Wir haben unsere Datenschutzbestimmungen aktualisiert. Klicke hier, um dir die _Einzelheiten anzusehen. Tippe hier, um dir die Einzelheiten anzusehen.
Aktiviere deine kostenlose 30-tägige Testversion, um unbegrenzt zu lesen.
Erstelle deine kostenlose 30-tägige Testversion, um weiterzulesen.
Herunterladen, um offline zu lesen
The relative roles of individual forcings on large-scale climate variability remain difficult to disentangle within fully-coupled global climate model simulations. Here, we train an artificial neural network (ANN) to classify the climate forcings of a new set of CESM1 initial-condition large ensembles that are forced by different combinations of aerosol (industrial and biomass burning), greenhouse gas, and land-use/land-cover forcings. As a result of learning the regional responses of internal variability to the different external forcings, the ANN is able to successfully classify the dominant forcing for each model simulation. Using recently developed explainable AI methods, such as layerwise relevance propagation, we then compare the patterns of climate variability identified by the ANN between different external climate forcings that are learned by the neural network. Further, we apply this ANN architecture on additional climate simulations from the multi-model large ensemble archive, which include all anthropogenic and natural radiative forcings. From this collection of initial-condition ensembles, the ANN is also able to detect changes in atmospheric internal variability between the 20th and 21st centuries by training on climate fields after the mean forced signal has already been removed. This ANN framework and its associated visualization tools provide a novel approach to extract complex patterns of observable and projected climate variability and trends in Earth system models. (from https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/379553)
The relative roles of individual forcings on large-scale climate variability remain difficult to disentangle within fully-coupled global climate model simulations. Here, we train an artificial neural network (ANN) to classify the climate forcings of a new set of CESM1 initial-condition large ensembles that are forced by different combinations of aerosol (industrial and biomass burning), greenhouse gas, and land-use/land-cover forcings. As a result of learning the regional responses of internal variability to the different external forcings, the ANN is able to successfully classify the dominant forcing for each model simulation. Using recently developed explainable AI methods, such as layerwise relevance propagation, we then compare the patterns of climate variability identified by the ANN between different external climate forcings that are learned by the neural network. Further, we apply this ANN architecture on additional climate simulations from the multi-model large ensemble archive, which include all anthropogenic and natural radiative forcings. From this collection of initial-condition ensembles, the ANN is also able to detect changes in atmospheric internal variability between the 20th and 21st centuries by training on climate fields after the mean forced signal has already been removed. This ANN framework and its associated visualization tools provide a novel approach to extract complex patterns of observable and projected climate variability and trends in Earth system models. (from https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/379553)
Sie haben diese Folie bereits ins Clipboard „“ geclippt.
Sie haben Ihre erste Folie geclippt!
Durch Clippen können Sie wichtige Folien sammeln, die Sie später noch einmal ansehen möchten. Passen Sie den Namen des Clipboards an, um Ihre Clips zu speichern.Die SlideShare-Familie hat sich gerade vergrößert. Genießen Sie nun Zugriff auf Millionen eBooks, Bücher, Hörbücher, Zeitschriften und mehr von Scribd.
Jederzeit kündbar.Unbegrenztes Lesevergnügen
Lerne schneller und intelligenter von Spitzenfachleuten
Unbegrenzte Downloads
Lade es dir zum Lernen offline und unterwegs herunter
Außerdem erhältst du auch kostenlosen Zugang zu Scribd!
Sofortiger Zugriff auf Millionen von E-Books, Hörbüchern, Zeitschriften, Podcasts und mehr.
Lese und höre offline mit jedem Gerät.
Kostenloser Zugang zu Premium-Diensten wie TuneIn, Mubi und mehr.
Wir haben unsere Datenschutzbestimmungen aktualisiert, um den neuen globalen Regeln zum Thema Datenschutzbestimmungen gerecht zu werden und dir einen Einblick in die begrenzten Möglichkeiten zu geben, wie wir deine Daten nutzen.
Die Einzelheiten findest du unten. Indem du sie akzeptierst, erklärst du dich mit den aktualisierten Datenschutzbestimmungen einverstanden.
Vielen Dank!