléctricos • elementos auxiliares Este es el Presupuesto de Ejecución Material. Aplicándole un porcentaje en concepto de Gastos Generales (13%), otro en concepto de Beneficio Industrial (6%) y el impuesto sobre el valor aña- dido IVA, se obtiene el Presupuesto de Ejecución por Contrata. Los presupuestos para cada alternativa son los siguientes: 47 Tabla 11. Presupuestos comparados para las distintas alternativas de instalación. Obra civil y tubería forzada 45.000.000 45.000.000 53.500.000 Equipos mecánicos 36.200.000 39.500.000 44.700.000 Equipos eléctricos 20.000.000 21.250.000 23.200.000 Línea eléctrica 1.500.000 1.500.000 1.500.000 Elementos auxiliares 7.800.000 7.800.000 7.800.000 Proyectos y Dirección de obra 15.000.000 15.000.000 15.000.000 PRESUPUESTO EJECUCIÓN MATERIAL 125.500.000 130.050.000 145.700.000 13% Gastos Generales 16.315.000 16.906.500 18.941.000 6% Beneficio Industrial 7.350.000 7.803.000 8.742.000 Total 149.345.000 154.759.500 173.383.000 IVA 16% 23.895.200 24.761.520 27.741.280 PRESUPUESTO EJECUCIÓN POR CONTRATA 173.240.200 179.521.020 201.124.280 PRESUPUESTO (PTA) 1ª Alternativa Q = 800 l/s 2ª Alternativa Q = 900 l/s 3ª Alternativa Q = 1.000 l/s
  • 49. 6.2.11. ANÁLISIS DE RENTABILIDAD Una vez conocida la producción media anual y el valor de la inversión para las alternativas de ins- talación, se analizará la rentabilidad del proyecto en base al Periodo de Retorno (P.R.), el Índi- ce de Energía (I.E.) y el Índice de Potencia (I.P.). Los ingresos anuales previstos se obtienen a partir de la producción media anual considerando un precio de venta del kWh de 10,5 PTA/kWh. 48 Inversión sin IVA (PTA) 149.345.000 154.759.500 173.383.000 Ingresos por venta de energía (PTA) 50.085.252 53.597.628 56.778.624 Gastos de explotación (PTA) 4.100.000 4.100.000 4.100.000 Ingresos totales (PTA) 45.985.252 49.497.628 52.678.624 Período de Retorno (años) 3,25 3,13 3,29 Índice de Energía (PTA/kWh) 31,31 30,32 32,06 Índice de Potencia (PTA/kW) 127.864 117.777 118.755 ANÁLISIS DE RENTABILIDAD 1ª Alternativa Q = 800 l/s 2ª Alternativa Q = 900 l/s 3ª Alternativa Q = 1.000 l/s Tabla 12. Análisis de rentabilidad para las distintas alternativas de instalación. 6.2.12. PLANOS En el Estudio de Viabilidad se incluirán, al menos, los siguientes planos: • Plano de situación general • Plano de la topografía existente • Implantación de equipos en sala de máquinas para cada alternativa • Implantación de equipos en canal y cámara de carga • Plano de situación de la interconexión a la red eléctrica • Esquema unifilar de las instalaciones 6.2.13. CONCLUSIONES Como puede apreciarse en el análisis de rentabilidad (Tabla 12), tanto el Perí odo de Retorno como los Índices de Energía y Potencia son bastante similares en todos los casos, por lo que, en principio, cualquiera de las tres alternativas sería viable.
  • 50. La primera alternativa, Q = 800 l/s, tiene la ventaja de que la inversión a realizar es menor y de que al coincidir este caudal con el caudal concesional, los trámites para poner en funcionamiento la central se reducen considerablemente. Para las otras dos alternativas, Q = 900 l/s y Q = 1.000 l/s, la inversión es algo superior. De hecho, la inversión crece a medida que aumenta el caudal de equipamiento. Sin embargo, el tiempo de recuperación de la inversión es similar en los tres casos, y hay que tener en cuenta que una vez recuperada la inversión, los ingresos anuales previstos para las alternativas 2ª y 3ª son mayores. El inconveniente que presentan estas dos alternativas es la necesidad de solicitar un aumento del caudal concesional, puesto que este trámite puede durar entre dos y tres años. Considerando todo lo expuesto, se considera que la alternativa más adecuada es la que con- templa un caudal de equipamiento de 1.000 l/s, es decir, la tercera. 49
  • 52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . APÉNDICE A.1. EJEMPLOS REPRESENTATIVOS CENTRAL HIDROELÉCTRICA: ULLIBARRI DATOS UBICACIÓN: Municipio: ARRAZUA - UBARRUNDIA T. Histórico: ARABA Río: EMBALSE DE ULLIBARRI Cuenca: ZADORRA DATOS TÉCNICOS: Caudal (l/s): 800 Potencia instalada (kW): 149 Salto bruto (m): 25 a 27 Producción media (kWh/año): 500.000 Equipamiento: Una turbina Francis acoplada a un generador síncrono de 170 kVA y en para- lelo con la red a 13,0 kV. Observaciones: La Central se puso en funcionamiento en el año 1959 y aprovecha el caudal eco- lógico que deja el embalse de ULLIBARRI. 52 Foto 1. Grupo turbina - generador C.H. Ullibarri (Cortesía de Iberdrola, S.A.)
  • 53. CENTRAL HIDROELÉCTRICA: IRAUREGUI DATOS UBICACIÓN: Municipio: BARAKALDO T. Histórico: BIZKAIA Río: KADAGUA Cuenca: KADAGUA DATOS TÉCNICOS: Caudal (l/s): 6.100 Potencia instalada (kW): 470 Salto bruto (m): 9,68 Producción media (kWh/año): – Equipamiento: Dos turbinas Francis acopladas a dos alternadores asíncronos de 276 kVA cada uno, y en paralelo con la red a 13,0 kV. Observaciones: La Central se ha rehabilitado, poniéndose de nuevo en funcionamiento en Mar- zo de 1995. Se ha aprovechado una de las turbinas antiguas y se han instala- do la otra turbina, los dos generadores y los cuadros eléctricos nuevos. 53 Foto 2. Interior de la C.H. Irauregui, periodo de obras (Cortesía de Irauregui, S.L.)
  • 54. CENTRAL HIDROELÉCTRICA: LA MELLA DATOS UBICACIÓN: Municipio: ZALLA T. Histórico: BIZKAIA Río: KADAGUA Cuenca: KADAGUA DATOS TÉCNICOS: Caudal (l/s): 4.000 Potencia instalada (kW): 360 Salto bruto (m): 11,62 Producción media (kWh/año): 1.400.000 Equipamiento: Dos turbinas Francis acopladas a generadores asíncronos y en paralelo con la red 13,2 kV. Observaciones: La Central se automatizó en el año 1990. Se han instalado los generadores y los cuadros eléctricos nuevos y se han reparado las turbinas antiguas. 54 Foto 3. Canal de derivación y cámara de carga C.H. La Mella (Cortesía de Electra La Mella, S.A.)
  • 55. CENTRAL HIDROELÉCTRICA: PATALA DATOS UBICACIÓN: Municipio: BERRIZ T. Histórico: BIZKAIA Río: GARAI (arroyos Urcillo, Arlaban, Akelkorta ...) Cuenca: IBAIZABAL DATOS TÉCNICOS: Caudal (l/s): 240 y 130 Potencia instalada (kW): 528 Salto bruto (m): 208 y 104 Producción media (kWh/año): 2.500.000 Equipamiento: Tres turbinas Pelton acopladas a tres generadores asíncronos; dos de 316 kVA y uno de 250 kVA y en paralelo con la red a 13,0 kV. Observaciones: La Central se puso en funcionamiento, con la maquinaria descrita, en 1951. Tie- ne dos saltos de agua denominados salto grande y salto pequeño de Garai. 55 Foto 4. Grupos turbina - generador C.H. Patala (Cortesía de Elektra Larrañaga, S.A.)
  • 56. CENTRAL HIDROELÉCTRICA: BERTXIN DATOS UBICACIÓN: Municipio: VILLABONA T. Histórico: GIPUZKOA Río: LEIZARAN Cuenca: ORIA DATOS TÉCNICOS: Caudal (l/s): 1.000 Potencia instalada (kW): 808 Salto bruto (m): 103 Producción media (kWh/año): 3.600.000 Equipamiento: Una turbina Francis de eje horizontal de 808 kW acoplada a un generador asín- crono de 1.000 kVA y en paralelo con la red a 30 kV. Observaciones: La Central se rehabilitó en el año 1988. Se acondicionó el edificio y se instaló todo el equipamiento electromecánico nuevo. 56 Foto 5. Grupo turbina - generador C.H. Bertxin (Cortesía de C.H. Bertxin, S.A.)
  • 57. CENTRAL HIDROELÉCTRICA: BARRENA - BERRI DATOS UBICACIÓN: Municipio: ELGOIBAR T. Histórico: GIPUZKOA Río: DEBA Cuenca: DEBA DATOS TÉCNICOS: Caudal (l/s): 7.000 Potencia instalada (kW): 621 Salto bruto (m): 9,61 Producción media (kWh/año): 2.250.000 Equipamiento: Una turbina Kaplan de eje horizontal de 621 kW, acoplada a un generador sín- crono de 781 kVA y en paralelo con la red a 30 kV. Observaciones: La Central se rehabilitó en el año 1991, instalándose todo el equipamiento elec- tromecánico nuevo y construyendo un nuevo edificio y el canal de salida. 57 Foto 6. Canal de derivación y transformador C.H. Barrena-Berri (Cortesía de Saltos del Deva, S.R.L.)
  • 58. CENTRAL HIDROELÉCTRICA: LEIZARAN DATOS UBICACIÓN: Municipio: ANDOAIN T. Histórico: GIPUZKOA Río: LEIZARAN Cuenca: ORIA DATOS TÉCNICOS: Caudal (l/s): 3.000 Potencia instalada (kW): 3.600 Salto bruto (m): 208 Producción media (kWh/año): 17.000.000 Equipamiento: Una turbina Francis de eje horizontal de 3.600 kW acoplada a un generador sín- crono de 4.500 kVA y en paralelo con la red a 30 kV. Observaciones: La Central se puso en funcionamiento en 1904 y las instalaciones se moderni- zaron en 1964. 58 Foto 7. Edificio y canal de salida C.H. Leizarán (Cortesía de Iberdrola, S.A.)
  • 59. CENTRAL HIDROELÉCTRICA: SOLOGOEN DATOS UBICACIÓN: Municipio: SORALUZE T. Histórico: GIPUZKOA Río: DEBA Cuenca: DEBA DATOS TÉCNICOS: Caudal (l/s): 5.000 Potencia instalada (kW): 400 Salto bruto (m): 9,7 Producción media (kWh/año): 800.000 Equipamiento: Una turbina Kaplan de eje vertical de 400 kW acoplada a un generador asín- crono de 425 kW, en paralelo con la red a 13,2 kV. Observaciones: La Central se rehabilitó en el año 1991, construyéndose un nuevo edificio e ins- talándose todo el equipamiento electromecánico nuevo. 59 Foto 8. Cámara de carga y edificio C.H. Sologoen (Cortesía de C.H. Sologoen, S.A.)
  • 60. CENTRAL HIDROELÉCTRICA: OLATE DATOS UBICACIÓN: Municipio: OÑATI T. Histórico: GIPUZKOA Río: ARANTZAZU Cuenca: DEBA DATOS TÉCNICOS: Caudal (l/s): 1.100 - 325 - 220 - 1.000 Potencia instalada (kW): 4.712 Salto bruto (m): 103,5 - 217,8 - 460,2 - 270,7 Producción media (kWh/año): 12.500.000 Equipamiento: Una turbina Francis y tres turbinas Pelton acopladas a generadores síncronos en paralelo y en isla con la red a 13,2 kV. Observaciones: La Central se rehabilitó en el año 1991, se acondicionó el edificio existente y se instaló todo el equipamiento nuevo. 60 Foto 10. Entrada tuberías forzadas en el edificio de la C.H. Olate (Cortesía de Oñatiko Ur-Jausiak, S.A.) Foto 9. Interior del edificio de la C.H. Olate (Cortesía de Oñatiko Ur-Jausiak, S.A.)
  • 61. CENTRAL HIDROELÉCTRICA: UBAO - TOKILLO DATOS UBICACIÓN: Municipio: OÑATI T. Histórico: GIPUZKOA Río: OÑATE Cuenca: DEBA DATOS TÉCNICOS: Caudal (l/s): 225 Potencia instalada (kW): 577 Salto bruto (m): 305,5 Producción media (kWh/año): 800.000 Equipamiento: Una turbina Pelton acoplada a un generador asíncrono de 756 kVA, en pa- ralelo y en isla con la red a 13,2 kV. Observaciones: Esta Central es de nueva construcción y está formada por la unión de los saltos de UBAO y TOKILLO. Se ha construido un nuevo edificio donde estaba situada la antigua Central de Tokillo y su puesta en funcionamiento se ha realizado a principios de 1995. 61 Foto 11. Grupo turbina - generador y cuadros eléctricos de la C.H. Ubao-Tokillo (Cortesía de Oñatiko Ur-Jausiak, S.A.)
  • 62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . APÉNDICE A.2. ALCANCE MÍNIMO ACONSEJABLE PARA LOS ESTUDIOS DE VIABILIDAD DE MINICENTRALES HIDROELÉCTRICAS I. ANÁLISIS Y SELECCIÓN DE ALTERNATIVAS 1. IDENTIFICACIÓN Y ANÁLISIS DE LA INFORMACIÓN DISPONIBLE 1.1. Datos concesionales. Situación actual 1.2. Datos topográficos 1.3. Datos hidrológicos 1.4. Estudios realizados por • Ingenierías • Suministradores 2. MEDICIONES TOPOGRÁFICAS E HIDROLÓGICAS 2.1. Topográficas • Altimetría • Planimetría 2.2. Hidrológicas • Curvas de caudales clasificados 3. DESCRIPCIÓN DEL ESTADO ACTUAL DE LAS INSTALACIONES 3.1. Presa de regulación 3.2. Azud de derivación 3.3. Canal 3.4. Cámara de carga 3.5. Tubería forzada 3.6. Edificio de la central 3.7. Equipos existentes (turbina, generador,...) 3.8. Línea de salida 4. DEFINICIÓN TÉCNICA DE ALTERNATIVAS 4.1. Equipos • Turbinas. Potencias nominales • Generador • Resto 4.2. Producciones 5. CONEXIÓN A LA RED 5.1. Condiciones reglamentarias 5.2. Definición técnico-económica 6. EVALUACIÓN ECONÓMICA 6.1. Inversiones • Obras y equipos comunes • Equipamiento específico • Inversiones totales 62
  • 63. 6.2. Ingresos 6.3. Costos adicionales de explotación (Mantenimiento, personal, seguros, etc.) 7. BENEFICIOS SECUNDARIOS 7.1. Aspectos fiscales 8. ANÁLISIS TÉCNICO-ECONÓMICO 8.1. Evaluación de los siguientes parámetros para cada alternativa • Inversión total • Plazo de recuperación • TIR 8.2. Índices económicos • Índice de energía (PTA/kWh) • Coste específico de la potencia instalada (PTA/kW) • Cuadro comparativo 9. PROPUESTA DE ACTUACIÓN 9.1. Selección de alternativas. Comparaciones 9.2. Conclusiones 9.3. Recomendaciones 10. PLANOS, GRÁFICOS Y DOCUMENTACIÓN 10.1. Planos • De situación general • De implantación del canal y de la central • De la cuenca del río • De disposición de máquinas y de equipos, para cada una de las alternativas. 10.2. Gráficos • Caudales clasificados • Para cada una de las alternativas, curvas de rendimiento 10.3. Documentación técnico-administrativa II. PROFUNDIZACIÓN EN LA SOLUCIÓN ELEGIDA 1. ASPECTOS TÉCNICOS 2. NEGOCIACIONES CON AGENTES IMPLICADOS 2.1. Comisaría de Aguas 2.2. Empresa suministradora de electricidad 2.3. Organismos públicos • Subvenciones • Aspectos fiscales 3. ESTUDIO ECONÓMICO-FINANCIERO 3.1. Inversión 3.2. Subvenciones 3.3. Ingresos anuales previstos 3.4. Gastos anuales previstos 3.5. Plazo de Recuperación 3.6. TIR 3.7. Costo del kWh a lo largo del tiempo 3.8. Tabla económico-financiera 4. ESQUEMAS, PLANOS, GRÁFICOS Y DOCUMENTACIÓN 63
  • 64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . APÉNDICE A.3. RELACIÓN DE FABRICANTES DE TURBINAS HIDRÁULICAS 64 • AVERLY, S.A. Paseo Mª Agustín 57 - 59 50004 Zaragoza (Zaragoza) Teléfono: (976) 44 50 72 • BALIÑO, S.A. La Gándara - Corujo 36280 Vigo (Pontevedra) Teléfono: (986) 29 60 00 Fax: (986) 29 21 50 • BABCOCK HYDRO Parque Tecnológico - Pabellón 105 - Edificio Estrella 2ª planta 48016 Zamudio (Bizkaia) Teléfono: (94) 420 94 26 Fax: (94) 420 94 30 • KÖSSLER IBÉRICA, S.A. Madaripe Bidea, 2 48950 Erandio (Bizkaia) Teléfono: (94) 467 60 12 Fax: (94) 467 65 69 • MECÁNICA DE LA PEÑA, S.A. Aita Gotzon, 37 48610 Urduliz (Bizkaia) Teléfono: (94) 676 10 11 Fax: (94) 676 28 81 • NEYRPIC ESPAÑOLA, S.A. Ctra. D´Esplugues, 191 - 217 08940 Cornella de Llobregat (Barcelona) Teléfono: (93) 376 10 00 Fax: (93) 376 14 50 • SERVO SHIP, S.L. Avda. Cataluña 35 - 37 bloque 4, 1º Izda. 50014 Zaragoza (Zaragoza) Teléfono: (976) 29 80 39 Fax: (976) 29 21 34 • SULZER ESPAÑA, S.A. Paseo de la Castellana, 163 28046 Madrid (Madrid) Teléfono: (91) 571 33 56 Fax: (91) 571 32 72 • TALLERES MERCIER, S.A. Argualas, s/n 50012 Zaragoza (Zaragoza) Teléfono: (976) 56 10 17 Fax: (976) 56 38 55 • VOITH HYDRO TOLOSA, S.L. Padre Larramendi, 8 20400 Tolosa (Gipuzkoa) Teléfono: (943) 67 37 99 Fax: (943) 67 28 48
  • 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . APÉNDICE A.4. DIRECCIONES DE INTERÉS RELACIONADAS CON LAS MINICENTRALES DEL ENTORNO DE LA CAPV • MINISTERIO DE OBRAS PÚBLICAS TRANSPORTES Y MEDIO AMBIENTE CONFEDERACIÓN HIDROGRÁFICA DEL EBRO - COMISARÍA DE AGUAS Sagasta 24, 50006 Zaragoza (Zaragoza) Teléfono: (976) 22 19 91 Fax: (976) 21 45 96 • MINISTERIO DE OBRAS PÚBLICAS TRANSPORTES Y MEDIO AMBIENTE CONFEDERACIÓN HIDROGRÁFICA DEL NORTE - COMISARÍA DE AGUAS Plaza de España, 2 33007 Oviedo (Asturias) Teléfono: (985) 23 63 00 Fax: (985) 23 65 46 Gran Vía, 57 -7º izda 48011 Bilbao (Bizkaia) Teléfono: (94) 441 17 00 Fax: (94) 441 50 19 Paseo de Errotaburu, 1 - 8ª planta 20071 Donostia - San Sebastián (Gipuzkoa) Teléfono: (943) 31 18 19 Fax: (943) 31 19 64 • GOBIERNO VASCO DEPARTAMENTO DE TRANSPORTES Y OBRAS PÚBLICAS DIRECCIÓN DE PLANIFICACIÓN Y OBRAS HIDRÁULICAS Olaguibel, 38 01004 Vitoria-Gasteiz (Araba) Teléfono: (945) 18 97 33 Fax: (945) 18 97 42 65
  • 66. • GOBIERNO VASCO DEPARTAMENTO DE TRANSPORTES Y OBRAS PÚBLICAS SERVICIO TERRITORIAL DE AGUAS DE BIZKAIA Lehendakari Agirre, 9 - 6ª planta 48014 Bilbao (Bizkaia) Teléfono: (94) 475 33 00 Fax: (94) 476 30 02 • GOBIERNO VASCO DEPARTAMENTO DE TRANSPORTES Y OBRAS PÚBLICAS SERVICIO TERRITORIAL DE AGUAS DE GIPUZKOA Fueros, 1 - 2ª planta 20005 Donostia - San Sebastián (Gipuzkoa) Teléfono: (943) 42 45 20 Fax: (943) 42 38 10 • ENTE VASCO DE LA ENERGÍA (EVE) San Vicente, 8 (Edificio Albia), planta 14 48001 Bilbao (Bizkaia) Teléfono: (94) 423 50 50 Fax: (94) 424 97 33 • GOBIERNO VASCO DEPARTAMENTO DE INDUSTRIA, AGRICULTURA Y PESCA DELEGACIÓN TERRITORIAL DE BIZKAIA Máximo Aguirre, 18 bis - 2ª planta 48011 Bilbao (Bizkaia) Teléfono: (94) 488 14 00 Fax: (94) 488 14 45 • GOBIERNO VASCO DEPARTAMENTO DE INDUSTRIA, AGRICULTURA Y PESCA DELEGACIÓN TERRITORIAL DE GIPUZKOA Easo, 10 20006 Donostia - San Sebastián (Gipuzkoa) Teléfono: (943) 41 25 00 Fax: (943) 41 25 42 66
  • 67. • GOBIERNO VASCO DEPARTAMENTO DE INDUSTRIA, AGRICULTURA Y PESCA DELEGACIÓN TERRITORIAL DE ARABA Avda. Gazteiz, 59 01008 Vitoria - Gasteiz (Araba) Teléfono: (945) 22 42 12 Fax: (945) 18 77 87 • IBERDROLA, S.A. Gardoqui, 8 48008 Bilbao (Bizkaia) Teléfono: (94) 415 14 11 Fax: (94) 415 45 79/479 01 93 Guetaria, 13 20005 Donostia - San Sebastián (Gipuzkoa) Teléfono: (943) 42 36 80 Fax: (943) 43 16 55 Urartea, 2 01010 Vitoria - Gasteiz (Araba) Teléfono: (945) 22 90 00 Fax: (945) 22 40 79 67
  • 68. 68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . APÉNDICE A.5. RELACIÓN DE RÍOS DE LA CAPV CLASIFICADOS POR CUENCAS CUENCA RÍOS AGÜERA AGÜERA ARAIA ANARRI ARAIA ARTIBAI ARTIBAI BARBADÚN BARBADÚN GALDAMES GORITZA MERCADILLO BAYAS BAYAS BIDASOA BIDASOA BUTROI BUTROI INFIERNO DEBA ANTZUOLA ARAMAIO ARANTZAZU DEBA DESCARGA EGO KILIMON OÑATE EGA BERNEDO CONTRASTA EGA IZKIZ ERRIOXA (EBRO) OION RABIALGAS GINÉS IBAIZABAL ARRATIA ARRIA GARAY IBAIZABAL INDUSI MAÑARIA OROBIO ZALDU
  • 69. 69 CUENCA RÍOS INGLARES INGLARES KADAGUA KADAGUA HERRERÍAS ORDUNTE KARRANTZA KARRANTZA LEA LEA NERBIOI ALTUBE ARNAURI NERBIOI NERBIOI-IBAIZABAL ASUA GALINDO GOBELA OIARTZUN OIARTZUN OKA EA GOLAKO OKA OMECILLO HÚMEDO OMECILLO ORIA AGAUNTZA ALKASU ALKIZA AMEZKETA ARAXES BERASTEGI LEIZARAN ORIA SALUBITA ZALDIBIA PURÓN PURÓN UROLA ALZOLARAS ERREZIL UROLA URUMEA AÑARBE URUMEA ZADORRA AYUDA STA. ENGRACIA ZADORRA
  • 70. 70 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . APÉNDICE A.6. LEGISLACIÓN • LEY 82/1980, de 30 de diciembre, sobre Conservación de Energía. (BOE núm. 23, de 27 de ene- ro de 1981). • LEY 29/1985, de 2 de agosto, de Aguas. (BOE núm. 189, de 8 de agosto de 1985). • DECRETO 297/1994, de 12 de julio, por el que se aprueba el Acuerdo de la Comisión Mixta de Transferencias de 31 de mayo de 1994, sobre traspaso a la Comunidad Autónoma del País Vasco de las funciones y servicios en materia de Recursos y Aprovechamientos Hidráulicos. (BOPV núm. 140, de 22 de julio de 1994). • LEY 40/1994, de 30 de diciembre, de ordenación del Sistema Eléctrico Nacional. (BOE núm. 313, de 31 de diciembre de 1994). • REAL DECRETO 2366/1994, de 9 de diciembre, sobre producción de energía eléctrica por ins- talaciones hidráulicas, de cogeneración y otras abastecidas por recursos o fuentes de ener- gía renovables. (BOE núm. 313, de 31 de diciembre de 1994). • ORDEN de 12 de enero de 1995 por la que se establecen las tarifas eléctricas. (BOE núm. 12, de 14 de enero de 1995).
  • 71. 71 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIBLIOGRAFÍA • J COTILLON (1978): L´hydroélectricité dans le monde. La Houille Blanche, reuve internationa- le de L´eau, numéro spécial 1-2. Ed. Société Hydrotechnique de France. • G. ZOPPETTI (1982): Centrales hidroeléctricas, quinta edición. Ed. G. Gili, S.A. • DEPARTEMENT D´INDUSTRIA I ENERGÍA. GENERALITAT DE CATALUNYA (1983): Petites Cen- trals Hidroeléctriques. • CADEM (1985): Manual de Eficiencia Energética eléctrica en la industria, Tomo I y Tomo II. Ed. Servicio Central de Publicaciones del Gobierno Vasco. • CLAUDIO MATAIX (1986): Mecánica de Fluidos y Máquinas Hidráulicas, segunda edición. Ed. del Castillo, S.A. • MOPU, DIRECCIÓN GENERAL DE OBRAS HIDRÁULICAS (1986): Pequeñas centrales hidroe- léctricas. Manual. Ed. Centro de publicaciones Secretaría General Técnica, Ministerio de Obras Públicas y Urbanismo. • IDAE (1987): II Jornadas de energía minihidráulica. • CEE, ESHA, IDAE (1989): Hidroenergía 89. Conferencia y Exposición Internacional de Energía Hidráulica. • EVE (1989): Inventario de Aprovechamientos Hidroeléctricos en la CAPV. • SECRETARÍA GENERAL DE LA ENERGÍA Y RECURSOS MINERALES, IDAE (1992): Minicen- trales hidroeléctricas. Manual de Energías Renovables/3. Ed. Cinco días. • GRUPO DE FORMACIÓN DE EMPRESAS ELÉCTRICAS (1994): Centrales Hidroeléctricas. • GRUPO FORMACIÓN DE EMPRESAS ELÉCTRICAS (1994): Centrales Hidroeléctricas Tomo I, Conceptos y Componentes Hidráulicos, Tomo II, Turbinas Hidráulicas. Ed. PARANINFO, S.A. • EVE (1994): Inventario de Minicentrales Hidroeléctricas en la CAPV. • EVE (1995): Inventario de Minicentrales Hidroeléctricas de la CAPV.