SlideShare a Scribd company logo
1 of 43
Download to read offline
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Time Dispersion in
Quantum Mechanics
John Ashmead
International Association for Relativistic Dynamics - 2018 Yucatan
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Radical Conservatism
“Wheeler’s often unconventional
vision of nature was grounded in
reality through the principle of
radical conservatism, which he
acquired from Niels Bohr: Be
conservative by sticking to well-
established physical principles,
but probe them by exposing their
most radical conclusions.” – Kip
Thorne
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Wave Functions for
Alice & Bob
tim
e/Bob
space/Bob
time/Alice
space/Alice
present/future present/past
past/present
future/present
Alice( )
tAlice,xAlice( )
Bob
(
) tBob
,xBob
(
)
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
.177
ATTOSECONDS
• 500 as: Attosecond
double-slit experiment -
Lindner - 2005
• <1 as: Attosecond
correlation dynamics -
Ossiander - 2016
a0 = 5.310−11
m
c = 3108
m s
atime ≡ a0 c = 1.7710−19
= .177as
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
How to prove there is
no dispersion in time?
• Work from symmetry &
dimensional analysis
• Keep arguments simple
• Look for order of
magnitude effects
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
What are path integrals?
ψ B xB( )= Dxexp ι dsL x, !x[ ]
A
B
∫
⎛
⎝
⎜
⎞
⎠
⎟∫ ψ A xA( )
Dx = dxn
n=1
N−1
∏
L x, !x[ ]= T x, !x( )−V x, !x( )
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Laboratory timeds
A
B
∫
ds
A
B
∫
dτlab
A
B
∫
τ
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Coordinate time
tim
e/Bob
space/Bob
time/Alice
space/Alice
t
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Morlet Wavelets
��������� ����
���� ����
-3 -2 -1 1 2 3
-0.4
-0.2
0.2
0.4
φsl
daughter( )
t( )=
1
s
e
−ı
t−l
s
⎛
⎝⎜
⎞
⎠⎟
−
1
e
⎛
⎝
⎜
⎞
⎠
⎟ e
−
1
2
t−l
s
⎛
⎝⎜
⎞
⎠⎟
2
φ Mom( )
t( )=
1
s
e−ıt
−
1
e
⎛
⎝⎜
⎞
⎠⎟ e
−
1
2
t2
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Lagrangian
−
1
2
am!xµ
!xµ − aq!xµ
Aµ x( )− ab
m
2
d
dτ
δ L
δ !xµ
−
δ L
δ xµ
= 0
L t,
!
x, !t,
!"x( )= −
1
2
m!t2
+
1
2
m
!"x ⋅
!"x − q!tΦ t,
!
x( )+ q!xj Aj t,
!
x( )−
1
2
m
!
E = −∇Φ −
∂
!
A
∂t
,
!
B = ∇ ×
!
A
m!!t = q
!
E ⋅
!"x
m
!""x = q!t
"
E + q
!"x ×
!
B
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Convergence
KBA = lim
N→∞
CN d
n=1
n=N
∏∫ tnd
!
xne
ıε Lj
j=1
N+1
∑
Lj ≡ !Lj
t
+ Lj
!
x
+ Lj
m
!Lj
t
≡ −a
m
2
tj − tj−1
ε
⎛
⎝⎜
⎞
⎠⎟
2
− qa
tj − tj−1
ε
Φ xj( )+ Φ xj−1( )
2
Lj
!
x
≡ a
m
2
!
xj −
!
xj−1
ε
⎛
⎝⎜
⎞
⎠⎟
2
+ qa
!
xj −
!
xj−1
ε
⋅
!
A xj( )+
!
A xj−1( )
2
Lj
m
≡ −ab
m
2
d
−∞
∞
∫−∞
∞
∫ tjd
!
xe
−ıam
tj −tj−1( )
2
2ε
+ıam
!
xj −
!
xj−1( )
2
2ε
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Single slice
j j+1 j+2 j+3j-3 j-2 j-1
ε ≡
T
N
ϕj tj ,
!
xj( )= d
−∞
∞
∫−∞
∞
∫ tj−1d
!
xj−1Kj, j−1 tj ,
!
xj;tj−1,
!
xj−1( )ϕj−1 tj−1,
!
xj−1( )
ϕjtj,
!
xj()
ϕj−1tj−1,
!
xj−1() Kj, j−1 tj ,
!
xj;tj−1,
!
xj−1( )∼ e
−ıam
tj −tj−1( )
2
2ε
+ıam
!
xj −
!
xj−1( )
2
2ε
j-4
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Normalization
!ϕ0 t0( )≡
1
πσt
2
4 e
−ıE0t0 −
t0 −t0( )2
2σt
2
!ϕε t1( )= d∫ t0e
−ı
am
2ε
t1−t0( )2
!ϕ0 t0( )
ϕε t1( )=
2πε
ıam
1
πσ0
2
4
1
fε
t( ) e
−ıE0t1+ı
E0
2
2am
ε−
1
2σ0
2
fε
t( ) t1−t0 −
E0
am
ε
⎛
⎝⎜
⎞
⎠⎟
2
fτ
t( )
≡ 1− ı
τ
mσt
2
1= d∫ t1
!ϕε
*
t1( ) !ϕε t1( )
CN ≡
ıam
2πε
N+1
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Path integral kernel
Kτ x′′
;x′
( )= lim
N→∞
D∫ xe
ı Lj
j=1
N+1
∑ ε
Dx ≡ −ı
m2
4π 2
a2
ε2
⎛
⎝⎜
⎞
⎠⎟
N+1
d4
n=1
n=N
∏ xn
Lj ≡ −am
xj − xj−1( )
2
2ε2
− aq
xj − xj−1
ε
A xj( )+ A xj−1( )
2
− b
m
2
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Schrödinger equation
ψτ +ε xj+1( )=
ıam
2πε
−
ıam
2πε
3
d4
∫ ξe
−
ıamξ2
2ε
−ıab
m
2
ε
×e
ıaqξν
Aν xj+1( )+
1
2
ξµ
∂µ( )Aν xj+1( )+…
⎛
⎝⎜
⎞
⎠⎟
× ψτ xj+1( )+ ξµ
∂µ( )ψτ xj+1( )+
1
2
ξµ
ξν
∂µ ∂νψτ xj+1( )+…
⎛
⎝⎜
⎞
⎠⎟
ξ ≡ xj − xj+1 ξ ∼ ε
ı
dψτ
dτ
t,
!
x( )= −
1
2ma
ı∂µ − aqAµ t,
!
x( )( ) ı∂µ
− aqAµ
t,
!
x( )( )− a2
bm2
( )ψτ t,
!
x( )
ı
dψτ
dτ
= −
1
2ma
ˆpµ − aqAµ( ) ˆpµ
− aqAµ
( )− a2
bm2
( )ψτ
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Long, Slow
Approximation
ı
dψτ x( )
dτ
≈ 0
p2
− a2
bm2
( )ψ ≈ 0 → a2
b = 1
p − aqA( )2
− m2
( )≈ 0 → a = 1→ b = 1
ı
dψτ
dτ
= −
1
2m
pµ − qAµ( ) pµ
− qAµ
( )− m2
( )ψτ
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
how long, how slow?
f ~ −
E2
−
!
p2
− m2
2m
E ~ m +
!
p2
2m
E2
−
!
p2
− m2
~ m +
!
p2
2m
⎛
⎝⎜
⎞
⎠⎟
2
−
!
p2
− m2
=
!
p2
2m
⎛
⎝⎜
⎞
⎠⎟
2
!
p2
2m
~ eV
f ~
eV2
MeV
~ eV ⋅10−6
Picoseconds
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Rest Frame of the
Vacuum
Gµν
+ 8πGT µν
( );ν
= 0
gµν = ηµν + hµν
Rµν
1( )
≡
1
2
∂2
hλ
λ
∂xµ
∂xν
−
∂2
hµ
λ
∂xλ
∂xκ
−
∂2
hκ
λ
∂xλ
∂xµ
+
∂2
hµν
∂xλ
∂xλ
⎛
⎝
⎜
⎞
⎠
⎟
Rµν
1( )
−
1
2
ηµκ Rλ
1( )λ
= −8πG Tµν − tµν( )
tµν ≡
1
8πG
Rµν −
1
2
gµκ Rλ
λ
− Rµν
1( )
+
1
2
ηµκ Rλ
1( )λ⎛
⎝⎜
⎞
⎠⎟
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Maximum entropy
E( )
E
1 = 1
E E = m2
+ p
2
E2
= m2
+ p2
= m2
+ p2
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Free kernel
ı
∂
∂τ
+
E2
− px
2
− m2
2m
⎛
⎝⎜
⎞
⎠⎟
ˆKτ p; ′p( )= δ 4( )
p − ′p( )δ τ( )
ˆKτ p; ′p( )= exp ι
p2
− m2
2m
τ
⎛
⎝⎜
⎞
⎠⎟ δ 4( )
p − ′p( )θ τ( )
Kτ x;x′
( )= −ı
m2
4π 2
τ 2
e
−
ım
2τ
x−x′
( )
2
−ı
m
2
τ
θ τ( )
ˆKs p; ′p( )≡ dτ
0
τ
∫ exp −sτ( ) ˆKτ p; ′p( )=
2mι
p2
− m2
+ 2mιs
ˆ
Ks p; ′p( )=
ι
p2
− m2
+ιε
τ → ∞ ⇒ s → 0
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Evolution of the
wave function
ϕ0 x( )≡
1
πσ x
2
4 e
ıp0 x−x0( )−
x−x0( )2
2σ x
2
ϕτ x( )=
1
πσ x
2
4
1
fτ
x( ) e
ıp0x−
1
2σ x
2
fτ
x( ) x−x0 −
p0
m
τ
⎛
⎝⎜
⎞
⎠⎟
2
−ı
p0
2
2m
τ
, fτ
x( )
≡ 1+ ı
τ
mσ x
2
!ϕ0 t( )≡
1
πσt
2
4 e
−ıE0 t−t0( )−
t−t0( )2
2σt
2
!ϕτ t( )=
1
πσt
2
4
1
fτ
t( ) e
−ıE0t+ı
E0
2
2m
τ −
1
2σt
2
fτ
t( ) t−t0 −
E0
m
τ
⎛
⎝⎜
⎞
⎠⎟
2
, fτ
t( )
≡ 1− ı
τ
mσt
2
ı t,x( )= t
2
2m
x
2
2m
+
m
2
t,x( ) t,x( )= t( ) x( )
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
• Paths only known
at ends
• At measurement
in space, x = X.
• Therefore at
measurement in
time, t = T.
Definition of
measurement
X −δ x < x < X +δ x
x
T−δt<t<T+δt
t,x
t = τ
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Simple and complex
Paths
Space
Time
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Time-of-Arrival
Δt( )2
=
1
2
!στ
2
+στ
2
( )=
1
2
1
σt
2
+
1
v2
σ x
2
⎛
⎝⎜
⎞
⎠⎟
τ 2
m2
Δt( )2
=
1
2
στ
2
=
1
2
1
v2
σ x
2
τ 2
m2
x
SQM
Source
Detector
TQ
LD
SQM
TQ
CM
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Single slit in SQM
• No uncertainty
principle in
time/energy
• Fast shutter
constricts gate
• Arbitrarily
small
dispersion
Source Gate Detector
W
Clipped
Unclipped
Unclipped
Clipped
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Single slit in TQ
• Uncertainty
principle in
time/energy
• Diffraction
• Arbitrarily large
dispersion
Source Gate Detector
W
Clipped
Diffracted
Diffracted
Clipped
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Why Field theory?
• Need short times, therefore high energies
• Need high velocities, therefore high energies.
• Need high energies, therefore will see particle creation.
• Particle creation implies multiple particles.
• Multiple particles implies field theory.
• Further, with one “extra” dimension, can TQ be
renormalized?
• And there is the intrinsic interest of the question.
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
A/B model
• A massive
spinless particle
(electron).
• B less massive
spinless
(photon).
• A emits and
absorbs B’s.
A
A’ B
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Fock Space
a!
k
†
n!
k
= n!
k
+1 n!
k
+1
a!
k
n!
k
= n!
k
n!
k
−1
a!
k
,a!
′k
†
⎡⎣ ⎤⎦ = δ !
k
!
′k
ak
†
nk = nk +1 nk +1
ak nk = nk nk −1
ak ,a ′k
†
⎡⎣ ⎤⎦ = δk ′k
• Box from x=-L to x=
+L
• 4D Box from t=-L to
t=+L
• Clock time from 0
to T. Need L>>T.
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Anti-symmetry in Time
φk ′k 1,2( )≡
1
2
φk 1( )φ ′k 2( )+φk 2( )φ ′k 1( )( )
ϕsym 1,2( )= !ϕsym 1,2( )ϕsym 1,2( )+ !ϕanti 1,2( )ϕanti 1,2( )
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Lagrangian
L φ,φ*
⎡⎣ ⎤⎦ =
1
2
∂φ*
∂τ
∂φ
∂τ
−
1
2
∇φ*
∇φ −
m2
2
φ*
φ
L0 =
1
2
∂µφ*
∂µ
φ −
m2
2
φ*
φ =
1
2
∂tφ*
∂tφ −
1
2
∇φ*
∇φ −
m2
2
φ*
φ
2mı
d
dτ
φ = − ω2
−
!
k2
− m2
( )φ
Lclock = mı !φ*
φ −φ* !φ( )
L φ,φ*
⎡⎣ ⎤⎦ = mı !φ*
φ −φ* !φ( )+
1
2
∂µφ*
∂µ
φ −
m2
2
φ*
φ −V φ*
,φ( )
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Generating function
KT ≡ Dφ exp ı dτ d4
xL φ,φ*
, !φ, !φ*
⎡⎣ ⎤⎦∫0
T
∫
⎛
⎝
⎜
⎞
⎠
⎟∫ Dφ ≡ dφn
*
x( )dφn x( )
x
∏n=1
N
∏
〈 ′ψ | Dφ exp ı dτ d4
xL φ,φ*
, !φ, !φ*
⎡⎣ ⎤⎦∫0
T
∫
⎛
⎝
⎜
⎞
⎠
⎟∫ ψ
Z J[ ]≡ 〈0 | Dφ exp ı dτL φ,φ*
, !φ, !φ*
⎡⎣ ⎤⎦ + Jτ x[ ]φ x( )+ Jτ
*
x[ ]φ*
x( )
0
T
∫
⎛
⎝
⎜
⎞
⎠
⎟∫ 0
Z J[ ]= Z 0[ ]exp ıW J[ ]( )
K ′τ τ
2( )
′x ;x( )=
δ 2
W J[ ]
δ J ′τ ′x( )δ Jτ x( ) J ′τ ,Jτ =0
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Propagator
W J[ ]= −
1
2
dτ d ′τ∫ d4
xd4
′x Jτ x( )D x − ′x( )J ′τ ′x( )∫
2mι
∂
∂τ
− ∂µ
∂µ + m2
( )⎛
⎝⎜
⎞
⎠⎟ Dτ ′τ x − ′x( )= δ τ − ′τ( )δ 4( )
x − ′x( )
Dτ p, ′p( )=
1
2m
exp ı
p2
− m2
2m
τ
⎛
⎝⎜
⎞
⎠⎟ δ 4
p − ′p( )θ τ( )
Ds p, ′p( )= dτ exp −sτ( )
0
∞
∫ Dτ p, ′p( )=
ι
p2
− m2
+ 2mιs
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Feynman Rules
• Topology unchanged
• Every SQM propagator replaced
by a TQ propagator (fuzzier)
• The four dimension energy-
momentum delta function at each
vertex is to be understood as in
terms of the coordinate energy.
• Amplitudes are to be integrated
over intermediate values of the
clock time
• Only problems with finite time
are interesting: no beams, cross-
sections, rates, or averages.
A
A’
B
= 0
= 1
= T
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Loop Correction: SQM
d4
k
ι
p − k( )2
− m2
ι
k2
− m2∫ ~ ln Λ( )
I ≡ d4
k ˆK m( )
p − k( ) ˆK µ( )
k( )∫
pμ
kμ
p
μ k
μ
pμ
ˆK m( )
p − k( )=
ι
p − k( )2
− m2
ˆK µ( )
k( )=
ι
k2
− µ2
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Loop Correction: TQ I
ˆKτ
µ( )
p − k( )=
1
2m
exp ι
E − w( )2
−
!
p −
!
k( )
2
− m2
2m
τ
⎛
⎝
⎜
⎜
⎞
⎠
⎟
⎟
ˆKτ
µ( )
k( )=
1
2µ
exp ι
w2
−
!
k2
− µ2
2µ
τ
⎛
⎝⎜
⎞
⎠⎟
ˆIτ = d4
k ˆKτ
µ( )
k( ) ˆKτ
m( )
p − k( )∫
pμ
kμ
ˆK21
μ( )
k( )
p
μ k
μ
ˆK21
m( )
p k( )
ˆK10
m( )
p( )
pμ
ˆK32
m( )
p( )
ˆ0 p( )
0
1
2
3
Is p( )= d4
k
i
2 k2
(m + µ)− 2kµp + µ p2
− m(m + µ − 2is)( )( )∫
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Loop correction: TQ II
ˆIτ =
1
4µm
ˆIt
ˆIx
ˆIy
ˆIz exp −ι
m + µ
2
τ
⎛
⎝⎜
⎞
⎠⎟
ˆIt ≡ dwdE exp ι
w2
2µ
τ
⎛
⎝⎜
⎞
⎠⎟ exp ι
E − w( )2
2m
τ
⎛
⎝
⎜
⎞
⎠
⎟
1
πσE
2
exp ιEt0 −
E − E0( )2
2σE
2
⎛
⎝
⎜
⎞
⎠
⎟∫
E0 → t0,E → t,σE
2
→ σt
2
,t0 → −E0,
τ → M,m → τ10,w → ′t ,µ → τ21
!ϕ2 ′′t( )= d ′t dt !K21 ′′t ; ′t( ) !K10 ′t ;t( ) !ϕ0 t( )∫
ˆIt =
2πµ
ιτ
2πm
ιτ
exp ιt0E0( )
1
πσE
2
4
1
fm+µ
t( ) e
−
E0
2
2σE
2
fm+µ
t( ) +ı
t0
2
2τ fm+µ
t( ) m+µ( )
fm+µ
t( )
= 1−ι
m + µ
τσE
2
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Loop corrections III
Is ′x ;x( )=
m2
4π 2
µ2
4π 2
dτ
1
τ 4
exp −sτ( )exp −ι
m + µ
2
τ −ι
m + µ
2τ
′x − x( )2⎛
⎝⎜
⎞
⎠⎟
0
∞
∫
Is ′x ;x( )= dτ exp −sτ( )Kτ
m( )
′x ;x( )Kτ
µ( )
′x ;x( )
0
∞
∫
Kτ
m( )
′x ;x( )= −
m2
4π 2
τ 2
exp −
ım
2τ
′′x − ′x( )2
− ı
m
2
τ
⎛
⎝⎜
⎞
⎠⎟ &m → µ
Is ′x ;x( )= c dτ
1
τ 4
exp −sτ( )exp −ιaτ −ι
b
τ
⎛
⎝⎜
⎞
⎠⎟
0
∞
∫
Is ′x ;x( )= −
m2
4π 2
µ2
4π 2
2(
m + µ
2
−ιs)2
K3 2 −ι
m + µ
2
′′x − ′x( )2
ι
m + µ
2
+ s
⎛
⎝⎜
⎞
⎠⎟
(−ι
m + µ
2
′′x − ′x( )2
)3/2
ι
m + µ
2
+ s
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Alice & Bob Wave
functions II
tim
e/Bob
space/Bob
time/Alice
space/Alice
present/future present/past
past/present
future/present
Bob( )
x Bob( )( )= Alice( )
Alice( )
Bob( )
x Alice( )
( )
Alice( )
x Alice( )( )= Bob( )
Bob( )
Alice( )
x Bob( )
( )
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Falsifiability
• Initial dispersion fixed by
symmetry & maximum
entropy
• Evolution fixed by long, slow
approximation
• Choice of frame has only
second order effects
“You can have as
much junk in the
guess as you like,
provided that the
consequences can
be compared with
experiment.”
— R. P. Feynman
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
QM Effects in Time
• Dispersion in time
• Uncertainty in time/energy
• Wave functions anti-symmetric in
time
• Cutoff dependence
• Shadowing in time
• Energy & time first class operators
• …
Source Gate Detector
W
Clipped
Diffracted
Diffracted
Clipped
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Mind the Gap
Relativity
Time & space
symmetric,
but positions
well-defined
Quantum
Mechanics
Uncertainty, but in the 3
space dimensions only
Quantize over time
as well
Quantize
spacetime ?
http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018
Thanks
• Martin Land & Larry
Horwitz
• Jonathan M. Smith
• Y. S. Kim
• Ferne C. Welch
• Quanta
• L. S. Schulman

More Related Content

More from John Ashmead

From Startup to Mature Company: PostgreSQL Tips and techniques
From Startup to Mature Company:  PostgreSQL Tips and techniquesFrom Startup to Mature Company:  PostgreSQL Tips and techniques
From Startup to Mature Company: PostgreSQL Tips and techniques
John Ashmead
 

More from John Ashmead (20)

Practical Telepathy: The Science & Engineering of Mind-Reading
Practical Telepathy:  The Science & Engineering of Mind-ReadingPractical Telepathy:  The Science & Engineering of Mind-Reading
Practical Telepathy: The Science & Engineering of Mind-Reading
 
From Startup to Mature Company: PostgreSQL Tips and techniques
From Startup to Mature Company:  PostgreSQL Tips and techniquesFrom Startup to Mature Company:  PostgreSQL Tips and techniques
From Startup to Mature Company: PostgreSQL Tips and techniques
 
Practical Telepathy: The Science & Engineering of Mind-Reading
Practical Telepathy:  The Science & Engineering of Mind-ReadingPractical Telepathy:  The Science & Engineering of Mind-Reading
Practical Telepathy: The Science & Engineering of Mind-Reading
 
Stargates: Theory and Practice
Stargates:  Theory and PracticeStargates:  Theory and Practice
Stargates: Theory and Practice
 
StarGates: Theory and Practice
StarGates:  Theory and PracticeStarGates:  Theory and Practice
StarGates: Theory and Practice
 
Quantum dots
Quantum dotsQuantum dots
Quantum dots
 
Star Gates: the Theory and Practice
Star Gates:  the Theory and PracticeStar Gates:  the Theory and Practice
Star Gates: the Theory and Practice
 
Time to the power of Tim
Time to the power of TimTime to the power of Tim
Time to the power of Tim
 
How many universes are there, anyway
How many universes are there, anywayHow many universes are there, anyway
How many universes are there, anyway
 
A Quantum of Mystery
A Quantum of MysteryA Quantum of Mystery
A Quantum of Mystery
 
Converting from MySQL to PostgreSQL
Converting from MySQL to PostgreSQLConverting from MySQL to PostgreSQL
Converting from MySQL to PostgreSQL
 
Seven War Stories and a Moral
Seven War Stories and a MoralSeven War Stories and a Moral
Seven War Stories and a Moral
 
MAMP Stack - Macintosh, Apache, MySQL, PHP
MAMP Stack - Macintosh, Apache, MySQL, PHPMAMP Stack - Macintosh, Apache, MySQL, PHP
MAMP Stack - Macintosh, Apache, MySQL, PHP
 
Automation
AutomationAutomation
Automation
 
Ruby on Rails & PostgreSQL - v2
Ruby on Rails & PostgreSQL - v2Ruby on Rails & PostgreSQL - v2
Ruby on Rails & PostgreSQL - v2
 
Invisibility: Theory & Practice - v3
Invisibility:  Theory & Practice - v3Invisibility:  Theory & Practice - v3
Invisibility: Theory & Practice - v3
 
Invisibility: Theory and Practice - v2
Invisibility:  Theory and Practice - v2Invisibility:  Theory and Practice - v2
Invisibility: Theory and Practice - v2
 
invisibility: Theory and Practice - v1
invisibility:  Theory and Practice - v1invisibility:  Theory and Practice - v1
invisibility: Theory and Practice - v1
 
Installing postgres & postgis
Installing postgres & postgisInstalling postgres & postgis
Installing postgres & postgis
 
Quantum Mechanics, Reality, & You
Quantum Mechanics, Reality, & YouQuantum Mechanics, Reality, & You
Quantum Mechanics, Reality, & You
 

Recently uploaded

CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
anilsa9823
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Lokesh Kothari
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
Sérgio Sacani
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
PirithiRaju
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
gindu3009
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Sérgio Sacani
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Sérgio Sacani
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Sérgio Sacani
 

Recently uploaded (20)

CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 

Time Dispersion and Quantum Mechanics

  • 1. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Time Dispersion in Quantum Mechanics John Ashmead International Association for Relativistic Dynamics - 2018 Yucatan
  • 2. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Radical Conservatism “Wheeler’s often unconventional vision of nature was grounded in reality through the principle of radical conservatism, which he acquired from Niels Bohr: Be conservative by sticking to well- established physical principles, but probe them by exposing their most radical conclusions.” – Kip Thorne
  • 3. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Wave Functions for Alice & Bob tim e/Bob space/Bob time/Alice space/Alice present/future present/past past/present future/present Alice( ) tAlice,xAlice( ) Bob ( ) tBob ,xBob ( )
  • 4. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 .177 ATTOSECONDS • 500 as: Attosecond double-slit experiment - Lindner - 2005 • <1 as: Attosecond correlation dynamics - Ossiander - 2016 a0 = 5.310−11 m c = 3108 m s atime ≡ a0 c = 1.7710−19 = .177as
  • 5. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 How to prove there is no dispersion in time? • Work from symmetry & dimensional analysis • Keep arguments simple • Look for order of magnitude effects
  • 6. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 What are path integrals? ψ B xB( )= Dxexp ι dsL x, !x[ ] A B ∫ ⎛ ⎝ ⎜ ⎞ ⎠ ⎟∫ ψ A xA( ) Dx = dxn n=1 N−1 ∏ L x, !x[ ]= T x, !x( )−V x, !x( )
  • 7. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Laboratory timeds A B ∫ ds A B ∫ dτlab A B ∫ τ
  • 8. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Coordinate time tim e/Bob space/Bob time/Alice space/Alice t
  • 9. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Morlet Wavelets ��������� ���� ���� ���� -3 -2 -1 1 2 3 -0.4 -0.2 0.2 0.4 φsl daughter( ) t( )= 1 s e −ı t−l s ⎛ ⎝⎜ ⎞ ⎠⎟ − 1 e ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ e − 1 2 t−l s ⎛ ⎝⎜ ⎞ ⎠⎟ 2 φ Mom( ) t( )= 1 s e−ıt − 1 e ⎛ ⎝⎜ ⎞ ⎠⎟ e − 1 2 t2
  • 10. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Lagrangian − 1 2 am!xµ !xµ − aq!xµ Aµ x( )− ab m 2 d dτ δ L δ !xµ − δ L δ xµ = 0 L t, ! x, !t, !"x( )= − 1 2 m!t2 + 1 2 m !"x ⋅ !"x − q!tΦ t, ! x( )+ q!xj Aj t, ! x( )− 1 2 m ! E = −∇Φ − ∂ ! A ∂t , ! B = ∇ × ! A m!!t = q ! E ⋅ !"x m !""x = q!t " E + q !"x × ! B
  • 11. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Convergence KBA = lim N→∞ CN d n=1 n=N ∏∫ tnd ! xne ıε Lj j=1 N+1 ∑ Lj ≡ !Lj t + Lj ! x + Lj m !Lj t ≡ −a m 2 tj − tj−1 ε ⎛ ⎝⎜ ⎞ ⎠⎟ 2 − qa tj − tj−1 ε Φ xj( )+ Φ xj−1( ) 2 Lj ! x ≡ a m 2 ! xj − ! xj−1 ε ⎛ ⎝⎜ ⎞ ⎠⎟ 2 + qa ! xj − ! xj−1 ε ⋅ ! A xj( )+ ! A xj−1( ) 2 Lj m ≡ −ab m 2 d −∞ ∞ ∫−∞ ∞ ∫ tjd ! xe −ıam tj −tj−1( ) 2 2ε +ıam ! xj − ! xj−1( ) 2 2ε
  • 12. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Single slice j j+1 j+2 j+3j-3 j-2 j-1 ε ≡ T N ϕj tj , ! xj( )= d −∞ ∞ ∫−∞ ∞ ∫ tj−1d ! xj−1Kj, j−1 tj , ! xj;tj−1, ! xj−1( )ϕj−1 tj−1, ! xj−1( ) ϕjtj, ! xj() ϕj−1tj−1, ! xj−1() Kj, j−1 tj , ! xj;tj−1, ! xj−1( )∼ e −ıam tj −tj−1( ) 2 2ε +ıam ! xj − ! xj−1( ) 2 2ε j-4
  • 13. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Normalization !ϕ0 t0( )≡ 1 πσt 2 4 e −ıE0t0 − t0 −t0( )2 2σt 2 !ϕε t1( )= d∫ t0e −ı am 2ε t1−t0( )2 !ϕ0 t0( ) ϕε t1( )= 2πε ıam 1 πσ0 2 4 1 fε t( ) e −ıE0t1+ı E0 2 2am ε− 1 2σ0 2 fε t( ) t1−t0 − E0 am ε ⎛ ⎝⎜ ⎞ ⎠⎟ 2 fτ t( ) ≡ 1− ı τ mσt 2 1= d∫ t1 !ϕε * t1( ) !ϕε t1( ) CN ≡ ıam 2πε N+1
  • 14. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Path integral kernel Kτ x′′ ;x′ ( )= lim N→∞ D∫ xe ı Lj j=1 N+1 ∑ ε Dx ≡ −ı m2 4π 2 a2 ε2 ⎛ ⎝⎜ ⎞ ⎠⎟ N+1 d4 n=1 n=N ∏ xn Lj ≡ −am xj − xj−1( ) 2 2ε2 − aq xj − xj−1 ε A xj( )+ A xj−1( ) 2 − b m 2
  • 15. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Schrödinger equation ψτ +ε xj+1( )= ıam 2πε − ıam 2πε 3 d4 ∫ ξe − ıamξ2 2ε −ıab m 2 ε ×e ıaqξν Aν xj+1( )+ 1 2 ξµ ∂µ( )Aν xj+1( )+… ⎛ ⎝⎜ ⎞ ⎠⎟ × ψτ xj+1( )+ ξµ ∂µ( )ψτ xj+1( )+ 1 2 ξµ ξν ∂µ ∂νψτ xj+1( )+… ⎛ ⎝⎜ ⎞ ⎠⎟ ξ ≡ xj − xj+1 ξ ∼ ε ı dψτ dτ t, ! x( )= − 1 2ma ı∂µ − aqAµ t, ! x( )( ) ı∂µ − aqAµ t, ! x( )( )− a2 bm2 ( )ψτ t, ! x( ) ı dψτ dτ = − 1 2ma ˆpµ − aqAµ( ) ˆpµ − aqAµ ( )− a2 bm2 ( )ψτ
  • 16. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Long, Slow Approximation ı dψτ x( ) dτ ≈ 0 p2 − a2 bm2 ( )ψ ≈ 0 → a2 b = 1 p − aqA( )2 − m2 ( )≈ 0 → a = 1→ b = 1 ı dψτ dτ = − 1 2m pµ − qAµ( ) pµ − qAµ ( )− m2 ( )ψτ
  • 17. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 how long, how slow? f ~ − E2 − ! p2 − m2 2m E ~ m + ! p2 2m E2 − ! p2 − m2 ~ m + ! p2 2m ⎛ ⎝⎜ ⎞ ⎠⎟ 2 − ! p2 − m2 = ! p2 2m ⎛ ⎝⎜ ⎞ ⎠⎟ 2 ! p2 2m ~ eV f ~ eV2 MeV ~ eV ⋅10−6 Picoseconds
  • 18. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Rest Frame of the Vacuum Gµν + 8πGT µν ( );ν = 0 gµν = ηµν + hµν Rµν 1( ) ≡ 1 2 ∂2 hλ λ ∂xµ ∂xν − ∂2 hµ λ ∂xλ ∂xκ − ∂2 hκ λ ∂xλ ∂xµ + ∂2 hµν ∂xλ ∂xλ ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ Rµν 1( ) − 1 2 ηµκ Rλ 1( )λ = −8πG Tµν − tµν( ) tµν ≡ 1 8πG Rµν − 1 2 gµκ Rλ λ − Rµν 1( ) + 1 2 ηµκ Rλ 1( )λ⎛ ⎝⎜ ⎞ ⎠⎟
  • 19. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Maximum entropy E( ) E 1 = 1 E E = m2 + p 2 E2 = m2 + p2 = m2 + p2
  • 20. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Free kernel ı ∂ ∂τ + E2 − px 2 − m2 2m ⎛ ⎝⎜ ⎞ ⎠⎟ ˆKτ p; ′p( )= δ 4( ) p − ′p( )δ τ( ) ˆKτ p; ′p( )= exp ι p2 − m2 2m τ ⎛ ⎝⎜ ⎞ ⎠⎟ δ 4( ) p − ′p( )θ τ( ) Kτ x;x′ ( )= −ı m2 4π 2 τ 2 e − ım 2τ x−x′ ( ) 2 −ı m 2 τ θ τ( ) ˆKs p; ′p( )≡ dτ 0 τ ∫ exp −sτ( ) ˆKτ p; ′p( )= 2mι p2 − m2 + 2mιs ˆ Ks p; ′p( )= ι p2 − m2 +ιε τ → ∞ ⇒ s → 0
  • 21. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Evolution of the wave function ϕ0 x( )≡ 1 πσ x 2 4 e ıp0 x−x0( )− x−x0( )2 2σ x 2 ϕτ x( )= 1 πσ x 2 4 1 fτ x( ) e ıp0x− 1 2σ x 2 fτ x( ) x−x0 − p0 m τ ⎛ ⎝⎜ ⎞ ⎠⎟ 2 −ı p0 2 2m τ , fτ x( ) ≡ 1+ ı τ mσ x 2 !ϕ0 t( )≡ 1 πσt 2 4 e −ıE0 t−t0( )− t−t0( )2 2σt 2 !ϕτ t( )= 1 πσt 2 4 1 fτ t( ) e −ıE0t+ı E0 2 2m τ − 1 2σt 2 fτ t( ) t−t0 − E0 m τ ⎛ ⎝⎜ ⎞ ⎠⎟ 2 , fτ t( ) ≡ 1− ı τ mσt 2 ı t,x( )= t 2 2m x 2 2m + m 2 t,x( ) t,x( )= t( ) x( )
  • 22. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 • Paths only known at ends • At measurement in space, x = X. • Therefore at measurement in time, t = T. Definition of measurement X −δ x < x < X +δ x x T−δt<t<T+δt t,x t = τ
  • 23. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Simple and complex Paths Space Time
  • 24. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Time-of-Arrival Δt( )2 = 1 2 !στ 2 +στ 2 ( )= 1 2 1 σt 2 + 1 v2 σ x 2 ⎛ ⎝⎜ ⎞ ⎠⎟ τ 2 m2 Δt( )2 = 1 2 στ 2 = 1 2 1 v2 σ x 2 τ 2 m2 x SQM Source Detector TQ LD SQM TQ CM
  • 25. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Single slit in SQM • No uncertainty principle in time/energy • Fast shutter constricts gate • Arbitrarily small dispersion Source Gate Detector W Clipped Unclipped Unclipped Clipped
  • 26. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Single slit in TQ • Uncertainty principle in time/energy • Diffraction • Arbitrarily large dispersion Source Gate Detector W Clipped Diffracted Diffracted Clipped
  • 27. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Why Field theory? • Need short times, therefore high energies • Need high velocities, therefore high energies. • Need high energies, therefore will see particle creation. • Particle creation implies multiple particles. • Multiple particles implies field theory. • Further, with one “extra” dimension, can TQ be renormalized? • And there is the intrinsic interest of the question.
  • 28. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 A/B model • A massive spinless particle (electron). • B less massive spinless (photon). • A emits and absorbs B’s. A A’ B
  • 29. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Fock Space a! k † n! k = n! k +1 n! k +1 a! k n! k = n! k n! k −1 a! k ,a! ′k † ⎡⎣ ⎤⎦ = δ ! k ! ′k ak † nk = nk +1 nk +1 ak nk = nk nk −1 ak ,a ′k † ⎡⎣ ⎤⎦ = δk ′k • Box from x=-L to x= +L • 4D Box from t=-L to t=+L • Clock time from 0 to T. Need L>>T.
  • 30. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Anti-symmetry in Time φk ′k 1,2( )≡ 1 2 φk 1( )φ ′k 2( )+φk 2( )φ ′k 1( )( ) ϕsym 1,2( )= !ϕsym 1,2( )ϕsym 1,2( )+ !ϕanti 1,2( )ϕanti 1,2( )
  • 31. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Lagrangian L φ,φ* ⎡⎣ ⎤⎦ = 1 2 ∂φ* ∂τ ∂φ ∂τ − 1 2 ∇φ* ∇φ − m2 2 φ* φ L0 = 1 2 ∂µφ* ∂µ φ − m2 2 φ* φ = 1 2 ∂tφ* ∂tφ − 1 2 ∇φ* ∇φ − m2 2 φ* φ 2mı d dτ φ = − ω2 − ! k2 − m2 ( )φ Lclock = mı !φ* φ −φ* !φ( ) L φ,φ* ⎡⎣ ⎤⎦ = mı !φ* φ −φ* !φ( )+ 1 2 ∂µφ* ∂µ φ − m2 2 φ* φ −V φ* ,φ( )
  • 32. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Generating function KT ≡ Dφ exp ı dτ d4 xL φ,φ* , !φ, !φ* ⎡⎣ ⎤⎦∫0 T ∫ ⎛ ⎝ ⎜ ⎞ ⎠ ⎟∫ Dφ ≡ dφn * x( )dφn x( ) x ∏n=1 N ∏ 〈 ′ψ | Dφ exp ı dτ d4 xL φ,φ* , !φ, !φ* ⎡⎣ ⎤⎦∫0 T ∫ ⎛ ⎝ ⎜ ⎞ ⎠ ⎟∫ ψ Z J[ ]≡ 〈0 | Dφ exp ı dτL φ,φ* , !φ, !φ* ⎡⎣ ⎤⎦ + Jτ x[ ]φ x( )+ Jτ * x[ ]φ* x( ) 0 T ∫ ⎛ ⎝ ⎜ ⎞ ⎠ ⎟∫ 0 Z J[ ]= Z 0[ ]exp ıW J[ ]( ) K ′τ τ 2( ) ′x ;x( )= δ 2 W J[ ] δ J ′τ ′x( )δ Jτ x( ) J ′τ ,Jτ =0
  • 33. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Propagator W J[ ]= − 1 2 dτ d ′τ∫ d4 xd4 ′x Jτ x( )D x − ′x( )J ′τ ′x( )∫ 2mι ∂ ∂τ − ∂µ ∂µ + m2 ( )⎛ ⎝⎜ ⎞ ⎠⎟ Dτ ′τ x − ′x( )= δ τ − ′τ( )δ 4( ) x − ′x( ) Dτ p, ′p( )= 1 2m exp ı p2 − m2 2m τ ⎛ ⎝⎜ ⎞ ⎠⎟ δ 4 p − ′p( )θ τ( ) Ds p, ′p( )= dτ exp −sτ( ) 0 ∞ ∫ Dτ p, ′p( )= ι p2 − m2 + 2mιs
  • 34. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Feynman Rules • Topology unchanged • Every SQM propagator replaced by a TQ propagator (fuzzier) • The four dimension energy- momentum delta function at each vertex is to be understood as in terms of the coordinate energy. • Amplitudes are to be integrated over intermediate values of the clock time • Only problems with finite time are interesting: no beams, cross- sections, rates, or averages. A A’ B = 0 = 1 = T
  • 35. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Loop Correction: SQM d4 k ι p − k( )2 − m2 ι k2 − m2∫ ~ ln Λ( ) I ≡ d4 k ˆK m( ) p − k( ) ˆK µ( ) k( )∫ pμ kμ p μ k μ pμ ˆK m( ) p − k( )= ι p − k( )2 − m2 ˆK µ( ) k( )= ι k2 − µ2
  • 36. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Loop Correction: TQ I ˆKτ µ( ) p − k( )= 1 2m exp ι E − w( )2 − ! p − ! k( ) 2 − m2 2m τ ⎛ ⎝ ⎜ ⎜ ⎞ ⎠ ⎟ ⎟ ˆKτ µ( ) k( )= 1 2µ exp ι w2 − ! k2 − µ2 2µ τ ⎛ ⎝⎜ ⎞ ⎠⎟ ˆIτ = d4 k ˆKτ µ( ) k( ) ˆKτ m( ) p − k( )∫ pμ kμ ˆK21 μ( ) k( ) p μ k μ ˆK21 m( ) p k( ) ˆK10 m( ) p( ) pμ ˆK32 m( ) p( ) ˆ0 p( ) 0 1 2 3 Is p( )= d4 k i 2 k2 (m + µ)− 2kµp + µ p2 − m(m + µ − 2is)( )( )∫
  • 37. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Loop correction: TQ II ˆIτ = 1 4µm ˆIt ˆIx ˆIy ˆIz exp −ι m + µ 2 τ ⎛ ⎝⎜ ⎞ ⎠⎟ ˆIt ≡ dwdE exp ι w2 2µ τ ⎛ ⎝⎜ ⎞ ⎠⎟ exp ι E − w( )2 2m τ ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ 1 πσE 2 exp ιEt0 − E − E0( )2 2σE 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟∫ E0 → t0,E → t,σE 2 → σt 2 ,t0 → −E0, τ → M,m → τ10,w → ′t ,µ → τ21 !ϕ2 ′′t( )= d ′t dt !K21 ′′t ; ′t( ) !K10 ′t ;t( ) !ϕ0 t( )∫ ˆIt = 2πµ ιτ 2πm ιτ exp ιt0E0( ) 1 πσE 2 4 1 fm+µ t( ) e − E0 2 2σE 2 fm+µ t( ) +ı t0 2 2τ fm+µ t( ) m+µ( ) fm+µ t( ) = 1−ι m + µ τσE 2
  • 38. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Loop corrections III Is ′x ;x( )= m2 4π 2 µ2 4π 2 dτ 1 τ 4 exp −sτ( )exp −ι m + µ 2 τ −ι m + µ 2τ ′x − x( )2⎛ ⎝⎜ ⎞ ⎠⎟ 0 ∞ ∫ Is ′x ;x( )= dτ exp −sτ( )Kτ m( ) ′x ;x( )Kτ µ( ) ′x ;x( ) 0 ∞ ∫ Kτ m( ) ′x ;x( )= − m2 4π 2 τ 2 exp − ım 2τ ′′x − ′x( )2 − ı m 2 τ ⎛ ⎝⎜ ⎞ ⎠⎟ &m → µ Is ′x ;x( )= c dτ 1 τ 4 exp −sτ( )exp −ιaτ −ι b τ ⎛ ⎝⎜ ⎞ ⎠⎟ 0 ∞ ∫ Is ′x ;x( )= − m2 4π 2 µ2 4π 2 2( m + µ 2 −ιs)2 K3 2 −ι m + µ 2 ′′x − ′x( )2 ι m + µ 2 + s ⎛ ⎝⎜ ⎞ ⎠⎟ (−ι m + µ 2 ′′x − ′x( )2 )3/2 ι m + µ 2 + s
  • 39. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Alice & Bob Wave functions II tim e/Bob space/Bob time/Alice space/Alice present/future present/past past/present future/present Bob( ) x Bob( )( )= Alice( ) Alice( ) Bob( ) x Alice( ) ( ) Alice( ) x Alice( )( )= Bob( ) Bob( ) Alice( ) x Bob( ) ( )
  • 40. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Falsifiability • Initial dispersion fixed by symmetry & maximum entropy • Evolution fixed by long, slow approximation • Choice of frame has only second order effects “You can have as much junk in the guess as you like, provided that the consequences can be compared with experiment.” — R. P. Feynman
  • 41. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 QM Effects in Time • Dispersion in time • Uncertainty in time/energy • Wave functions anti-symmetric in time • Cutoff dependence • Shadowing in time • Energy & time first class operators • … Source Gate Detector W Clipped Diffracted Diffracted Clipped
  • 42. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Mind the Gap Relativity Time & space symmetric, but positions well-defined Quantum Mechanics Uncertainty, but in the 3 space dimensions only Quantize over time as well Quantize spacetime ?
  • 43. http://timeandquantummechanics.comTime Dispersion in Quantum Mechanics/John Ashmead IARD-2018 Thanks • Martin Land & Larry Horwitz • Jonathan M. Smith • Y. S. Kim • Ferne C. Welch • Quanta • L. S. Schulman