Sec theta + csc theta/tan theta + cot theta = sin theta + cos theta sin3 theta + cos3 theta/sin theta + cos theta = 1 - sin theta cos theta 1 + sin theta + cos theta/1 + sin theta - cos theta = 1 + cos theta/sin theta Solution 1) (sec a + csc a) /( tan a+cot a) = (1/cos a +1/sin a) /(sin a/cos a+ cos a/sin a) = (sin a+cos a / sina cos a) /(sin^2 a + cos ^2 a / sin a cos a) but sin ^2 a+cos ^2 a=1 so = sin a+cos a =RHS hence proved 2)using the formula a^3+b^3=(a+b)(a^2+b^2-ab) we solve LHS =(sin^ 3 a+cos^3 a)/(sin a+cos a) =(sin a+cos a)(sin^2 a+cos^2 a-sin a cosa ) /(sin a+cos a) =(1-sin a*cos a) =RHS hence proved 3) (1+sin a+cos a) /(1+sin a- cos a) multiply with conjugate up and down =( 1+sin a +cos a)/(1+sin a-cos a) * (1+sin a +cos a)/(1+sin a+cos a) = (1+cos ^2 a+2cos a+sin ^2 a) /(1+sin^2 a+2sin a-cos ^2 a) = (1+1 +2 cos a)/(cos ^2 a +2 sin a -cos ^2 a) =(2+2 cos a)/(2 sin a) =(1+cos a)/sin a.