The area of multi-label classification has rapidly developed in recent years. It has become widely known that the baseline binary relevance approach suffers from class imbalance and a restricted hypothesis space that negatively affects its predictive performance, and can easily be outperformed by methods which learn labels together. A number of methods have grown around the label powerset approach, which models label combinations together as class values in a multi-class problem. We describe the label-powerset-based solutions under a general framework of \emph{meta-labels}. We provide theoretical justification for this framework which has been lacking, by viewing meta-labels as a hidden layer in an artificial neural network. We explain how meta-labels essentially allow a random projection into a space where non-linearities can easily be tackled with established linear learning algorithms. The proposed framework enables comparison and combination of related approaches to different multi-label problems. Indeed, we present a novel model in the framework and evaluate it empirically against several high-performing methods, with respect to predictive performance and scalability, on a number of datasets and evaluation metrics. Our deployment of an ensemble of meta-label classifiers obtains competitive accuracy for a fraction of the computation required by the current meta-label methods for multi-label classification.