SlideShare a Scribd company logo
1 of 1
Download to read offline
Dr.	
  Mann	
  for	
  the	
  assistance,	
  guidance,	
  and	
  mentorship	
  
WSU	
  Founda:on	
  for	
  providing	
  a	
  Research	
  and	
  Crea:ve	
  Scholarship	
  Grant	
  
WSU	
  Chemistry	
  Department	
  for	
  use	
  of	
  facili:es	
  and	
  equipment	
  
Acknowledgements	
  
Use of Molecular Modeling to Direct the Functional Characterization of a Suspected
Short-Chain Prenyltransferase in Mycobacterium tuberculosis
Zachary	
  A.	
  Swanson,	
  Francis	
  M.	
  Mann	
  
Winona	
  State	
  University,	
  Winona,	
  MN	
  
Results
Conclusion
Abstract
Introduction
Discussion
Mycobacterium	
   tuberculosis	
   is	
   a	
   bacterium	
   that	
   is	
   spread	
   by	
   droplet	
   nuclei	
   from	
   the	
  
respiratory	
   tract	
   of	
   an	
   infected	
   individual.	
   The	
   infec:on	
   of	
   M.	
   tuberculosis	
   is	
   one	
   of	
   the	
  
leading	
   causes	
   of	
   death	
   among	
   bacterial	
   infec:ons	
   and	
   there	
   is	
   currently	
   no	
   cure.	
   M.	
  
tuberculosis	
   u:lizes	
   menaquinone	
   as	
   an	
   electron	
   transporter	
   during	
   oxida:ve	
  
phosphoryla:on,	
  making	
  inhibi:on	
  of	
  menaquinone	
  synthesis	
  a	
  target	
  for	
  development	
  of	
  
therapeu:cs.	
  Rv2173	
  encodes	
  a	
  protein	
  that	
  has	
  been	
  iden:fied	
  as	
  a	
  possible	
  contributor	
  to	
  
menaquinone	
   synthesis.	
   Menaquinone	
   synthesis	
   requires	
   isoprenoids,	
   which	
   are	
   likely	
  
synthesized	
  by	
  the	
  enzyme	
  encoded	
  by	
  Rv2173.	
  Upon	
  sequence	
  analysis,	
  it	
  was	
  confirmed	
  
that	
   the	
   gene	
   contains	
   a	
   region	
   of	
   conserved	
   aspartate	
   residues	
   characteris:c	
   of	
  
prenyltransferases,	
   which	
   catalyze	
   forma:on	
   of	
   linear	
   isoprenoids	
   of	
   varying	
   lengths.	
   The	
  
crystal	
  structure	
  of	
  Rv2173	
  indicates	
  that	
  the	
  enzyme	
  ac:ve	
  site	
  would	
  catalyze	
  produc:on	
  
of	
  short	
  chain	
  isoprenoids	
  that	
  could	
  possibly	
  be	
  used	
  in	
  the	
  synthesis	
  of	
  menaquinone.	
  This	
  
research	
  u:lizes	
  molecular	
  modeling	
  to	
  direct	
  the	
  func:onal	
  characteriza:on	
  of	
  the	
  enzyme	
  
and	
  then	
  qualita:vely	
  inves:gate	
  the	
  products	
  of	
  Rv2173	
  based	
  on	
  constructed	
  models.	
  
	
  
Synthesis	
  of	
  mul:ple	
  chain	
  length	
  isoprenoids	
  provides	
  the	
  cell	
  with	
  a	
  stock	
  to	
  be	
  used	
  for	
  
menaquinone	
  synthesis	
  among	
  other	
  important	
  uses.	
  Menaquinone	
  is	
  essen:al	
  to	
  the	
  energy	
  
produc:on	
  of	
  the	
  cell,	
  by	
  ac:ng	
  as	
  an	
  electron	
  shuPle	
  during	
  the	
  oxida:ve	
  phosphoryla:on	
  
pathway3.	
  Without	
  menaquinone,	
  a	
  cell	
  would	
  be	
  deficient	
  in	
  energy	
  and	
  enter	
  apoptosis2.	
  
Understanding	
  the	
  mechanism	
  of	
  how	
  prenyltransferases	
  work	
  is	
  essen:al	
  to	
  interpret	
  how	
  
models	
   can	
   be	
   used	
   to	
   direct	
   characteriza:on	
   of	
   an	
   enzyme.	
   Ac:ve	
   sites	
   of	
  
prenyltransferases	
  are	
  similar	
  and	
  contain	
  an	
  aspartate	
  rich	
  region.	
  Crystal	
  structures	
  show	
  
these	
  aspartate	
  residues	
  can	
  chelate	
  with	
  Mg2+	
  ions	
  (Figure	
  1),	
  which	
  can	
  also	
  chelate	
  with	
  
Prepara&on	
  of	
  enzyme	
  from	
  Rv2173	
  DNA:	
  The	
  Rv2173	
  gene	
  was	
  previously	
  cloned	
  from	
  M.	
  
tuberculosis	
   CDC1551	
   genomic	
   DNA	
   and	
   placed	
   into	
   a	
   Gateway	
   pDEST17	
   expression	
   vector	
  
(Life	
  Technologies,	
  Carlsbad,	
  CA).	
  2	
  μL	
  of	
  Rv2173/17	
  DNA	
  was	
  added	
  to	
  25μL	
  of	
  C41	
  competent	
  
Escherichia	
  coli	
  cells	
  and	
  incubated	
  on	
  ice	
  for	
  30	
  minutes.	
  Cells	
  were	
  heat	
  shocked	
  at	
  42	
  C	
  for	
  
30	
  seconds,	
  250	
  μL	
  of	
  NYZ	
  media	
  was	
  added,	
  and	
  the	
  cells	
  were	
  incubated	
  at	
  37	
  C	
  for	
  1	
  hour.	
  
Cells	
  were	
  plated	
  on	
  35	
  ug/mL	
  carbenicillin	
  plates	
  and	
  incubated	
  at	
  37	
  C	
  for	
  24	
  hours.	
  Single	
  
colonies	
  were	
  grown	
  in	
  500	
  mL	
  NYZ	
  media	
  to	
  an	
  op:mal	
  density	
  of	
  0.6-­‐0.8	
  nm.	
  	
  The	
  cells	
  were	
  
then	
  cooled	
  to	
  16	
  C	
  and	
  induced	
  with	
  0.5	
  mM	
  IPTG	
  for	
  16-­‐18	
  hours.	
  Cells	
  were	
  centrifuged,	
  
supernatant	
  was	
  removed,	
  and	
  pellets	
  were	
  stored	
  at	
  -­‐80	
  C.	
  	
  	
  
Prenyltransferase	
  assay:	
  Transformed	
  cells	
  were	
  thawed	
  slowly	
  in	
  ice	
  and	
  suspended	
  in	
  10mL	
  
of	
  lysis	
  buffer.	
  Cells	
  were	
  lysed	
  in	
  an	
  ice	
  bath	
  sonicator	
  for	
  15	
  minutes.	
  One	
  replicate	
  of	
  the	
  
assay	
   was	
   run	
   with	
   this	
   unclarified	
   lysate;	
   one	
   was	
   run	
   using	
   the	
   supernatent	
   ader	
  
centrifuga:on	
  of	
  the	
  unclarified	
  lysate,	
  called	
  the	
  clarified	
  lysate.	
  	
  Both	
  assays	
  were	
  prepared	
  
the	
   same	
   way	
   as	
   shown	
   in	
   the	
   table	
   below.	
   All	
   components	
   were	
   added	
   to	
   test	
   tubes,	
  
equilibrated	
  to	
  37	
  C	
  in	
  water	
  bath,	
  and	
  allowed	
  to	
  incubate	
  for	
  30	
  minutes.	
  Cells	
  were	
  treated	
  
with	
  110uL	
  of	
  alkaline	
  phosphatase	
  buffer,	
  and	
  10uL	
  of	
  alkaline	
  phosphatase	
  and	
  allowed	
  to	
  
react	
  overnight.	
  This	
  allowed	
  extrac:on	
  of	
  products	
  in	
  hexanes.	
  
HPLC	
   analysis:	
   C41	
   E.	
   coli	
   cells	
   were	
   transformed	
   the	
   same	
   as	
   above	
   and	
   extracted	
   with	
  
methanol.	
  HPLC	
  method:	
  0-­‐5min,	
  10%	
  MeOH;	
  5-­‐10min,	
  20%	
  MeOH;	
  10-­‐15min,	
  30%	
  MeOH;	
  
15-­‐20min,	
  40%	
  MeOH;	
  20-­‐30min,	
  40%	
  MeOH.	
  	
  
HPLC	
   analysis	
   indicates	
   that	
   the	
   Rv2173	
   gene	
   is	
   causing	
   produc:on	
   of	
   a	
   new	
  
product	
   consistent	
   with	
   a	
   chain	
   length	
   of	
   ten	
   carbons	
   or	
   shorter	
   when	
  
transformed	
  into	
  E.	
  coli	
  cells.	
  GC-­‐MS	
  analysis	
  shows	
  the	
  forma:on	
  of	
  a	
  product	
  
with	
   a	
   spectrum	
   indica:ve	
   of	
   a	
   25	
   carbon	
   isoprenoid,	
   but	
   because	
   no	
   peaks	
  
were	
  observed	
  consistent	
  with	
  a	
  25	
  carbon	
  chain	
  on	
  the	
  HPLC,	
  it	
  is	
  hypothesized	
  
that	
   the	
   25	
   carbon	
   isoprenoid	
   being	
   formed	
   is	
   a	
   result	
   of	
   another	
   enzyme	
  
u:lizing	
   the	
   larger	
   stock	
   of	
   short	
   chain	
   isoprenoid	
   being	
   produced	
   by	
   the	
  
Rv2173	
   enzyme.	
   Crystal	
   structure	
   models	
   show	
   that	
   a	
   much	
   deeper	
  
hydrophobic	
  pocket	
  is	
  observed	
  in	
  a	
  known	
  FPP	
  synthase	
  when	
  compared	
  to	
  the	
  
hydrophobic	
   pocket	
   of	
   the	
   Rv2173	
   enzyme,	
   also	
   suppor:ve	
   of	
   the	
   enzyme	
  
product	
  being	
  shorter	
  than	
  a	
  15	
  carbon	
  chain.	
  
Sequence	
  analysis	
  of	
  the	
  Rv2173	
  enzyme	
  reveals	
  numerous	
  similari:es	
  of	
  key	
  
residues	
  indica:ve	
  of	
  a	
  short-­‐chain	
  prenyltransferase.	
  The	
  first	
  aspartate	
  rich	
  
region	
  contains	
  3	
  residues	
  facing	
  the	
  inside	
  of	
  the	
  ac:ve	
  site,	
  directly	
  across	
  
from	
   the	
   second	
   aspartate	
   rich	
   region.	
   This	
   second	
   region	
   is	
   interes:ng	
  
because	
  instead	
  of	
  the	
  highly	
  conserved	
  DDxxD	
  sequence,	
  it	
  contains	
  a	
  DDxxG	
  
sequence.	
  However,	
  the	
  close	
  proximity	
  of	
  two	
  more	
  aspartates,	
  Asp254	
  and	
  
Asp255,	
  on	
  the	
  overhanging	
  helix	
  may	
  subs:tute	
  for	
  the	
  lacking	
  third	
  aspartate	
  
in	
  the	
  second	
  conserved	
  region.	
  The	
  exact	
  reason	
  for	
  this	
  change	
  is	
  unknown,	
  
but	
  it	
  has	
  been	
  hypothesized	
  by	
  Liang	
  et	
  al.	
  that	
  the	
  helix	
  in	
  which	
  Asp	
  254	
  and	
  
Asp255	
   are	
   a	
   part	
   of	
   is	
   a	
   flexible	
   “cap”	
   that	
   encloses	
   the	
   ac:ve	
   site	
   upon	
  
substrate	
   binding,	
   bringing	
   the	
   substrates	
   into	
   a	
   closer,	
   more	
   compact,	
  
orienta:on	
  that	
  helps	
  the	
  reac:on	
  proceed.	
  The	
  importance	
  of	
  the	
  amino	
  acid	
  
residues	
   four	
   and	
   five	
   residues	
   upstream	
   from	
   the	
   first	
   conserved	
   aspartate	
  
was	
  demonstrated	
  by	
  Tarshis	
  et	
  al.	
  to	
  be	
  essen:al	
  in	
  determining	
  chain	
  length	
  
in	
  a	
  known	
  farnesyl	
  pyrophosphate	
  synthase	
  because	
  they	
  acts	
  as	
  the	
  floor	
  of	
  
the	
  hydrophobic	
  pocket,	
  inhibi:ng	
  further	
  chain	
  elonga:on.	
  In	
  the	
  case	
  of	
  the	
  
Rv2173	
   enzyme,	
   the	
   large,	
   hydrophobic	
   phenylalanines	
   are	
   replaced	
   with	
   a	
  
tryptophan	
   and	
   an	
   alanine,	
   which	
   possibly	
   could	
   allow	
   chain	
   elonga:on	
   to	
  
propagate	
  further.	
  A	
  second	
  tryptophan,	
  Trp159,	
  is	
  located	
  on	
  a	
  separate	
  helix	
  
but	
   extends	
   in	
   an	
   orienta:on	
   such	
   that	
   it	
   is	
   about	
   5.3	
   A	
   below	
   the	
   first	
  
tryptophan.	
   This	
   extra	
   5.3	
   A	
   could	
   poten:ally	
   accommodate	
   the	
   length	
   of	
  
another	
  5	
  carbon	
  chain,	
  making	
  the	
  product	
  GGPP.	
  Tarshish	
  et	
  al.	
  found	
  that	
  
muta:ons	
  to	
  F112	
  and	
  113	
  resulted	
  in	
  products	
  that	
  were	
  consistent	
  with	
  a	
  25	
  
carbon	
  chain.	
  GC-­‐MS	
  anaylsis	
  reveals	
  a	
  spectrum	
  that	
  also	
  correlates	
  to	
  a	
  25	
  
carbon	
  product	
  in	
  GGPP	
  reac:ons.	
  A	
  specific	
  m/z	
  peak	
  is	
  not	
  observed,	
  but	
  a	
  
fragment	
   peak	
   at	
   m/z	
   of	
   341.0	
   corresponds	
   with	
   the	
   molecular	
   weight	
  
consistent	
  with	
  the	
  loss	
  of	
  water	
  from	
  GGOH.	
  The	
  only	
  2	
  assay	
  combina:ons	
  
that	
   resulted	
   in	
   the	
   forma:on	
   of	
   this	
   peak	
   were	
   GGPP+IPP	
   and	
   GGPP+GGPP	
  
which	
  would	
  be	
  congruent	
  with	
  a	
  25	
  carbon	
  prenyltransferase.	
  E.	
  coli	
  naturally	
  
produces	
  small	
  amounts	
  of	
  IPP,	
  which	
  explains	
  why	
  the	
  25	
  carbon	
  peak	
  could	
  
be	
   seen	
   in	
   the	
   GGPP+GGPP	
   reac:on.	
   However,	
   HPLC	
   analysis	
   revealed	
   the	
  
forma:on	
  of	
  a	
  strong	
  peak	
  in	
  Rv2173-­‐transformed	
  cells	
  that	
  is	
  similar	
  to	
  a	
  10	
  
carbon	
   chain	
   GOH	
   peak,	
   and	
   no	
   indica:on	
   of	
   any	
   long	
   25	
   carbon	
   chains.	
   A	
  
model	
  of	
  the	
  hydrophobic	
  surface	
  in	
  the	
  ac:ve	
  site	
  showed	
  that	
  the	
  Rv2173	
  
enzyme	
   had	
   a	
   significantly	
   more	
   shallow	
   pocket	
   than	
   an	
   FPP	
   synthase,	
  
suppor:ng	
  that	
  the	
  Rv2173	
  enzyme	
  may	
  be	
  a	
  shorter	
  chain	
  synthase	
  such	
  as	
  
GPP	
  synthase.	
  The	
  peaks	
  observed	
  on	
  the	
  GC-­‐MS	
  could	
  be	
  due	
  to	
  the	
  ac:vity	
  of	
  
the	
  Rv2173	
  enzyme	
  supplying	
  large	
  amount	
  of	
  substrate	
  for	
  another	
  enzyme	
  to	
  
synthesize	
  the	
  25	
  carbon	
  chain.	
  	
  	
  	
  	
  
Substrate	
  1	
   Substrate	
  1	
  (mL)	
   Substrate	
  2	
   Substrate	
  2	
  (mL)	
   Lysate	
  (mL)	
   water	
  (mL)	
   Final	
  vol	
  (mL)	
  
IPP	
   0.0149	
   DMAPP	
   0.0149	
   0.1	
   0.870	
   1	
  
IPP	
   0.0149	
   GPP	
   0.0183	
   0.1	
   0.867	
   1	
  
IPP	
   0.0149	
   FPP	
   0.0191	
   0.1	
   0.866	
   1	
  
IPP	
   0.0149	
   GGPP	
   0.0225	
   0.1	
   0.863	
   1	
  
DMAPP	
   0.0149	
   DMAPP	
   0.0149	
   0.1	
   0.870	
   1	
  
GPP	
   0.0183	
   GPP	
   0.0183	
   0.1	
   0.863	
   1	
  
FPP	
   0.0191	
   FPP	
   0.0191	
   0.1	
   0.862	
   1	
  
GGPP	
   0.0225	
   GGPP	
   0.0225	
   0.1	
   0.855	
   1	
  
NONE	
   0.0000	
   NONE	
   0.0000	
   0.1	
   0.900	
   1	
  
GC-­‐MS	
  Analysis	
  of	
  Assay	
  Products	
  
The	
  ac:ve	
  site	
  modeled	
  on	
  the	
  led	
  shows	
  a	
  tryptophan	
  (T79)	
  residue	
  that	
  is	
  similar	
  to	
  a	
  large,	
  conserved,	
  hydrophobic	
  
amino	
  acid	
  among	
  other	
  prenytransferases	
  that	
  acts	
  as	
  a	
  key	
  element	
  in	
  chain	
  elonga:on	
  size.	
  	
  The	
  ac:ve	
  site	
  modeled	
  on	
  
the	
   right	
   shows	
   another	
   tryptophan	
   (T159)	
   residue	
   unique	
   to	
   the	
   enzyme	
   encoded	
   for	
   by	
   Rv2173	
   that	
   is	
   in	
   the	
   same	
  
posi:oning,	
  but	
  is	
  extended	
  about	
  5.3	
  angstroms	
  further	
  towards	
  the	
  boPom	
  of	
  the	
  enzyme.	
  
Models	
  of	
  AcCve	
  Site	
  	
  
Figure	
  1	
  
the	
   nega:vely	
   charged	
   phosphates	
   of	
   isoprenoids6,7.	
   These	
  
interac:ons	
   are	
   key	
   to	
   the	
   mechanis:c	
   steps	
   described	
   by	
  
Burke	
  et	
  al.	
  that	
  catalyze	
  forma:on	
  of	
  short-­‐chain	
  isoprenoids.	
  
Knowing	
  the	
  subtrate’s	
  orienta:on	
  in	
  the	
  ac:ve	
  site	
  allows	
  for	
  
iden:fica:on	
  of	
  a	
  hydrophobic	
  pocket	
  in	
  which	
  the	
  tail	
  of	
  the	
  
substrate	
  is	
  fed	
  into	
  a	
  hydrophobic	
  pocket.	
  The	
  depth	
  of	
  this	
  
pocket	
   is	
   hypothesized	
   to	
   contribute	
   to	
   controlling	
   chain	
  
length4,5.	
  Thus,	
  bioinforma:c	
  analysis	
  provide	
  important	
  hints	
  
that	
  aid	
  in	
  the	
  design	
  of	
  experiments	
  to	
  gain	
  solid	
  evidence.	
  
1st	
  Conserved	
  DDxxD	
  mo:f	
   Conserved	
  KT	
  mo:f	
   2nd	
  Conserved	
  DDxxD	
  mo:f	
  
Chain	
  length	
  determining	
  residues	
  
Comparison	
  of	
  the	
  Rv2173	
  amino	
  acid	
  sequence	
  with	
  sequences	
  of	
  several	
  other	
  known	
  enzymes	
  in	
  the	
  prenyltransferase	
  
family	
  revealed	
  two	
  conserved	
  aspartate	
  rich	
  regions.	
  Also,	
  analysis	
  showed	
  conserva:on	
  of	
  Lys194,	
  which	
  is	
  thought	
  to	
  aid	
  
the	
  subs:tu:on	
  reac:on	
  in	
  the	
  ac:ve	
  site	
  because	
  of	
  its	
  close	
  proximity	
  to	
  the	
  allylic	
  nucleophile	
  and	
  ca:onic	
  electrophile.	
  	
  	
  	
  	
  
Contribu:onal	
  aspartates	
  
References
(1)	
  Burke,	
  C.	
  C.;	
  Wildung,	
  M.	
  R.;	
  Croteau,	
  R.	
  Proc.	
  Natl.	
  Acad.	
  Sci.	
  1999,	
  96,	
  13062–
13067.	
  
(2)	
  Schulbach,	
  M.	
  C.;	
  Brennan,	
  P.	
  J.;	
  Crick,	
  D.	
  C.	
  J.	
  Biol.	
  Chem.	
  2000.	
  
(3)	
  Dhiman,	
  R.	
  K.;	
  Mahapatra,	
  S.	
  et	
  al.	
  Mol.	
  Microbiol.	
  2009,	
  72,	
  85–97.	
  
(4)	
  Noike,	
  M.;	
  Ambo,	
  T.	
  et	
  al.	
  Biochem.	
  Biophys.	
  Res.	
  Commun.	
  2008,	
  377,	
  17–22.	
  
(5)	
  Tarshis,	
  L.	
  C.;	
  Proteau,	
  P.	
  J.;	
  Kellogg,	
  B.	
  A.;	
  Saccheqni,	
  J.	
  C.;	
  Poulter,	
  C.	
  D.	
  Proc.	
  
Natl.	
  Acad.	
  Sci.	
  1996,	
  93,	
  15018–15023.	
  
(6)	
  Liang,	
  P.-­‐H.;	
  Ko,	
  T.-­‐P.;	
  Wang,	
  A.	
  H.-­‐J.	
  Eur.	
  J.	
  Biochem.	
  2002,	
  269,	
  3339–3354.	
  
(7)	
  Wang,	
  W.;	
  Dong,	
  C.	
  et	
  al.	
  J.	
  Mol.	
  Biol.	
  2008,	
  381,	
  129–140.	
  
HPLC	
  Analysis	
  of	
  Transformed	
  E.	
  coli	
  	
  
C41	
  control	
  cells	
  
Rv2173	
  cells	
  
GOH	
  standard	
  
GGPP+IPP	
   GGPP+GGPP	
  
GC-­‐MS	
  analysis	
  revealed	
  the	
  produc:on	
  of	
  a	
  new	
  product	
  in	
  Rv2173	
  transformed	
  lysates	
  in	
  the	
  reac:ons	
  of	
  GGPP+IPP	
  and	
  
GGPP+GGPP.	
   The	
   peaks’	
   mass	
   spectra	
   of	
   these	
   newly	
   formed	
   peaks	
   represent	
   a	
   25	
   carbon	
   chain	
   with	
   an	
   important	
  
fragmenta:on	
  peak	
  with	
  an	
  m/z	
  of	
  341.	
  HPLC	
  analysis	
  revealed	
  one	
  substan:al	
  product	
  formed	
  in	
  Rv2173	
  transformed	
  
cells	
  when	
  compared	
  to	
  the	
  background	
  of	
  the	
  normal	
  C41	
  cells.	
  The	
  reten:on	
  :me	
  of	
  this	
  peak	
  is	
  indica:ve	
  of	
  a	
  short	
  
chain	
  product,	
  so	
  a	
  geraniol	
  standard	
  was	
  run	
  to	
  try	
  to	
  iden:fy	
  the	
  peak.	
  Replicates	
  confirmed	
  that	
  the	
  new	
  peak	
  does	
  not	
  
align	
  with	
  geraniol,	
  but	
  is	
  unique	
  to	
  the	
  Rv2173	
  cells.	
  
Sequence	
  Analysis	
  
Materials & Methods

More Related Content

What's hot

Molecular Cloning of the Structural Gene for Exopolygalacturonate
Molecular Cloning of the Structural Gene for ExopolygalacturonateMolecular Cloning of the Structural Gene for Exopolygalacturonate
Molecular Cloning of the Structural Gene for ExopolygalacturonateAlan Brooks
 
Translation mutation ppt
Translation mutation pptTranslation mutation ppt
Translation mutation pptlvilleDrFox
 
Transcription and translation
Transcription and translationTranscription and translation
Transcription and translationsikojp
 
CDNA Library preparation. ppt for Jamil sir
CDNA Library preparation. ppt for Jamil sirCDNA Library preparation. ppt for Jamil sir
CDNA Library preparation. ppt for Jamil sirNushrat Jahan
 
Chemical synthesis of DNA By Prabhu Thirusangu
Chemical synthesis of DNA By Prabhu ThirusanguChemical synthesis of DNA By Prabhu Thirusangu
Chemical synthesis of DNA By Prabhu ThirusanguPrabhu Thirusangu
 
Central dogma in molecular biology
Central dogma in molecular biologyCentral dogma in molecular biology
Central dogma in molecular biologyTanvir Raihan
 
Unit B7 8 Protein Synthesis
Unit B7 8 Protein SynthesisUnit B7 8 Protein Synthesis
Unit B7 8 Protein Synthesissciencechris
 
Bio108 Cell Biology lec 5 DNA REPLICATION, REPAIR and RECOMBINATION
Bio108 Cell Biology lec 5 DNA REPLICATION, REPAIR and RECOMBINATIONBio108 Cell Biology lec 5 DNA REPLICATION, REPAIR and RECOMBINATION
Bio108 Cell Biology lec 5 DNA REPLICATION, REPAIR and RECOMBINATIONShaina Mavreen Villaroza
 
DNA replication-in-eukaryotes
DNA replication-in-eukaryotesDNA replication-in-eukaryotes
DNA replication-in-eukaryotesFaisalAlshareefi
 

What's hot (19)

Molecular Cloning of the Structural Gene for Exopolygalacturonate
Molecular Cloning of the Structural Gene for ExopolygalacturonateMolecular Cloning of the Structural Gene for Exopolygalacturonate
Molecular Cloning of the Structural Gene for Exopolygalacturonate
 
Translation mutation ppt
Translation mutation pptTranslation mutation ppt
Translation mutation ppt
 
Transcription and translation
Transcription and translationTranscription and translation
Transcription and translation
 
CDNA Library preparation. ppt for Jamil sir
CDNA Library preparation. ppt for Jamil sirCDNA Library preparation. ppt for Jamil sir
CDNA Library preparation. ppt for Jamil sir
 
Central dogma
Central dogmaCentral dogma
Central dogma
 
RNA structure
RNA structureRNA structure
RNA structure
 
Central dogma
Central dogmaCentral dogma
Central dogma
 
Chemical synthesis of DNA By Prabhu Thirusangu
Chemical synthesis of DNA By Prabhu ThirusanguChemical synthesis of DNA By Prabhu Thirusangu
Chemical synthesis of DNA By Prabhu Thirusangu
 
Transcription and Translation
Transcription and TranslationTranscription and Translation
Transcription and Translation
 
Transcription
TranscriptionTranscription
Transcription
 
Central dogma in molecular biology
Central dogma in molecular biologyCentral dogma in molecular biology
Central dogma in molecular biology
 
Central dogma
Central dogmaCentral dogma
Central dogma
 
Unit B7 8 Protein Synthesis
Unit B7 8 Protein SynthesisUnit B7 8 Protein Synthesis
Unit B7 8 Protein Synthesis
 
Bio108 Cell Biology lec 5 DNA REPLICATION, REPAIR and RECOMBINATION
Bio108 Cell Biology lec 5 DNA REPLICATION, REPAIR and RECOMBINATIONBio108 Cell Biology lec 5 DNA REPLICATION, REPAIR and RECOMBINATION
Bio108 Cell Biology lec 5 DNA REPLICATION, REPAIR and RECOMBINATION
 
Protein synthesis
Protein synthesisProtein synthesis
Protein synthesis
 
DNA Replication
DNA ReplicationDNA Replication
DNA Replication
 
DNA replication-in-eukaryotes
DNA replication-in-eukaryotesDNA replication-in-eukaryotes
DNA replication-in-eukaryotes
 
PROKARYOTIC DNA REPLICATION
PROKARYOTIC DNA REPLICATIONPROKARYOTIC DNA REPLICATION
PROKARYOTIC DNA REPLICATION
 
Transcription
TranscriptionTranscription
Transcription
 

Viewers also liked

Seahorse Poster DOS (JJW Edits 6-15-15)
Seahorse Poster DOS (JJW Edits 6-15-15)Seahorse Poster DOS (JJW Edits 6-15-15)
Seahorse Poster DOS (JJW Edits 6-15-15)Zach Swanson
 
How a Strong Brand Boosts B2B Demand
How a Strong Brand Boosts B2B DemandHow a Strong Brand Boosts B2B Demand
How a Strong Brand Boosts B2B DemandGYK Antler
 
Is Your Content Resonating? How to Build Connections With Content
Is Your Content Resonating? How to  Build Connections With ContentIs Your Content Resonating? How to  Build Connections With Content
Is Your Content Resonating? How to Build Connections With ContentUberflip
 
Digital globalization: The new era of global flows
Digital globalization: The new era of global flowsDigital globalization: The new era of global flows
Digital globalization: The new era of global flowsMcKinsey & Company
 
How the Workforce Learns in 2016 (Expanded deck with polls and case study) - ...
How the Workforce Learns in 2016 (Expanded deck with polls and case study) - ...How the Workforce Learns in 2016 (Expanded deck with polls and case study) - ...
How the Workforce Learns in 2016 (Expanded deck with polls and case study) - ...David Blake
 
Game Based Learning for Language Learners
Game Based Learning for Language LearnersGame Based Learning for Language Learners
Game Based Learning for Language LearnersShelly Sanchez Terrell
 

Viewers also liked (7)

Seahorse Poster DOS (JJW Edits 6-15-15)
Seahorse Poster DOS (JJW Edits 6-15-15)Seahorse Poster DOS (JJW Edits 6-15-15)
Seahorse Poster DOS (JJW Edits 6-15-15)
 
How a Strong Brand Boosts B2B Demand
How a Strong Brand Boosts B2B DemandHow a Strong Brand Boosts B2B Demand
How a Strong Brand Boosts B2B Demand
 
MARKETING SMACKDOWN: Hiring In-House Talent VS Hiring A Marketing Agency
MARKETING SMACKDOWN: Hiring In-House Talent VS Hiring A Marketing AgencyMARKETING SMACKDOWN: Hiring In-House Talent VS Hiring A Marketing Agency
MARKETING SMACKDOWN: Hiring In-House Talent VS Hiring A Marketing Agency
 
Is Your Content Resonating? How to Build Connections With Content
Is Your Content Resonating? How to  Build Connections With ContentIs Your Content Resonating? How to  Build Connections With Content
Is Your Content Resonating? How to Build Connections With Content
 
Digital globalization: The new era of global flows
Digital globalization: The new era of global flowsDigital globalization: The new era of global flows
Digital globalization: The new era of global flows
 
How the Workforce Learns in 2016 (Expanded deck with polls and case study) - ...
How the Workforce Learns in 2016 (Expanded deck with polls and case study) - ...How the Workforce Learns in 2016 (Expanded deck with polls and case study) - ...
How the Workforce Learns in 2016 (Expanded deck with polls and case study) - ...
 
Game Based Learning for Language Learners
Game Based Learning for Language LearnersGame Based Learning for Language Learners
Game Based Learning for Language Learners
 

Similar to Rv2173 Poster

Similar to Rv2173 Poster (20)

Lab Report #2
Lab Report #2Lab Report #2
Lab Report #2
 
Presentation
PresentationPresentation
Presentation
 
FINAL_PURA
FINAL_PURAFINAL_PURA
FINAL_PURA
 
Thesis
ThesisThesis
Thesis
 
Translational machinery
Translational   machineryTranslational   machinery
Translational machinery
 
Research Project Report
Research Project ReportResearch Project Report
Research Project Report
 
Report on molecular biology techniques
Report on molecular biology techniquesReport on molecular biology techniques
Report on molecular biology techniques
 
Advantages And Disadvantages Of Reverse Sequence Syphilis...
Advantages And Disadvantages Of Reverse Sequence Syphilis...Advantages And Disadvantages Of Reverse Sequence Syphilis...
Advantages And Disadvantages Of Reverse Sequence Syphilis...
 
Molecular biology of the gene ch 13 rna splicing part1
Molecular biology of the gene ch 13 rna splicing part1Molecular biology of the gene ch 13 rna splicing part1
Molecular biology of the gene ch 13 rna splicing part1
 
Biology bartel and szostak experiment
Biology bartel and szostak experimentBiology bartel and szostak experiment
Biology bartel and szostak experiment
 
Bio390 final paper
Bio390 final paperBio390 final paper
Bio390 final paper
 
CcP2APX_Biochem_2008
CcP2APX_Biochem_2008CcP2APX_Biochem_2008
CcP2APX_Biochem_2008
 
Macromolecular synthesis
Macromolecular synthesisMacromolecular synthesis
Macromolecular synthesis
 
chapter 7
chapter 7chapter 7
chapter 7
 
Rna polymerase
Rna polymeraseRna polymerase
Rna polymerase
 
labchip_dtaller
labchip_dtallerlabchip_dtaller
labchip_dtaller
 
Replication, transcription, translation and its regulation
Replication, transcription, translation and its regulationReplication, transcription, translation and its regulation
Replication, transcription, translation and its regulation
 
RNA - A Magic Molecule
RNA - A Magic MoleculeRNA - A Magic Molecule
RNA - A Magic Molecule
 
projekt final
projekt finalprojekt final
projekt final
 
Thesis
ThesisThesis
Thesis
 

Rv2173 Poster

  • 1. Dr.  Mann  for  the  assistance,  guidance,  and  mentorship   WSU  Founda:on  for  providing  a  Research  and  Crea:ve  Scholarship  Grant   WSU  Chemistry  Department  for  use  of  facili:es  and  equipment   Acknowledgements   Use of Molecular Modeling to Direct the Functional Characterization of a Suspected Short-Chain Prenyltransferase in Mycobacterium tuberculosis Zachary  A.  Swanson,  Francis  M.  Mann   Winona  State  University,  Winona,  MN   Results Conclusion Abstract Introduction Discussion Mycobacterium   tuberculosis   is   a   bacterium   that   is   spread   by   droplet   nuclei   from   the   respiratory   tract   of   an   infected   individual.   The   infec:on   of   M.   tuberculosis   is   one   of   the   leading   causes   of   death   among   bacterial   infec:ons   and   there   is   currently   no   cure.   M.   tuberculosis   u:lizes   menaquinone   as   an   electron   transporter   during   oxida:ve   phosphoryla:on,  making  inhibi:on  of  menaquinone  synthesis  a  target  for  development  of   therapeu:cs.  Rv2173  encodes  a  protein  that  has  been  iden:fied  as  a  possible  contributor  to   menaquinone   synthesis.   Menaquinone   synthesis   requires   isoprenoids,   which   are   likely   synthesized  by  the  enzyme  encoded  by  Rv2173.  Upon  sequence  analysis,  it  was  confirmed   that   the   gene   contains   a   region   of   conserved   aspartate   residues   characteris:c   of   prenyltransferases,   which   catalyze   forma:on   of   linear   isoprenoids   of   varying   lengths.   The   crystal  structure  of  Rv2173  indicates  that  the  enzyme  ac:ve  site  would  catalyze  produc:on   of  short  chain  isoprenoids  that  could  possibly  be  used  in  the  synthesis  of  menaquinone.  This   research  u:lizes  molecular  modeling  to  direct  the  func:onal  characteriza:on  of  the  enzyme   and  then  qualita:vely  inves:gate  the  products  of  Rv2173  based  on  constructed  models.     Synthesis  of  mul:ple  chain  length  isoprenoids  provides  the  cell  with  a  stock  to  be  used  for   menaquinone  synthesis  among  other  important  uses.  Menaquinone  is  essen:al  to  the  energy   produc:on  of  the  cell,  by  ac:ng  as  an  electron  shuPle  during  the  oxida:ve  phosphoryla:on   pathway3.  Without  menaquinone,  a  cell  would  be  deficient  in  energy  and  enter  apoptosis2.   Understanding  the  mechanism  of  how  prenyltransferases  work  is  essen:al  to  interpret  how   models   can   be   used   to   direct   characteriza:on   of   an   enzyme.   Ac:ve   sites   of   prenyltransferases  are  similar  and  contain  an  aspartate  rich  region.  Crystal  structures  show   these  aspartate  residues  can  chelate  with  Mg2+  ions  (Figure  1),  which  can  also  chelate  with   Prepara&on  of  enzyme  from  Rv2173  DNA:  The  Rv2173  gene  was  previously  cloned  from  M.   tuberculosis   CDC1551   genomic   DNA   and   placed   into   a   Gateway   pDEST17   expression   vector   (Life  Technologies,  Carlsbad,  CA).  2  μL  of  Rv2173/17  DNA  was  added  to  25μL  of  C41  competent   Escherichia  coli  cells  and  incubated  on  ice  for  30  minutes.  Cells  were  heat  shocked  at  42  C  for   30  seconds,  250  μL  of  NYZ  media  was  added,  and  the  cells  were  incubated  at  37  C  for  1  hour.   Cells  were  plated  on  35  ug/mL  carbenicillin  plates  and  incubated  at  37  C  for  24  hours.  Single   colonies  were  grown  in  500  mL  NYZ  media  to  an  op:mal  density  of  0.6-­‐0.8  nm.    The  cells  were   then  cooled  to  16  C  and  induced  with  0.5  mM  IPTG  for  16-­‐18  hours.  Cells  were  centrifuged,   supernatant  was  removed,  and  pellets  were  stored  at  -­‐80  C.       Prenyltransferase  assay:  Transformed  cells  were  thawed  slowly  in  ice  and  suspended  in  10mL   of  lysis  buffer.  Cells  were  lysed  in  an  ice  bath  sonicator  for  15  minutes.  One  replicate  of  the   assay   was   run   with   this   unclarified   lysate;   one   was   run   using   the   supernatent   ader   centrifuga:on  of  the  unclarified  lysate,  called  the  clarified  lysate.    Both  assays  were  prepared   the   same   way   as   shown   in   the   table   below.   All   components   were   added   to   test   tubes,   equilibrated  to  37  C  in  water  bath,  and  allowed  to  incubate  for  30  minutes.  Cells  were  treated   with  110uL  of  alkaline  phosphatase  buffer,  and  10uL  of  alkaline  phosphatase  and  allowed  to   react  overnight.  This  allowed  extrac:on  of  products  in  hexanes.   HPLC   analysis:   C41   E.   coli   cells   were   transformed   the   same   as   above   and   extracted   with   methanol.  HPLC  method:  0-­‐5min,  10%  MeOH;  5-­‐10min,  20%  MeOH;  10-­‐15min,  30%  MeOH;   15-­‐20min,  40%  MeOH;  20-­‐30min,  40%  MeOH.     HPLC   analysis   indicates   that   the   Rv2173   gene   is   causing   produc:on   of   a   new   product   consistent   with   a   chain   length   of   ten   carbons   or   shorter   when   transformed  into  E.  coli  cells.  GC-­‐MS  analysis  shows  the  forma:on  of  a  product   with   a   spectrum   indica:ve   of   a   25   carbon   isoprenoid,   but   because   no   peaks   were  observed  consistent  with  a  25  carbon  chain  on  the  HPLC,  it  is  hypothesized   that   the   25   carbon   isoprenoid   being   formed   is   a   result   of   another   enzyme   u:lizing   the   larger   stock   of   short   chain   isoprenoid   being   produced   by   the   Rv2173   enzyme.   Crystal   structure   models   show   that   a   much   deeper   hydrophobic  pocket  is  observed  in  a  known  FPP  synthase  when  compared  to  the   hydrophobic   pocket   of   the   Rv2173   enzyme,   also   suppor:ve   of   the   enzyme   product  being  shorter  than  a  15  carbon  chain.   Sequence  analysis  of  the  Rv2173  enzyme  reveals  numerous  similari:es  of  key   residues  indica:ve  of  a  short-­‐chain  prenyltransferase.  The  first  aspartate  rich   region  contains  3  residues  facing  the  inside  of  the  ac:ve  site,  directly  across   from   the   second   aspartate   rich   region.   This   second   region   is   interes:ng   because  instead  of  the  highly  conserved  DDxxD  sequence,  it  contains  a  DDxxG   sequence.  However,  the  close  proximity  of  two  more  aspartates,  Asp254  and   Asp255,  on  the  overhanging  helix  may  subs:tute  for  the  lacking  third  aspartate   in  the  second  conserved  region.  The  exact  reason  for  this  change  is  unknown,   but  it  has  been  hypothesized  by  Liang  et  al.  that  the  helix  in  which  Asp  254  and   Asp255   are   a   part   of   is   a   flexible   “cap”   that   encloses   the   ac:ve   site   upon   substrate   binding,   bringing   the   substrates   into   a   closer,   more   compact,   orienta:on  that  helps  the  reac:on  proceed.  The  importance  of  the  amino  acid   residues   four   and   five   residues   upstream   from   the   first   conserved   aspartate   was  demonstrated  by  Tarshis  et  al.  to  be  essen:al  in  determining  chain  length   in  a  known  farnesyl  pyrophosphate  synthase  because  they  acts  as  the  floor  of   the  hydrophobic  pocket,  inhibi:ng  further  chain  elonga:on.  In  the  case  of  the   Rv2173   enzyme,   the   large,   hydrophobic   phenylalanines   are   replaced   with   a   tryptophan   and   an   alanine,   which   possibly   could   allow   chain   elonga:on   to   propagate  further.  A  second  tryptophan,  Trp159,  is  located  on  a  separate  helix   but   extends   in   an   orienta:on   such   that   it   is   about   5.3   A   below   the   first   tryptophan.   This   extra   5.3   A   could   poten:ally   accommodate   the   length   of   another  5  carbon  chain,  making  the  product  GGPP.  Tarshish  et  al.  found  that   muta:ons  to  F112  and  113  resulted  in  products  that  were  consistent  with  a  25   carbon  chain.  GC-­‐MS  anaylsis  reveals  a  spectrum  that  also  correlates  to  a  25   carbon  product  in  GGPP  reac:ons.  A  specific  m/z  peak  is  not  observed,  but  a   fragment   peak   at   m/z   of   341.0   corresponds   with   the   molecular   weight   consistent  with  the  loss  of  water  from  GGOH.  The  only  2  assay  combina:ons   that   resulted   in   the   forma:on   of   this   peak   were   GGPP+IPP   and   GGPP+GGPP   which  would  be  congruent  with  a  25  carbon  prenyltransferase.  E.  coli  naturally   produces  small  amounts  of  IPP,  which  explains  why  the  25  carbon  peak  could   be   seen   in   the   GGPP+GGPP   reac:on.   However,   HPLC   analysis   revealed   the   forma:on  of  a  strong  peak  in  Rv2173-­‐transformed  cells  that  is  similar  to  a  10   carbon   chain   GOH   peak,   and   no   indica:on   of   any   long   25   carbon   chains.   A   model  of  the  hydrophobic  surface  in  the  ac:ve  site  showed  that  the  Rv2173   enzyme   had   a   significantly   more   shallow   pocket   than   an   FPP   synthase,   suppor:ng  that  the  Rv2173  enzyme  may  be  a  shorter  chain  synthase  such  as   GPP  synthase.  The  peaks  observed  on  the  GC-­‐MS  could  be  due  to  the  ac:vity  of   the  Rv2173  enzyme  supplying  large  amount  of  substrate  for  another  enzyme  to   synthesize  the  25  carbon  chain.           Substrate  1   Substrate  1  (mL)   Substrate  2   Substrate  2  (mL)   Lysate  (mL)   water  (mL)   Final  vol  (mL)   IPP   0.0149   DMAPP   0.0149   0.1   0.870   1   IPP   0.0149   GPP   0.0183   0.1   0.867   1   IPP   0.0149   FPP   0.0191   0.1   0.866   1   IPP   0.0149   GGPP   0.0225   0.1   0.863   1   DMAPP   0.0149   DMAPP   0.0149   0.1   0.870   1   GPP   0.0183   GPP   0.0183   0.1   0.863   1   FPP   0.0191   FPP   0.0191   0.1   0.862   1   GGPP   0.0225   GGPP   0.0225   0.1   0.855   1   NONE   0.0000   NONE   0.0000   0.1   0.900   1   GC-­‐MS  Analysis  of  Assay  Products   The  ac:ve  site  modeled  on  the  led  shows  a  tryptophan  (T79)  residue  that  is  similar  to  a  large,  conserved,  hydrophobic   amino  acid  among  other  prenytransferases  that  acts  as  a  key  element  in  chain  elonga:on  size.    The  ac:ve  site  modeled  on   the   right   shows   another   tryptophan   (T159)   residue   unique   to   the   enzyme   encoded   for   by   Rv2173   that   is   in   the   same   posi:oning,  but  is  extended  about  5.3  angstroms  further  towards  the  boPom  of  the  enzyme.   Models  of  AcCve  Site     Figure  1   the   nega:vely   charged   phosphates   of   isoprenoids6,7.   These   interac:ons   are   key   to   the   mechanis:c   steps   described   by   Burke  et  al.  that  catalyze  forma:on  of  short-­‐chain  isoprenoids.   Knowing  the  subtrate’s  orienta:on  in  the  ac:ve  site  allows  for   iden:fica:on  of  a  hydrophobic  pocket  in  which  the  tail  of  the   substrate  is  fed  into  a  hydrophobic  pocket.  The  depth  of  this   pocket   is   hypothesized   to   contribute   to   controlling   chain   length4,5.  Thus,  bioinforma:c  analysis  provide  important  hints   that  aid  in  the  design  of  experiments  to  gain  solid  evidence.   1st  Conserved  DDxxD  mo:f   Conserved  KT  mo:f   2nd  Conserved  DDxxD  mo:f   Chain  length  determining  residues   Comparison  of  the  Rv2173  amino  acid  sequence  with  sequences  of  several  other  known  enzymes  in  the  prenyltransferase   family  revealed  two  conserved  aspartate  rich  regions.  Also,  analysis  showed  conserva:on  of  Lys194,  which  is  thought  to  aid   the  subs:tu:on  reac:on  in  the  ac:ve  site  because  of  its  close  proximity  to  the  allylic  nucleophile  and  ca:onic  electrophile.           Contribu:onal  aspartates   References (1)  Burke,  C.  C.;  Wildung,  M.  R.;  Croteau,  R.  Proc.  Natl.  Acad.  Sci.  1999,  96,  13062– 13067.   (2)  Schulbach,  M.  C.;  Brennan,  P.  J.;  Crick,  D.  C.  J.  Biol.  Chem.  2000.   (3)  Dhiman,  R.  K.;  Mahapatra,  S.  et  al.  Mol.  Microbiol.  2009,  72,  85–97.   (4)  Noike,  M.;  Ambo,  T.  et  al.  Biochem.  Biophys.  Res.  Commun.  2008,  377,  17–22.   (5)  Tarshis,  L.  C.;  Proteau,  P.  J.;  Kellogg,  B.  A.;  Saccheqni,  J.  C.;  Poulter,  C.  D.  Proc.   Natl.  Acad.  Sci.  1996,  93,  15018–15023.   (6)  Liang,  P.-­‐H.;  Ko,  T.-­‐P.;  Wang,  A.  H.-­‐J.  Eur.  J.  Biochem.  2002,  269,  3339–3354.   (7)  Wang,  W.;  Dong,  C.  et  al.  J.  Mol.  Biol.  2008,  381,  129–140.   HPLC  Analysis  of  Transformed  E.  coli     C41  control  cells   Rv2173  cells   GOH  standard   GGPP+IPP   GGPP+GGPP   GC-­‐MS  analysis  revealed  the  produc:on  of  a  new  product  in  Rv2173  transformed  lysates  in  the  reac:ons  of  GGPP+IPP  and   GGPP+GGPP.   The   peaks’   mass   spectra   of   these   newly   formed   peaks   represent   a   25   carbon   chain   with   an   important   fragmenta:on  peak  with  an  m/z  of  341.  HPLC  analysis  revealed  one  substan:al  product  formed  in  Rv2173  transformed   cells  when  compared  to  the  background  of  the  normal  C41  cells.  The  reten:on  :me  of  this  peak  is  indica:ve  of  a  short   chain  product,  so  a  geraniol  standard  was  run  to  try  to  iden:fy  the  peak.  Replicates  confirmed  that  the  new  peak  does  not   align  with  geraniol,  but  is  unique  to  the  Rv2173  cells.   Sequence  Analysis   Materials & Methods