Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.
化学スラスタ小史
~宇宙航行用の小型化学ロケットエンジンの歴史~
宮崎大学 各務聡(かかみ あきら)
web.kakami@gmail.com
このスライドについて
 このスライドは,新潟市の生涯学習センターにおいて2017
年10月27日に開催された電気推進夏の学校での講演「化
学スラスタ小史」を一部改変したものです.
 時間の関係上省略したスライドも追加しています.
 動画を...
はじめに
 化学スラスタなど宇宙機用化学推進の紹介
 一液式が中心
 ヒドラジン,推進機の構造,略史
 なぜ,「電気推進夏の学校」で?
 電気推進機の論文では,Introductionで化学推進と比較する
ことが多い.
 電気推進機...
自己紹介
 2003 LP-PPT(液体推進剤PPT)で博士
(工学)を取得(東京大学)
 2003-2005 九州工業大学(橘教授の研
究室)
 レーザにより燃焼を制御する固体
マイクロ推進機
 ヒドラジンの分解をプラズマにより
促進...
液体推進
 姿勢制御,軌道維持,軌道
遷移などに利用される
 二液式
 燃料: ヒドラジン
 酸化剤: 四酸化二窒素
 一液式
 推進剤:ヒドラジン
固体推進
 アポジモータとして利用
 軌道投入
 簡素な構造
 スロットリ...
一液式(Monopropellant thruster)
6
Pressurant
推力室 ノズル
触媒層(Catalyst bed)
粒状のイリジウム系触媒
メッシュ
• 推進剤: ヒドラジン, モノメチルヒドラジンなど
• 2液式よりも構造...
Astrium 4-N thruster
二液式推進機(bipropellant thruster)
加圧ガス
燃料
推力室
ノズル
衝突による液滴化
燃 料:ヒドラジン, モノメチルヒドラジン, 非対称ジメチルヒドラジン
酸化剤:四酸化二窒素(Nitrous tetroxide) o...
445-N bipropellant thruster firing
www.aeroejet.com
ATV thruster firing (200N?)
©ESA
ATV approaching ISS
©ESA
Falcon 9
©SpaceX
供給方法:圧送式
Blow down
Pressure-regulated
ターボポンプを用いない(USSRで例があった)
Wilfried Ley, Klaus Wittmann, Willi Hallman, Handbook of Spa...
供給方法:圧送式
Blow down
Pressure-regulated
Blow down mode w/ depressurization
ターボポンプを用いない(USSRで例があった)
Wilfried Ley, Klaus Wittm...
噴射器の形状
Showerhead Swirl
Wilfried Ley, Klaus Wittmann, Willi Hallman, Handbook of Space Technology, 2009
Automated
Transfer Vehicle
(ATV)
http://www.space-propulsion.com/spacecraft-propulsion/bipropellant-thrusters/200n-biprope...
Automated Transfer Vehicle (ATV) Docking on
12 August, 2014
https://youtu.be/lM7SeFqJ8M4
ヒドラジンと四酸化二窒素
N
N
H
H
H
H
O
N
O
O
O
N
www.3dchem.com
O
N
ヒドラジン(N2H4)略史
Theodor Curtius (1857-1928)
ヒドラジン単体として分離(1887)
Friedrich Raschig (1863-1928)
Olin Raschig ProcessにつながるRashin...
ヒドラジン略史
年
1930 還元剤としての使用
1933 von Braun, Das Mars ProjektでHNO3/N2H4を提案
1943 Me-163B rocket planeの初飛行
1950 ポリマーの発泡剤
1952 イソ...
ヒドラジンの特徴
 還元性,水溶性
 無色透明の液体
 毒性がある(発がん性含む)
 脱酸素剤,防食剤,清缶剤
 ボイラーなど
 水中の酸素を奪う
 殺虫剤の成分
 ワインの保存剤として使っているところもある*
 ワインにTe...
H
H
H
H
N
N
N
N
ヒドラジンの分解反応
4
3
(1 − 𝑥) mol
1
3
(1 + 2𝑥) mol
2𝑥 mol
自己
発熱
分解N
N
H
H
H
H
分子模型は, Wikipedia, www.3dchem.com
NH...
アンモニアの分解率は低いほどよい
G.P. Sutton,
Rocket Propulsion
Elements, 7th edition
発泡剤原料
41%
清缶剤・水処理剤
28%
工業薬品原料
21%
農薬原料
3%
医薬原料
1%
その他
6%
ヒドラジンの用途
(国内)
MHI, PWRプラントにおける 添加薬剤の低減に関する検討 , 日本原子力学会水化学部会第9回定例研...
火力プラントの腐食防止
椿﨑 仙市他,火力プラント水処理における脱ヒドラジンへの取組み,MHI技報,Vo.46 No.2, 2009
イソニアジド
第一三共 Medical Library
©Wikipedia
O
N
O
O
O
N
www.3dchem.com
O
N
四酸化二窒素
(N2O4, NTO, nitrogen tetroxide)
 Dinitrogen tetroxide
 Nitrogen peroxide
 無色の液体酸化...
高校化学とNTO: ルシャトリエの法則
-196℃ 0℃ 23℃ 35℃ 50℃
N2O4 NO2 (褐色)
©Wikipediawww.3dchem.com
自燃性(hypergolicity)
https://youtu.be/IcjYdEW_HLQ
Fiat lux!
Genesis 1:1
黎明(1950年代)
Спутник-1 (Sputnik 1)
1957年10月4日
直径:58 cm, 質量:83 kg
推進機は搭載せず ©Wikipedia
Launched on Oct. 11, 1958
Manufacturer: TRW
Diam.:74 cm
Mass: 34.2 kg
©Wikipedia
Pioneer I (Able-2)
-the first spacecraft ...
IXS-50
The Marin Company, THE VANGUARD SATELLITE LAUNCHING VEHICLE AN ENGINEERING SUMMARY, 1960
Manufacturer: Atlantic Res...
Launched on Oct. 11, 1958
Manufacturer: TRW
Diam.:74 cm
Mass: 34.2 kg
©Wikipedia
Pioneer I (Able-2)
-the first spacecraft ...
AIM-4Gの派生?
Falcon missile (AIM-4G, GAR-3A, Hughes & Thiokol)
Thiokol SP-188 (Isp: 204 s)
AIM-4Gの派生?
Falcon missile (AIM-4G, GAR-3A, Hughes & Thiokol)
Thiokol SP-188 (Isp: 204 s)One the other apex was a 13.3-kN-t...
1958 NASA/USAF SPACE PROBES (ABLE-1) FINAL REPORT VOL.2, 1959
計画では
月探査
月軌道への投入は失敗
流星塵密度
惑星間磁場
計測には成功
何の単語を検索した結果?
0 1
0
10
20
30
40
50
DTIC (Defense Technical Information Center)
Springer
ELSEVIER
NASA Technical Report Serv...
Thruster/Thrustor
Oxford American Dictionary
初出は1597年
(Merriam Webster’s Collegiate Dictionary, 11th edition)
Thrust
Oxford American Dictionary
初出は13世紀
(Merriam Webster’s Collegiate Dictionary, 11th edition)
Thrusterという新概念の誕生?
The development of small thrusters for spaceflight vehicles is
really a different business than those d...
Thruster & Thrustor
0
10
20
30
40
50
DTIC (Defense Technical Information Center)
Springer
ELSEVIER
NASA Technical Report S...
Thruster & Thrustor
0
10
20
30
40
50 NTRS, thruster
ELSEVIER, thruster
Springer, thruster
DTIC, thruster
NTRS, thrustor
EL...
正書法的にThrusterが正しい
In forming the agent-noun from the base thrust,
established rules of English orthography require that
th...
Thruster before 1959
Underseat Rocket
Motor MK 124
Figure: M.P. Audley, LOGISTICS MANAGEMENT REPORT FOR U.S. NAVY PROPELLA...
Thruster before 1959
Underseat Rocket
Motor MK 124
Figure: M.P. Audley, LOGISTICS MANAGEMENT REPORT FOR U.S. NAVY PROPELLA...
Thruster before 1959
Underseat Rocket
Motor MK 124
Figure: M.P. Audley, LOGISTICS MANAGEMENT REPORT FOR U.S. NAVY PROPELLA...
Thruster before 1959
Underseat Rocket
Motor MK 124
Figure: M.P. Audley, LOGISTICS MANAGEMENT REPORT FOR U.S. NAVY PROPELLA...
Bow thruster
Master suites
http://www.cunard.com
http://www.cunard.com
http://www.pcurtis.com/qv-intro.htm
©Wikipedia
(Que...
Bow thrusterの名称も1960年頃
Naval Engineers Journal (Wiley)U.S. Naval Research Laboratory
1 Oct 1962
A.S.M.E Journal, November ...
Side thruster
 Azimuth thruster
 Bow thruster
 Stern thruster
 Google scholar
 Bow thrusterが1961に報告書があるが,
 Bow thrus...
二覇(1960年代)
https://apod.nasa.gov
Collision of galaxies NGC 2207 and IC 2163
力拔山兮氣蓋世
史記 巻7 項羽本紀
1960年代のH2O2とN2H4
過酸化水素 ヒドラジン
触媒点火 可能 不可能
点火剤 不要 必要(NTO)
可変推力 容易
(パルス作動可)
困難
(流量制御を要す)
点火遅れ, ms 30-40 -
比推力, s 148-158 225-...
過酸化水素の栄光
Syncom II
(Launched on September 29, 1963)
対地同期衛星初のTV中継
This is the world’s first commercial
communications satel...
Syncom series
 Syncom II
 打ち上げ: 1963/9/29.
 対地同期衛星初のTV中
継
 H2O2スラスタとNitrogen
gas jetの併用
 Syncom III
 打ち上げ:1964/8/19
...
Starfinder apogee motor
Syncom III
SYNCOM ENGINEERING REPORT, VOLUME II, NASA TR R-252, 1967
H2O2 thruster
JET direction
J...
Syncom III
Starfinder apogee motor
SYNCOM ENGINEERING REPORT, VOLUME II, NASA TR R-252, 1967
JET
LATERAL H2O2 (No.1)
AXIAL...
Syncom II thrusters arrangement
Syncom III telecasted Tokyo Olympic games
(1964)
Starfinder apogee motor
Isp: 274 s, Burning time: 19.7 s, Max. thrust: 1120 lb (5000 N)
SYNCOM ENGINEERING REPORT, VOLUME ...
Восток-1 (Vostok-1)
Launched on April 12, 1961
Two redundant system †
Eight H2O2 monopropellant thruster †
Flight maneuver...
Mercury
有人飛行計画
1959年から1963年
1962年に地球3周
逆噴射
ロケット
耐熱保護板
居住区画
パラシュート
アンテナ
脱出ロケット
軌道投入
脱出ロ
ケット分
離
逆噴射
ロケット点
火
大気圏
再突入
パラシュート展
...
H2O2 thruster arrangement on Mercury
McDonnell Aircraft Corporation, Project Mercury Familiarization Manual, 1959
YAW
PITC...
H2O2 thruster arrangement on Mercury
J.B. Hammack and J.C. Heberling, THE MERCURY-REDSTONE PROGRAM, 1961
McDonnell Aircraft Corporation, Project Mercury Familiarization Manual, 1959
Mercury
H2O2 thruster
systems
24 lb H2O2 thruster
McDonnell Aircraft Corporation, Project Mercury Familiarization Manual, 1959
Catalyst bed
Catalyst cap...
Thiokol TE-236の亜種
(Orbital ATK Star 12)
Isp: 252 s
Thrust: 5560 N
Total impulse: 10,350 lbf-sec
(45,980 N-s)
Retro rocket
...
ヒドラジン一液式の黎明
Pioneer P-3 (Atras-Able-4)
1959年11月26日打ち上げ(打ち上げ失敗, 1960年のP-30, P-31も打ち上げ失敗)
メーカ: TRW (Northrop Grumman)
推進剤: H...
Mariner
series
NASA, NSSDCA
Mariner 2
(Mariner R-2)
Mariner 4
Launch on Nov. 28, 1964
Mission: mars exploration
Launch on ...
Mariner 2
(Mariner R-2)
Launch on Aug. 3, 1962
Mission: Venus exploration
Attitude control: Nitrogen gas jet system
4-jet ...
Mariner 4
Launch on Nov. 28, 1964
Mission: mars exploration
4-jet vane vector control 222-N motor (Slug start)
12 cold gas...
Mariner
Retro
Rocket
T. W. Price and D.D. Evans, The Status of Monopropellant Hydrazine Technology, 1968
R. V. Buren, MARI...
Thruster
arrangement for
Mariner 4
Mariner Mars 1971 Attitude Control Subsystem, 1974
Mariner Mars 1964 Handbook, 1965
Nit...
T. W. Price and D.D. Evans, The Status of Monopropellant Hydrazine Technology, 1968
H-7 catalyst
Nitrogen
(pressurant)
N2H...
Shell 405 (Aerojet 405)
• Iridiumベースの触媒
• Caltech JPLとShell Chemicals Companyが開発(1957–1960年頃)
• 1963 (1964?)から利用可能になる.
• こ...
過酸化水素の黄昏
 比推力の低さ
 H2O2: 148-158 s
 N2H4: 225-245 s
 長時間貯蔵における自己分解
 Shell 405の登場
 触媒点火
 Low ignition delay
 Pulse m...
Applications Technology Satellite 3
 技術試験
 静止衛星
 スピン安定
 通信(VHF, C-band)
 カメラ
 レジストジェット
 ヒドラジン一液式(4 lbs)
 1967年11月5...
Applications Technology Satellite 3
 技術試験
 静止衛星
 スピン安定
 通信(VHF, C-band)
 カメラ
 レジストジェット
 ヒドラジン一液式(4 lbs)
 1967年11月5...
Ammonia resistojet on ATS-III
Thruster #1 Thruster #2
Hot Cold Hot Cold
Thrust, mN 169 146 1850 1060
Isp, s 132 105 158 86...
ヒドラジンの躍進~Shell 405~
 1950年代からすでにヒドラジンは宇宙機に使用されてい
た.
 ヒドラジンの方が過酸化水素よりも比推力が高いが,過酸
化水素を駆逐するに至っていない.
 H2O2: 148-158 s
 N2H...
日本
平田稔,ガスジェット制御技術開発の足跡,日本航空宇宙学会誌 Vol. 33, No.379, 1985
1971 H2O2からヒドラジンへの変更
米国でヒドラジンスラスタの有用性が証明
(ATS-3を指す?)
H2O2
N2H4
H2O2の復活
 高密度
 NTOよりも高密度
 無毒
 人体はH2O2を分解できる
 3%のH2O2 = オキシドール
 大気と反応しない
 高O/F
 低い蒸気圧
 高い比熱
Instrumentation/Propulsion
The propellants are nitrogen tetroxide and unsymmetrical-dimethyl
hydrazine.
The main propulsio...
Descent Module on Soyuz TMA
“The eight hydrogen peroxide thrusters located on the module are used to control
the spacecraf...
ヒドラジンの強み:双璧
Catalyst NTO
Hydrazine
自己発熱分解が可能
タンクで自己分解しにくい
点火遅れが短い(msオーダ)
パルスモード作動可能 可変推力
比較的高い比推力(245 s)
アークジェットとの推進剤の共用
自...
栄華
(1970年~現在?)
この世をばわが世とぞ思ふ望月の欠けたることもなしと思へば
藤原道長
©Wikipedia
Viking
Viking 1 launched on Aug. 20, 1975
Landed on Mars on July 20, 1976.
https://www.nasa.gov/image-feature/sunset-at-th...
Viking lander
https://youtu.be/pwipxdQ74pU?t=43s
Viking orbiter and lander
https://nssdc.gsfc.nasa.gov/
2-axis gimballed main engine
Thrust vector control
(pitch and yaw)
...
Descent
capsule
LANDER
AEROSHELL
Viking Lander System
Primary Mission
Performance Report, 1977
Viking Lander Aeroshell
Four RCS modules
three 36-N thruster
Prop.: Hydrazine
Aeroshell
thrusters
Yaw & Pitch engine
Used for attitude control
Produce deorbit impulse
Thrust: 36N, Prop.: hydrazine
Rol...
Lander with
Terminal
Descent System
(TDS)
ROLL ENGINES (4)
TERLMINAL DESCENT ENGINE (3)
Descending
Pitch & Yaw ctrl
Thrust...
Neil A. et. Al., Viking '75 Spacecraft Design and Test Summary Volume I - Lander Design, 1980
Eckart W. Schmidt, History o...
Terminal Descent Engineが一液式である
理由
 一液式の方が排気ガスがクリーンである
 そのときは信じられていた.
 当時のスロットリングの限界
 必要なスロットル比:1:8
 SurveyorのBipropel...
18 nozzles
Viking 75 project: Viking lander system primary mission performance report, 1971
Eckart W. Schmidt, Viking Mars...
FIRST CLASS
PASSENGER
Eckart W. Schmidt, Viking Mars Lander
History - Hydrazine Monopropellant
History, 2015
Assembly at R...
Voyager mission
• Voyager 1
• Launched on Sep. 5,
1977
• Jupiter, Saturn
• Voyager 2
• Launched on Aug.
20, 1977
• Jupiter...
Voyager, the most distant artifact
21.0 billion km (140.6 AU), Velocity:17 km/s
17.3 billion km (115.8 AU)
Velocity: 15 km...
Voyager
spacecraft
MR-103
16 thrusters
0.89 N thrust
Attitude control
Trajectory correction
NASA, Voyager Backgrounder, 19...
Rocket Research Company, VOYAGER URANUS ENCOUNTER 0.2-lbf T/VA SHORT PULSE TEST REPORT, 1986
MR-103, a thruster designed f...
MR-103C
(Successor)
Propellant/Catalyst: Hydrazine/S405
Isp: 209-224 s
Total impulse: 186,000 Ns
Total pulses: 275,028
Min...
HYDRAZINE
THRUSTER
STAR 37E
Jettisoned
engines
Voyager-Bulletin-Mission-Status-Report
0.89 N (ATT CTRL & TRAJ CORR, Prop.: Viking grade N2H4)
441 N (Pitch and Yaw)
Solid motor
22 N (Roll)
441 N (Pitch and Yaw...
Rockets and thrusters on Voyager
On-board
 MR-103 (16 thrusters)
 Thrust: 0.89 N
 Isp: 227? s
 10-ms pulse
 Attitude/...
Voyager Propulsion Module
Eckart W. Schmidt, History of Hydrazine Monopropellants, 2009
©NASA/JPL
MR-104A/C
Propellant: Hydrazine
Catalyst: S405/LCH-202
Thrust: 204.6-572.5N
Isp: 239-223 s
Total impulse: 693,900 Ns
Total...
Aniline
Terminal Descent Engine for Viking
 一液式の燃焼ガスはきれいなはずだった
 比推力は二液式の方が有利だが一液が用いられた
 実際は,アニリンのためにシアン化水素(猛毒)が発生する
可能性があった.
 ...
MR-103 monopropellant thrusters on
Voyager
 着陸しない→HCNが発生し
てもよいはず
 当初はmonopropellant
grade (aniline 0.5%)を使用
した.
 pulse ...
Pulse shape distortion
L. Holcomb, et. Al., Effects of Aniline Impurities on Monopropellant Hydrazine Thruster Performance...
Pulse shape distortion
L. Holcomb, et. Al., Effects of Aniline Impurities on Monopropellant Hydrazine Thruster Performance...
Ignition delay
L. Holcomb, et. Al., Effects
of Aniline Impurities on
Monopropellant Hydrazine
Thruster Performance, 1977
A...
原因はaniline poisoning
 High purityで偶然実験したところ,aniline poisoningが原因
と判明.
 Voyagerの推進剤をHigh purity gradeに変更
 ヒータ電力の削減
 長寿命...
Ultra PureTMの誕生へ
 http://www.hydrazine.com/propellants/ultrapure.aspx
http://www.hydrazine.com/propellants/ultrapure.aspx...
Cassini
spacecraft
Two R-4D bipropellant engines
Orbital maneuvers
Trajectory corrections
Four RCS modules
Have four MR-10...
Thruster arrangements
 RCS module (4 modules)
 Has two redundant thruster
blanches
 Contains Y and Z direction thruster...
白虹日を貫く
NOAA, 1979
戦国策
~脱ヒドラジンの機運と電気推進の躍進~
ヒドラジンの毒性(NFPA 704)
健康障害
極めて短時間の暴露に
よっても死や重篤な後遺症
を招きうる
燃焼性
常温常圧下で急速または完
全に気化するか、空気中に
素早く分散して燃焼するもの
不安定性
爆轟や爆発的分解を起こし
うるものの高...
国際化学物質安全性カード
http://www.nihs.go.jp/ICSC/icssj-c/icss0281c.html
災害/暴露のタイプ 一次災害/急性症状
火災 引火性。
爆発
40℃以上では、蒸気/空気の爆発性混合気体を生じ
ること...
Green propellant
 Proposed in 1990s.
 Hydrogen peroxide
 Hydroxyl Ammonium Nitrate(HAN)
 AF-M315E
 SP-163
 Glycine a...
H2O2スラスタ
 60% 過酸化水素水
 理論比推力: 122 s
 触媒温度: 419 K
伴野眞優他,デブリ除去実証衛星「ADRAS-1」搭載一液式推進系の開発, 宇科連2016
Hodoyoshi 3の推進モジュールJun Mat...
SHP-163
 ISAS/JAXA
 HAN-based propellant
 Specific weight: 1.4
 Freezing point 243 K
 Low toxicity
 Isp: 276 s
O
N
H...
Hydroxyl Ammonium Nitrate (HAN)
 固体推進薬の酸化剤として
研究される
 水溶性
 イオン性液体
 LP-1845などHANをベースと
した発射薬がある.
 8 atmあたりで燃焼速度が
急激に上昇
I...
SHP-163 thrusters
© ISAS/JAXA © TMU
© OIT© Kyutech
Arcjet thruster w/ SHP-163 decomposed
gas
Plasma assisted monopropellan...
AF-M315E
 HAN based monopropellant
 Isp: 257 s
 12% higher than Hydrazine
 Specific weight: 1.47
 Hydrazine: 1.00
 L...
LMP-103S
 Monopropellant
 Higher performance
 Specific weight: 1.24, Isp: 230 s
 Freezing point : -90ºC
 Increased sa...
ADN (Ammonium Dinitramide)
 1970年代にソ連で発見
 1989年にアメリカで開発
されるまで機密扱い
 固体推進薬の酸化剤として
開発される.
 高性能,無煙燃焼
 HClを発生しない
 水溶性
 推...
ECAPS, HIGH PERFORMANCE GREEN PROPULSION (HPGP) ON-ORBIT VALIDATION & ONGOING DEVELOPMENT, 2013
新推進剤のまとめ
 高性能化
 高比推力,高比推力密度
 低融点
 環境適合性
 「ロケット燃料」の誕生
 ロケットエンジン専用の「ロケット燃料」(推進剤)が作ら
れつつある.
 カクテルの趣き.
 ヒドラジンやNTOは,工業用...
ヒドラジンの強み:双璧
Shell 405 NTO
Hydrazine
自己発熱分解が可能
タンクで自己分解しにくい
点火遅れが短い(msオーダ)
パルスモード作動可能 可変推力
比較的高い比推力(245 s)
アークジェットとの推進剤の共用
...
ポストヒドラジン
Catalyst OXIDIZER
• 実用化をしたものもあるが,特性評
価や現象解明は研究途上
• monopropellant 中のC原子やO原子
への耐性
• 高い燃焼温度に耐えうるか?
NTOも毒性があるため研
究が進...
Electric propulsion
 Higher specific impulse by an
order of magnitude
 400 s – 5,000 s
©ISAS
©Kyushu Univ
www.e-news.press
Boeing
702SP
 XIPS-25 system
 4 ion thrusters
 Thrust: 165 mN
 Isp: 3500 s
 Power: 4.5 kW
 Have no ...
現在の状況のまとめ
 脱ヒドラジン
 環境適合性と性能の向上
 カスタムメイドの推進薬の登場
 電気推進の躍進
 高比推力
 高性能化
 All electric propulsionの実証
今後の化学スラスタ
 ポストヒドラジンの行方は
 ヒドラジンは一液式,二液式,電気推進に適用可能.
 Green bipropellant thruster?
 Electric propulsion w/ green propella...
まとめ
 液体スラスタの構造と特徴
 ヒドラジンについて.
 用途,歴史
 化学スラスタ(一液)の略史
 一液式: Shell 405, Aniline対策
 脱ヒドラジン(Green propellant)と電気推進について
 ...
化学スラスタ小史 (A brief history of chemical rocket engines (thrusters) for spacecraft)
Nächste SlideShare
Wird geladen in …5
×

化学スラスタ小史 (A brief history of chemical rocket engines (thrusters) for spacecraft)

宇宙機搭載用の化学推進機(スラスタ)の構造と歴史について解説しています.

  • Als Erste(r) kommentieren

化学スラスタ小史 (A brief history of chemical rocket engines (thrusters) for spacecraft)

  1. 1. 化学スラスタ小史 ~宇宙航行用の小型化学ロケットエンジンの歴史~ 宮崎大学 各務聡(かかみ あきら) web.kakami@gmail.com
  2. 2. このスライドについて  このスライドは,新潟市の生涯学習センターにおいて2017 年10月27日に開催された電気推進夏の学校での講演「化 学スラスタ小史」を一部改変したものです.  時間の関係上省略したスライドも追加しています.  動画を使用しているため,リンク先を閲覧するときは,スト リーミングに耐えうるオンライン環境でご覧ください.
  3. 3. はじめに  化学スラスタなど宇宙機用化学推進の紹介  一液式が中心  ヒドラジン,推進機の構造,略史  なぜ,「電気推進夏の学校」で?  電気推進機の論文では,Introductionで化学推進と比較する ことが多い.  電気推進機は,教科書があるが・・・  電気推進ロケット入門(栗木先生,荒川先生編集)  イオンエンジンによる動力飛行(國中先生他)  一方,化学スラスタには洋書を含めて書籍が僅か.  Charles D. Brown, Space propulsion  G. P. Sutton, History of Liquid Propellant Engines  Peter J. Turchi, Propulsion Techniques: Action and Reaction  Wilfried Ley, Handbook of Space Technology
  4. 4. 自己紹介  2003 LP-PPT(液体推進剤PPT)で博士 (工学)を取得(東京大学)  2003-2005 九州工業大学(橘教授の研 究室)  レーザにより燃焼を制御する固体 マイクロ推進機  ヒドラジンの分解をプラズマにより 促進する一液式推進機  零位法による推力測定  2005-2006 産業技術総合研究所  圧電型センサ(圧力・振動)  2006-2012 九州工業大学  アークジェット推進機  液体PPT  液体・液体マイクロ推進機  推力測定法  2012-現在 宮崎大学  電気・化学推進,推力測定 液体推進剤PPT レーザにより燃焼を制御する 固体マイクロスラスタ https://sites.google.com/view/akira-kakami/
  5. 5. 液体推進  姿勢制御,軌道維持,軌道 遷移などに利用される  二液式  燃料: ヒドラジン  酸化剤: 四酸化二窒素  一液式  推進剤:ヒドラジン 固体推進  アポジモータとして利用  軌道投入  簡素な構造  スロットリング  燃焼の中断と再開  軌道維持や姿勢制御に 適用できない  比推力が小さい 宇宙機用化学推進 http://www.esa.int/
  6. 6. 一液式(Monopropellant thruster) 6 Pressurant 推力室 ノズル 触媒層(Catalyst bed) 粒状のイリジウム系触媒 メッシュ • 推進剤: ヒドラジン, モノメチルヒドラジンなど • 2液式よりも構造が簡単だが,Ispは225-245 sと低い • 推力:1 N ~ 4000 N • 主にReaction Control System (RCS)に利用される • パルス作動による可変推力が可能 一液式推進剤
  7. 7. Astrium 4-N thruster
  8. 8. 二液式推進機(bipropellant thruster) 加圧ガス 燃料 推力室 ノズル 衝突による液滴化 燃 料:ヒドラジン, モノメチルヒドラジン, 非対称ジメチルヒドラジン 酸化剤:四酸化二窒素(Nitrous tetroxide) or MON3 (Mixed Oxides Nitrogen) 比推力は300-330 s 軌道投入・遷移などに用いられる. 8 酸化剤
  9. 9. 445-N bipropellant thruster firing www.aeroejet.com
  10. 10. ATV thruster firing (200N?) ©ESA
  11. 11. ATV approaching ISS ©ESA
  12. 12. Falcon 9 ©SpaceX
  13. 13. 供給方法:圧送式 Blow down Pressure-regulated ターボポンプを用いない(USSRで例があった) Wilfried Ley, Klaus Wittmann, Willi Hallman, Handbook of Space Technology, 2009
  14. 14. 供給方法:圧送式 Blow down Pressure-regulated Blow down mode w/ depressurization ターボポンプを用いない(USSRで例があった) Wilfried Ley, Klaus Wittmann, Willi Hallman, Handbook of Space Technology, 2009
  15. 15. 噴射器の形状 Showerhead Swirl Wilfried Ley, Klaus Wittmann, Willi Hallman, Handbook of Space Technology, 2009
  16. 16. Automated Transfer Vehicle (ATV) http://www.space-propulsion.com/spacecraft-propulsion/bipropellant-thrusters/200n-bipropellant-thrusters.html http://spaceflight101.com/spacecraft/atv/ 200N ATV bipropellant aft thruster cluster (4) 490 N main navigation engines (4) Model: Aerojet R-4D-11 200N ATV bipropellant fwd thruster cluster (4) Isp > 270 s Nb alloy with SiCrFe coating Airbus 200 N bipropellant thruster
  17. 17. Automated Transfer Vehicle (ATV) Docking on 12 August, 2014 https://youtu.be/lM7SeFqJ8M4
  18. 18. ヒドラジンと四酸化二窒素 N N H H H H O N O O O N www.3dchem.com O N
  19. 19. ヒドラジン(N2H4)略史 Theodor Curtius (1857-1928) ヒドラジン単体として分離(1887) Friedrich Raschig (1863-1928) Olin Raschig ProcessにつながるRashing processを発明(1906 or 7)
  20. 20. ヒドラジン略史 年 1930 還元剤としての使用 1933 von Braun, Das Mars ProjektでHNO3/N2H4を提案 1943 Me-163B rocket planeの初飛行 1950 ポリマーの発泡剤 1952 イソニアジド(結核の予防治療薬)の合成 1953 ボイラーの水処理剤 1964 Gemini 1 (無人飛行) 1967 Apollo 11 1976 Viking探査機 Eckart W. Schmidt, History of Hydrazine Monopropellants, 2009
  21. 21. ヒドラジンの特徴  還元性,水溶性  無色透明の液体  毒性がある(発がん性含む)  脱酸素剤,防食剤,清缶剤  ボイラーなど  水中の酸素を奪う  殺虫剤の成分  ワインの保存剤として使っているところもある*  ワインにTerpene-like characterを与えるらしい.  融点:1℃,生成熱:50.63 kJ/mol  触媒により自己発熱分解をする. *R. S. Jackso, Wine Science, Third Edition: Principles and Applications, 3rd edition, 2008 N N H H H H www.3dchem.com
  22. 22. H H H H N N N N ヒドラジンの分解反応 4 3 (1 − 𝑥) mol 1 3 (1 + 2𝑥) mol 2𝑥 mol 自己 発熱 分解N N H H H H 分子模型は, Wikipedia, www.3dchem.com NH3の 分解は 吸熱 N HH H N HH H
  23. 23. アンモニアの分解率は低いほどよい G.P. Sutton, Rocket Propulsion Elements, 7th edition
  24. 24. 発泡剤原料 41% 清缶剤・水処理剤 28% 工業薬品原料 21% 農薬原料 3% 医薬原料 1% その他 6% ヒドラジンの用途 (国内) MHI, PWRプラントにおける 添加薬剤の低減に関する検討 , 日本原子力学会水化学部会第9回定例研究会, 2010/3/9 年間の生産・輸入量:約10,000t (純粋なヒドラジンは推進剤にのみ使用される) (H11年におけるヒドラジンの生産量は数トン,ヒドラジンと誘導体は15,000トン) ヒドラジン一水和物を含む
  25. 25. 火力プラントの腐食防止 椿﨑 仙市他,火力プラント水処理における脱ヒドラジンへの取組み,MHI技報,Vo.46 No.2, 2009
  26. 26. イソニアジド 第一三共 Medical Library ©Wikipedia
  27. 27. O N O O O N www.3dchem.com O N 四酸化二窒素 (N2O4, NTO, nitrogen tetroxide)  Dinitrogen tetroxide  Nitrogen peroxide  無色の液体酸化剤  ラジカル重合禁止剤  金属の溶解,表面酸化処理  殺滅菌剤  セルロース,多糖類,オリゴ糖の 酸化剤  カーボンファイバーの表面処理 剤  ヒドラジンと自燃性(hypergolicity) がある  融 点:-11.2℃  沸 点:21.1 ℃  比 重:1.44 http://www.si-science.co.jp とも呼ばれる
  28. 28. 高校化学とNTO: ルシャトリエの法則 -196℃ 0℃ 23℃ 35℃ 50℃ N2O4 NO2 (褐色) ©Wikipediawww.3dchem.com
  29. 29. 自燃性(hypergolicity) https://youtu.be/IcjYdEW_HLQ
  30. 30. Fiat lux! Genesis 1:1 黎明(1950年代)
  31. 31. Спутник-1 (Sputnik 1) 1957年10月4日 直径:58 cm, 質量:83 kg 推進機は搭載せず ©Wikipedia
  32. 32. Launched on Oct. 11, 1958 Manufacturer: TRW Diam.:74 cm Mass: 34.2 kg ©Wikipedia Pioneer I (Able-2) -the first spacecraft to incorporate course-correction rockets and a retro-rocket to allow insertion to a lunar orbit NASA, 1958 NASA/USAF SPACE PROBES (ABLE-l) FINAL REPORT Vol. 3, 1959 Eight small solid propellant vernier rockets (IXS-50) “fourth stage rocket” Retro-Rocket “fourth stage rocket” Thiokol TX-8-6 Prop.: L-701 (Ammonium Perchlorate) Decelerate spacecraft into lunar orbit.
  33. 33. IXS-50 The Marin Company, THE VANGUARD SATELLITE LAUNCHING VEHICLE AN ENGINEERING SUMMARY, 1960 Manufacturer: Atlantic Research Corporation Thrust: 222N (50lbs), Burn time: 1s Used as spin/retro motors on Thor and Vanguard rockets Fuel: resin Oxidizer: ammonium perchlorate (AP) Propellant grain Igniter Mg/Polyisobutadiene/KNO3
  34. 34. Launched on Oct. 11, 1958 Manufacturer: TRW Diam.:74 cm Mass: 34.2 kg ©Wikipedia Pioneer I (Able-2) -the first spacecraft to incorporate course-correction rockets and a retro-rocket to allow insertion to a lunar orbit NASA, 1958 NASA/USAF SPACE PROBES (ABLE-l) FINAL REPORT Vol. 3, 1959 Retro-Rocket “fourth stage rocket” Thiokol TX-8-6 Prop.: L-701 (Ammonium Perchlorate) Decelerate spacecraft into lunar orbit.
  35. 35. AIM-4Gの派生? Falcon missile (AIM-4G, GAR-3A, Hughes & Thiokol) Thiokol SP-188 (Isp: 204 s)
  36. 36. AIM-4Gの派生? Falcon missile (AIM-4G, GAR-3A, Hughes & Thiokol) Thiokol SP-188 (Isp: 204 s)One the other apex was a 13.3-kN-thrust solid fueled TX-8-6 motor derived from the Falcon air-to-air missile, to brake the probe into lunar orbit ―Pauro Ulivi, Lunar Exploration: Human Pioneers and Robotic Surveyors 正確なところは1958 NASA/USAF SPACE PROBES (ABLE-l) FINAL REPORT のAppendix D (confidential)が公開されないとわからない?
  37. 37. 1958 NASA/USAF SPACE PROBES (ABLE-1) FINAL REPORT VOL.2, 1959 計画では 月探査 月軌道への投入は失敗 流星塵密度 惑星間磁場 計測には成功
  38. 38. 何の単語を検索した結果? 0 1 0 10 20 30 40 50 DTIC (Defense Technical Information Center) Springer ELSEVIER NASA Technical Report Server (NTRS)
  39. 39. Thruster/Thrustor Oxford American Dictionary 初出は1597年 (Merriam Webster’s Collegiate Dictionary, 11th edition)
  40. 40. Thrust Oxford American Dictionary 初出は13世紀 (Merriam Webster’s Collegiate Dictionary, 11th edition)
  41. 41. Thrusterという新概念の誕生? The development of small thrusters for spaceflight vehicles is really a different business than those discussed before in this chapter. (G. P. Sutton, History of liquid propellant rocket) 古い単語に新しい意味をもたせることがある. 例) missile 古めかしいthrusterという言葉に最新鋭のthrusterの意味を付与した?
  42. 42. Thruster & Thrustor 0 10 20 30 40 50 DTIC (Defense Technical Information Center) Springer ELSEVIER NASA Technical Report Server (NTRS)
  43. 43. Thruster & Thrustor 0 10 20 30 40 50 NTRS, thruster ELSEVIER, thruster Springer, thruster DTIC, thruster NTRS, thrustor ELSEVIER, thrustor Springer, thrustor DTIC, thrustor or er er oror or
  44. 44. 正書法的にThrusterが正しい In forming the agent-noun from the base thrust, established rules of English orthography require that the suffix should be spelled –er. ―Robert G. Jahn, Physics of Electric Propulsion, 1968
  45. 45. Thruster before 1959 Underseat Rocket Motor MK 124 Figure: M.P. Audley, LOGISTICS MANAGEMENT REPORT FOR U.S. NAVY PROPELLANT-ACTUATED DEVICES (PAD), 2004
  46. 46. Thruster before 1959 Underseat Rocket Motor MK 124 Figure: M.P. Audley, LOGISTICS MANAGEMENT REPORT FOR U.S. NAVY PROPELLANT-ACTUATED DEVICES (PAD), 2004 The canopy jettison system for the B-57B aircraft has been evaluated by ballistic tests. The system consists of an M5 thruster for release of the canopy latches, an M3 remover for jettison of the canopy, and initiators with pressure transmission systems for actuation of these devices. ― J.E. Prozek, EVALUATION OF CANOPY JETTISON SYSTEM PROPOSED FOR USE IN B-57B AIRPLANE, Frankford Arsenal Report, 1956
  47. 47. Thruster before 1959 Underseat Rocket Motor MK 124 Figure: M.P. Audley, LOGISTICS MANAGEMENT REPORT FOR U.S. NAVY PROPELLANT-ACTUATED DEVICES (PAD), 2004 Lately, integrated escape systems for large aircraft, such as the B-52, have been developed. These involve initiators, removers, catapults and work devices called thrusters, which are merely propellant actuated devices that move a piston, the thrust of which does some desired work. ― The Bureau of Naval Weapons, CHLORATES AND PERCHLORATES THEIR CHARACTERISTICS AND USES, May 1960
  48. 48. Thruster before 1959 Underseat Rocket Motor MK 124 Figure: M.P. Audley, LOGISTICS MANAGEMENT REPORT FOR U.S. NAVY PROPELLANT-ACTUATED DEVICES (PAD), 2004 work devices called thrusters, which are merely propellant actuated devices that move a piston, the thrust of which does some desired work. ― The Bureau of Naval Weapons, CHLORATES AND PERCHLORATES THEIR CHARACTERISTICS AND USES, May 1960
  49. 49. Bow thruster Master suites http://www.cunard.com http://www.cunard.com http://www.pcurtis.com/qv-intro.htm ©Wikipedia (Queen Victoriaのものではない) Queen Victoria
  50. 50. Bow thrusterの名称も1960年頃 Naval Engineers Journal (Wiley)U.S. Naval Research Laboratory 1 Oct 1962 A.S.M.E Journal, November 1961
  51. 51. Side thruster  Azimuth thruster  Bow thruster  Stern thruster  Google scholar  Bow thrusterが1961に報告書があるが,  Bow thruster以外は,1961年以前に検索にかからない.  Azimuth thruster  発明は1859年 ( “Propelling Rudder”)  現在のZ-drive transmissionを使うものは1950年. Side thruster
  52. 52. 二覇(1960年代) https://apod.nasa.gov Collision of galaxies NGC 2207 and IC 2163 力拔山兮氣蓋世 史記 巻7 項羽本紀
  53. 53. 1960年代のH2O2とN2H4 過酸化水素 ヒドラジン 触媒点火 可能 不可能 点火剤 不要 必要(NTO) 可変推力 容易 (パルス作動可) 困難 (流量制御を要す) 点火遅れ, ms 30-40 - 比推力, s 148-158 225-245 燃焼温度 比較的低い (触媒温度が低い) 高い その他 Walter機関の蓄積
  54. 54. 過酸化水素の栄光 Syncom II (Launched on September 29, 1963) 対地同期衛星初のTV中継 This is the world’s first commercial communications satellite and “live via satellite” is born. (www.Intelsat.com) Walter Kidde & Company ©Wikipedia©Wikipedia Early Bird (Intelsat I) (Launched on April 6, 1965)
  55. 55. Syncom series  Syncom II  打ち上げ: 1963/9/29.  対地同期衛星初のTV中 継  H2O2スラスタとNitrogen gas jetの併用  Syncom III  打ち上げ:1964/8/19  初の静止衛星  H2O2 thrusterのみ ©Wikipedia
  56. 56. Starfinder apogee motor Syncom III SYNCOM ENGINEERING REPORT, VOLUME II, NASA TR R-252, 1967 H2O2 thruster JET direction JET direction JET direction
  57. 57. Syncom III Starfinder apogee motor SYNCOM ENGINEERING REPORT, VOLUME II, NASA TR R-252, 1967 JET LATERAL H2O2 (No.1) AXIAL H2O2 (No.1)
  58. 58. Syncom II thrusters arrangement
  59. 59. Syncom III telecasted Tokyo Olympic games (1964)
  60. 60. Starfinder apogee motor Isp: 274 s, Burning time: 19.7 s, Max. thrust: 1120 lb (5000 N) SYNCOM ENGINEERING REPORT, VOLUME II, NASA TR R-252, 1967
  61. 61. Восток-1 (Vostok-1) Launched on April 12, 1961 Two redundant system † Eight H2O2 monopropellant thruster † Flight maneuvers, and reentry alignment † †G.P. Sutton, History of Liquid Propellant Rocket Engines, p.664 ©Wikipedia
  62. 62. Mercury 有人飛行計画 1959年から1963年 1962年に地球3周 逆噴射 ロケット 耐熱保護板 居住区画 パラシュート アンテナ 脱出ロケット 軌道投入 脱出ロ ケット分 離 逆噴射 ロケット点 火 大気圏 再突入 パラシュート展 開 着水 ©Wikipedia
  63. 63. H2O2 thruster arrangement on Mercury McDonnell Aircraft Corporation, Project Mercury Familiarization Manual, 1959 YAW PITCH PITCH YAW ROLL
  64. 64. H2O2 thruster arrangement on Mercury J.B. Hammack and J.C. Heberling, THE MERCURY-REDSTONE PROGRAM, 1961
  65. 65. McDonnell Aircraft Corporation, Project Mercury Familiarization Manual, 1959 Mercury H2O2 thruster systems
  66. 66. 24 lb H2O2 thruster McDonnell Aircraft Corporation, Project Mercury Familiarization Manual, 1959 Catalyst bed Catalyst caps Porous stainless steel flow distribution plate Solenoid inlet valve Drexite coated nickel screens an electrolytically deposited coating of 90% silver and 1% gold 90% H2O2
  67. 67. Thiokol TE-236の亜種 (Orbital ATK Star 12) Isp: 252 s Thrust: 5560 N Total impulse: 10,350 lbf-sec (45,980 N-s) Retro rocket on Mercury McDonnell Aircraft Corporation, Project Mercury Familiarization Manual, 1959 Posigrade rockets Solid propellant
  68. 68. ヒドラジン一液式の黎明 Pioneer P-3 (Atras-Able-4) 1959年11月26日打ち上げ(打ち上げ失敗, 1960年のP-30, P-31も打ち上げ失敗) メーカ: TRW (Northrop Grumman) 推進剤: Hydrazine 点火: Slug start (少量のNTOを使用して点火する方式) ©Wikipedia
  69. 69. Mariner series NASA, NSSDCA Mariner 2 (Mariner R-2) Mariner 4 Launch on Nov. 28, 1964 Mission: mars exploration Launch on Aug. 3, 1962 Mission: Venus exploration
  70. 70. Mariner 2 (Mariner R-2) Launch on Aug. 3, 1962 Mission: Venus exploration Attitude control: Nitrogen gas jet system 4-jet vane vector control 225-N motor (burn time: 0.2-57 s) (Slug start w/ NTO and Al2O3 pellets) NASA, MARINER-VENUS 1962, SP-59, 1965 NASA, NSSDCA
  71. 71. Mariner 4 Launch on Nov. 28, 1964 Mission: mars exploration 4-jet vane vector control 222-N motor (Slug start) 12 cold gas jet NASA, NSSDCA NASA, NSSDCA
  72. 72. Mariner Retro Rocket T. W. Price and D.D. Evans, The Status of Monopropellant Hydrazine Technology, 1968 R. V. Buren, MARINER MARS 1964 HANDBOOK, 1965 Burn time: 103 s at launch 81 s after midcourse maneuver Max. thrust vector deflection ±5 deg Nozzle area ratio: 44
  73. 73. Thruster arrangement for Mariner 4 Mariner Mars 1971 Attitude Control Subsystem, 1974 Mariner Mars 1964 Handbook, 1965 Nitrogen cold gas jet (RCS, PITCH) Nitrogen cold gas jet (RCS, ROLL and YAW) 225-N H2N4 engine w/ four jet vanes for thrust vector ctrl X Y X Y Cold gas jet arrangement (TOP VIEW) VIEW DIRECTION (z-axis) +Z
  74. 74. T. W. Price and D.D. Evans, The Status of Monopropellant Hydrazine Technology, 1968 H-7 catalyst Nitrogen (pressurant) N2H4 点火装置 (N2O4)
  75. 75. Shell 405 (Aerojet 405) • Iridiumベースの触媒 • Caltech JPLとShell Chemicals Companyが開発(1957–1960年頃) • 1963 (1964?)から利用可能になる. • この触媒により点火用のNTOが不要になり,Pulse modeが可能になる Eckart W. Schmidt, History of Hydrazine Monopropellants, 2009 Wilfried Ley, Handbook of Space Technology
  76. 76. 過酸化水素の黄昏  比推力の低さ  H2O2: 148-158 s  N2H4: 225-245 s  長時間貯蔵における自己分解  Shell 405の登場  触媒点火  Low ignition delay  Pulse mode firing  Applications Technology Satellite (ATS) 3  Hydrazine/Shell 405の成功 ヒドラジンでも実現
  77. 77. Applications Technology Satellite 3  技術試験  静止衛星  スピン安定  通信(VHF, C-band)  カメラ  レジストジェット  ヒドラジン一液式(4 lbs)  1967年11月5日打ち上げ  ATS-3でヒドラジン推進系へ変 更になる  ATS-1でH2O2スラスタが失 敗  NASA SP-4217
  78. 78. Applications Technology Satellite 3  技術試験  静止衛星  スピン安定  通信(VHF, C-band)  カメラ  レジストジェット  ヒドラジン一液式(4 lbs)  1967年11月5日打ち上げ  ATS-3でヒドラジン推進系へ変 更になる  ATS-1でH2O2スラスタが失 敗  NASA SP-4217 Flight success of hydrazine/Shell 405 thrusters in the late 1960s prompted the phasing out of hydrogen peroxide in favor of hydrazine for practically all satellite applications. The transition began with the NASA/Hughes ATS-3 satellite. ―Peter J. Turchi, Propulsion Techniques: Action and Reaction
  79. 79. Ammonia resistojet on ATS-III Thruster #1 Thruster #2 Hot Cold Hot Cold Thrust, mN 169 146 1850 1060 Isp, s 132 105 158 86 Power, W 2.5 0 3.6 0 T. K. PUGMIRE AND W. S. DAVIS, ATS-III Resistojet Thruster System Performance, J. Spacecraft, 1966.
  80. 80. ヒドラジンの躍進~Shell 405~  1950年代からすでにヒドラジンは宇宙機に使用されてい た.  ヒドラジンの方が過酸化水素よりも比推力が高いが,過酸 化水素を駆逐するに至っていない.  H2O2: 148-158 s  N2H4: 225-245 s  N2H4は燃焼温度が高く触媒に耐熱性が必要  Slug startの問題  点火には自燃性の推進薬が別途必要であった.  Shell 405の登場により状況が一転する.
  81. 81. 日本 平田稔,ガスジェット制御技術開発の足跡,日本航空宇宙学会誌 Vol. 33, No.379, 1985 1971 H2O2からヒドラジンへの変更 米国でヒドラジンスラスタの有用性が証明 (ATS-3を指す?) H2O2 N2H4
  82. 82. H2O2の復活  高密度  NTOよりも高密度  無毒  人体はH2O2を分解できる  3%のH2O2 = オキシドール  大気と反応しない  高O/F  低い蒸気圧  高い比熱
  83. 83. Instrumentation/Propulsion The propellants are nitrogen tetroxide and unsymmetrical-dimethyl hydrazine. The main propulsion system and the smaller reaction control system, used for https://www.nasa.gov/mission_pages/station/structure/elements/soyuz/spacecraft_detail.html
  84. 84. Descent Module on Soyuz TMA “The eight hydrogen peroxide thrusters located on the module are used to control the spacecraft's orientation, or attitude, during the descent until parachute deployment.” https://www.nasa.gov/mission_pages/station/structure/elements/soyuz/spacecraft_detail.html
  85. 85. ヒドラジンの強み:双璧 Catalyst NTO Hydrazine 自己発熱分解が可能 タンクで自己分解しにくい 点火遅れが短い(msオーダ) パルスモード作動可能 可変推力 比較的高い比推力(245 s) アークジェットとの推進剤の共用 自燃性 スパークプラグ不要 点火遅れが短い(msオーダ) 高い比推力(330 s)
  86. 86. 栄華 (1970年~現在?) この世をばわが世とぞ思ふ望月の欠けたることもなしと思へば 藤原道長 ©Wikipedia
  87. 87. Viking Viking 1 launched on Aug. 20, 1975 Landed on Mars on July 20, 1976. https://www.nasa.gov/image-feature/sunset-at-the-viking-lander-1-site
  88. 88. Viking lander https://youtu.be/pwipxdQ74pU?t=43s
  89. 89. Viking orbiter and lander https://nssdc.gsfc.nasa.gov/ 2-axis gimballed main engine Thrust vector control (pitch and yaw) Cold gas thrusters Roll control
  90. 90. Descent capsule LANDER AEROSHELL Viking Lander System Primary Mission Performance Report, 1977
  91. 91. Viking Lander Aeroshell Four RCS modules three 36-N thruster Prop.: Hydrazine
  92. 92. Aeroshell thrusters Yaw & Pitch engine Used for attitude control Produce deorbit impulse Thrust: 36N, Prop.: hydrazine Roll engine Roll control Thrust: 36N, Prop.: hydrazine x y z Four RCS modules RCS module
  93. 93. Lander with Terminal Descent System (TDS) ROLL ENGINES (4) TERLMINAL DESCENT ENGINE (3) Descending Pitch & Yaw ctrl Thrust: 44.5 N Neil A. et. Al., Viking '75 Spacecraft Design and Test Summary Volume I - Lander Design, 1980
  94. 94. Neil A. et. Al., Viking '75 Spacecraft Design and Test Summary Volume I - Lander Design, 1980 Eckart W. Schmidt, History of Hydrazine Monopropellants, 2009 Catalyst container Motor driven throttle valve Propellant inlet Exhaust nozzles (18) Terminal Descent Engine (MR-80) Thrust: 62-638 lbf, ISP:205s Expansion ratio: 20, Prop.: Hydrazine
  95. 95. Terminal Descent Engineが一液式である 理由  一液式の方が排気ガスがクリーンである  そのときは信じられていた.  当時のスロットリングの限界  必要なスロットル比:1:8  SurveyorのBipropellantエンジン:1:3.5 (30-104 lbf) Eckart W. Schmidt, Viking Mars Lander History - Hydrazine Monopropellant History, 2015 • 当時,最大の一液式推進機となる. • Shell 405触媒は高価だが,大量の触媒が必要になったた め,廉価な触媒であるLCH-101 (Low Cost Hydrazine)が誕生 する契機になる.
  96. 96. 18 nozzles Viking 75 project: Viking lander system primary mission performance report, 1971 Eckart W. Schmidt, Viking Mars Lander History - Hydrazine Monopropellant History, 2015 Original design Final design To reduce surface pressure, minimizing landing site alteration by dispersing plume
  97. 97. FIRST CLASS PASSENGER Eckart W. Schmidt, Viking Mars Lander History - Hydrazine Monopropellant History, 2015 Assembly at Rocket Research Company
  98. 98. Voyager mission • Voyager 1 • Launched on Sep. 5, 1977 • Jupiter, Saturn • Voyager 2 • Launched on Aug. 20, 1977 • Jupiter, Saturn • Uranus, Neptune https://voyager.jpl.nasa.gov/imagesvideo/imagesofvoyager.html
  99. 99. Voyager, the most distant artifact 21.0 billion km (140.6 AU), Velocity:17 km/s 17.3 billion km (115.8 AU) Velocity: 15 km/s Orbit of Pluto: 39.4 AU Data:October 23, 2017 Launched in 1977 https://voyager.jpl.nasa.gov/
  100. 100. Voyager spacecraft MR-103 16 thrusters 0.89 N thrust Attitude control Trajectory correction NASA, Voyager Backgrounder, 1980
  101. 101. Rocket Research Company, VOYAGER URANUS ENCOUNTER 0.2-lbf T/VA SHORT PULSE TEST REPORT, 1986 MR-103, a thruster designed for Voyager 10-ms pulse firing yielded an Isp of 110 s. C.D Brown, Spacecraft Propulsion, 1995
  102. 102. MR-103C (Successor) Propellant/Catalyst: Hydrazine/S405 Isp: 209-224 s Total impulse: 186,000 Ns Total pulses: 275,028 Minimum impulse bit: 0.27 Ns @ 15 ms-on
  103. 103. HYDRAZINE THRUSTER STAR 37E Jettisoned engines Voyager-Bulletin-Mission-Status-Report
  104. 104. 0.89 N (ATT CTRL & TRAJ CORR, Prop.: Viking grade N2H4) 441 N (Pitch and Yaw) Solid motor 22 N (Roll) 441 N (Pitch and Yaw) Charles D. Brown, Elements of Spacecraft Design Thrust: 6.8 MN Heaters (1.4-W) maintain min. temp of 116 ºC
  105. 105. Rockets and thrusters on Voyager On-board  MR-103 (16 thrusters)  Thrust: 0.89 N  Isp: 227? s  10-ms pulse  Attitude/Trajectory control  Trajectory correction (4 thrusters)  Attitude control (2 redundant systems w/ 6 thrusters) Jettisoned  5-lbf (4 thrusters)  Model: RRC MR-50 ?  Thrust: 22 N, Isp: 228? s  Thrust vector control (Roll)  MR-104 (4 thrusters)  Thrust: 441 N, Isp: 239? s  TVC (pitch & yaw)  Star 37E Solid propellant motor  Accelerating spacecraft to final Jupiter trajectory velocity  Thrust: 6,805,440 N  Weight: 1,123 kg  Prop.: 1039 kg  Burn time: 43 s Charles D. Brown, Elements of Spacecraft Design
  106. 106. Voyager Propulsion Module Eckart W. Schmidt, History of Hydrazine Monopropellants, 2009 ©NASA/JPL
  107. 107. MR-104A/C Propellant: Hydrazine Catalyst: S405/LCH-202 Thrust: 204.6-572.5N Isp: 239-223 s Total impulse: 693,900 Ns Total pulses: 1,728 Min. impulse bit: 8.23 Ns @ 22 ms-on
  108. 108. Aniline
  109. 109. Terminal Descent Engine for Viking  一液式の燃焼ガスはきれいなはずだった  比推力は二液式の方が有利だが一液が用いられた  実際は,アニリンのためにシアン化水素(猛毒)が発生する 可能性があった.  Viking grade hydrazineの誕生  Aniline 0.5%から0.003%へ H H N HH H + Eckart W. Schmidt, Viking Mars Lander History - Hydrazine Monopropellant History, 2015
  110. 110. MR-103 monopropellant thrusters on Voyager  着陸しない→HCNが発生し てもよいはず  当初はmonopropellant grade (aniline 0.5%)を使用 した.  pulse shape distortion  燃焼室圧力の緩慢な上 昇.  低デューティー比  低触媒温度 Eckart W. Schmidt, Viking Mars Lander History - Hydrazine Monopropellant History, 2015
  111. 111. Pulse shape distortion L. Holcomb, et. Al., Effects of Aniline Impurities on Monopropellant Hydrazine Thruster Performance, 1977 0.9 N thruster Catalyst bed temp.: 394 Duty ratio: 0.04/100 Propellant: Monopropellant grade
  112. 112. Pulse shape distortion L. Holcomb, et. Al., Effects of Aniline Impurities on Monopropellant Hydrazine Thruster Performance, 1977 PURIFIED: aniline < 0.002% Military grade: 0.54% aniline PURIFIED/Aniline: 0.74% aniline 触媒温度:394 K Duty ratio: 0.04/100 触媒温度:394 K Duty ratio: 0.04/100 触媒温度:477 K Duty ratio: 0.04/36
  113. 113. Ignition delay L. Holcomb, et. Al., Effects of Aniline Impurities on Monopropellant Hydrazine Thruster Performance, 1977 Aniline 0.012% Aniline 0.41% Aniline 1.09% LOWERISBETTER
  114. 114. 原因はaniline poisoning  High purityで偶然実験したところ,aniline poisoningが原因 と判明.  Voyagerの推進剤をHigh purity gradeに変更  ヒータ電力の削減  長寿命化 Eckart W. Schmidt, Viking Mars Lander History - Hydrazine Monopropellant History, 2015 Production of Viking-Grade hydrazine would most likely have been discontinued if it had not been for this accidental discovery. ―E. W. Schmidt, History of Hydrazine Monopropellants
  115. 115. Ultra PureTMの誕生へ  http://www.hydrazine.com/propellants/ultrapure.aspx http://www.hydrazine.com/propellants/ultrapure.aspx “Viking grade” 1986年開発開始. ※1998年にOlin Corporationは,ヒドラジン製造部門等をArch Chemicalとして事業独立させている.
  116. 116. Cassini spacecraft Two R-4D bipropellant engines Orbital maneuvers Trajectory corrections Four RCS modules Have four MR-103H thrusters Produce thrust (y and z axes) Allow 3-axis control xy z Y1 Z1 Y2 Z2 Z4 Y4
  117. 117. Thruster arrangements  RCS module (4 modules)  Has two redundant thruster blanches  Contains Y and Z direction thrusters  3-axis attitude control  R-4Ds are arranged along Y axis. Thrust vector (MR-103H) Thrust vector (R-4D) Magnetometer arm x y z z x y Z1 Y1 Y2 Z2 Z3 Y3 Y4 Z4 RCS module S. Sarani, A Flight-Calibrated Methodology for Determination of Cassini Thruster On-Times for Reaction Wheel Biases, 2010
  118. 118. 白虹日を貫く NOAA, 1979 戦国策 ~脱ヒドラジンの機運と電気推進の躍進~
  119. 119. ヒドラジンの毒性(NFPA 704) 健康障害 極めて短時間の暴露に よっても死や重篤な後遺症 を招きうる 燃焼性 常温常圧下で急速または完 全に気化するか、空気中に 素早く分散して燃焼するもの 不安定性 爆轟や爆発的分解を起こし うるものの高い励起エネル ギーを与える必要がある か、励起前に閉塞状態で加 熱する必要があるか、水と 爆発的に反応するか、強い 衝撃により爆轟を起こすもの数値は最大4(大きいほど危険)
  120. 120. 国際化学物質安全性カード http://www.nihs.go.jp/ICSC/icssj-c/icss0281c.html 災害/暴露のタイプ 一次災害/急性症状 火災 引火性。 爆発 40℃以上では、蒸気/空気の爆発性混合気体を生じ ることがある。 多くの物質と接触すると火災および爆 発の危険性がある。 災害/暴露のタイプ 一次災害/急性症状 吸入 咳、灼熱感、頭痛、錯乱、嗜眠、吐き気、息切れ、痙 攣、意識喪失。 皮膚 吸収される可能性あり! 発赤、痛み、皮膚熱傷。 眼 発赤、痛み、かすみ眼。重度の熱傷。 経口摂取 口やのどの熱傷、腹痛、下痢、嘔吐、ショック/虚脱。 他の症状については「吸入」参照。 身体
  121. 121. Green propellant  Proposed in 1990s.  Hydrogen peroxide  Hydroxyl Ammonium Nitrate(HAN)  AF-M315E  SP-163  Glycine added propellant  Ammonium Dinitrate (ADN)  LMP-103S O N H H H H O O O N HAN Hydrogen peroxide O O H H O O O O N N N N H H H H N(NO2)2 - NH4 + ©JSMol ADN
  122. 122. H2O2スラスタ  60% 過酸化水素水  理論比推力: 122 s  触媒温度: 419 K 伴野眞優他,デブリ除去実証衛星「ADRAS-1」搭載一液式推進系の開発, 宇科連2016 Hodoyoshi 3の推進モジュールJun Matushima, et. al., AIAA 2016-4906 デブリ除去実証衛星「ADRAS-1」搭載一液式推進系 提供:首都大学東京・宇宙システム研究室
  123. 123. SHP-163  ISAS/JAXA  HAN-based propellant  Specific weight: 1.4  Freezing point 243 K  Low toxicity  Isp: 276 s O N H H H H O O O N HAN H H H H O C Methanol HH O Water N H H H H N Ammonium nitrate O O O N
  124. 124. Hydroxyl Ammonium Nitrate (HAN)  固体推進薬の酸化剤として 研究される  水溶性  イオン性液体  LP-1845などHANをベースと した発射薬がある.  8 atmあたりで燃焼速度が 急激に上昇 Ion liquid O O O O N N H H H H
  125. 125. SHP-163 thrusters © ISAS/JAXA © TMU © OIT© Kyutech Arcjet thruster w/ SHP-163 decomposed gas Plasma assisted monopropellant thruster Arc assisted monopropellant thruster Catalyst-based monopropellant thruster
  126. 126. AF-M315E  HAN based monopropellant  Isp: 257 s  12% higher than Hydrazine  Specific weight: 1.47  Hydrazine: 1.00  Low toxicity, Can not freeze Aerojet, MPS-130 Innovative Propulsion Solutions for Smallsats Ronald A. Spores, et. al., AIAA 2015-3753 Busek, BXT-X5 Green Monopropellant Thruster MODEL: GR-1 Thrust: 1N MODEL: MPS-130 Thrust: 1N, Isp: 240 s Manufacturer: Busec Model: BST-X5 Thrust: 0.5 N
  127. 127. LMP-103S  Monopropellant  Higher performance  Specific weight: 1.24, Isp: 230 s  Freezing point : -90ºC  Increased safety, Low toxicity, Non-carbogenic ECAPS, HIGH PERFORMANCE GREEN PROPULSION (HPGP) ON-ORBIT VALIDATION & ONGOING DEVELOPMENT, 2013 (3-6%)ADN (60-65%) (15-20%) + + ++ Water (solvent)
  128. 128. ADN (Ammonium Dinitramide)  1970年代にソ連で発見  1989年にアメリカで開発 されるまで機密扱い  固体推進薬の酸化剤として 開発される.  高性能,無煙燃焼  HClを発生しない  水溶性  推進薬としてLMP-103Sなど がある. SRI webpage (May 26 2012) O O O O N N N N H H H H N(NO2)2 - NH4 + ©JSMol
  129. 129. ECAPS, HIGH PERFORMANCE GREEN PROPULSION (HPGP) ON-ORBIT VALIDATION & ONGOING DEVELOPMENT, 2013
  130. 130. 新推進剤のまとめ  高性能化  高比推力,高比推力密度  低融点  環境適合性  「ロケット燃料」の誕生  ロケットエンジン専用の「ロケット燃料」(推進剤)が作ら れつつある.  カクテルの趣き.  ヒドラジンやNTOは,工業用原料であり,元来はロケット エンジンとは無縁であった.  ただし,触媒(Shell 405など)は,一液式スラスタのために 開発された.
  131. 131. ヒドラジンの強み:双璧 Shell 405 NTO Hydrazine 自己発熱分解が可能 タンクで自己分解しにくい 点火遅れが短い(msオーダ) パルスモード作動可能 可変推力 比較的高い比推力(245 s) アークジェットとの推進剤の共用 自燃性 スパークプラグ不要 点火遅れが短い(msオーダ) 高い比推力(330 s)
  132. 132. ポストヒドラジン Catalyst OXIDIZER • 実用化をしたものもあるが,特性評 価や現象解明は研究途上 • monopropellant 中のC原子やO原子 への耐性 • 高い燃焼温度に耐えうるか? NTOも毒性があるため研 究が進められている SHP-163, AF-M315E, LMP-103S, etc.が覇 を争う FUEL (monopropellant)
  133. 133. Electric propulsion  Higher specific impulse by an order of magnitude  400 s – 5,000 s ©ISAS ©Kyushu Univ
  134. 134. www.e-news.press Boeing 702SP  XIPS-25 system  4 ion thrusters  Thrust: 165 mN  Isp: 3500 s  Power: 4.5 kW  Have no chemical propulsion  First launch: March 2, 2015.
  135. 135. 現在の状況のまとめ  脱ヒドラジン  環境適合性と性能の向上  カスタムメイドの推進薬の登場  電気推進の躍進  高比推力  高性能化  All electric propulsionの実証
  136. 136. 今後の化学スラスタ  ポストヒドラジンの行方は  ヒドラジンは一液式,二液式,電気推進に適用可能.  Green bipropellant thruster?  Electric propulsion w/ green propellant?  全電化時代に生き残ることができるか?  単純さ(原理と構造)  小型衛星系など  迅速さと広い推力レンジ  ミリ秒の応答性  微小インパルス(1mNs)~大推力(Ton)  真空・大気圧下の両方で作動 強み
  137. 137. まとめ  液体スラスタの構造と特徴  ヒドラジンについて.  用途,歴史  化学スラスタ(一液)の略史  一液式: Shell 405, Aniline対策  脱ヒドラジン(Green propellant)と電気推進について  化学推進と強みと弱み

×