Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×

ppt on the Solar energy

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Nächste SlideShare
Solar Energy Presentation
Solar Energy Presentation
Wird geladen in …3
×

Hier ansehen

1 von 29 Anzeige

Weitere Verwandte Inhalte

Ähnlich wie ppt on the Solar energy (20)

Anzeige

Weitere von Yuvraj Singh (20)

Aktuellste (20)

Anzeige

ppt on the Solar energy

  1. 1. Solar Energy: The Ultimate Renewable Resource Mr. Yuvraj Singh
  2. 2. What is Solar Energy?What is Solar Energy?  Originates with theOriginates with the thermonuclear fusionthermonuclear fusion reactions occurring in thereactions occurring in the sun.sun.  Represents the entireRepresents the entire electromagnetic radiationelectromagnetic radiation (visible light, infrared,(visible light, infrared, ultraviolet, x-rays, and radioultraviolet, x-rays, and radio waves).waves).  Radiant energy from the sunRadiant energy from the sun has powered life on Earth forhas powered life on Earth for many millions of years.many millions of years.
  3. 3. Advantages and DisadvantagesAdvantages and Disadvantages  AdvantagesAdvantages  All chemical and radioactive polluting byproducts of theAll chemical and radioactive polluting byproducts of the thermonuclear reactions remain behind on the sun, while only purethermonuclear reactions remain behind on the sun, while only pure radiant energy reaches the Earth.radiant energy reaches the Earth.  Energy reaching the earth is incredible. By one calculation, 30 daysEnergy reaching the earth is incredible. By one calculation, 30 days of sunshine striking the Earth have the energy equivalent of the totalof sunshine striking the Earth have the energy equivalent of the total of all the planet’s fossil fuels, both used and unused!of all the planet’s fossil fuels, both used and unused!  DisadvantagesDisadvantages  Sun does not shine consistently.Sun does not shine consistently.  Solar energy is a diffuse source. To harness it, we must concentrate itSolar energy is a diffuse source. To harness it, we must concentrate it into an amount and form that we can use, such as heat and electricity.into an amount and form that we can use, such as heat and electricity.  Addressed by approaching the problem through:Addressed by approaching the problem through: 1) collection, 2) conversion, 3) storage.1) collection, 2) conversion, 3) storage.
  4. 4. Solar Energy toSolar Energy to Heat Living SpacesHeat Living Spaces  Proper design of a building is for it to act as a solarProper design of a building is for it to act as a solar collector and storage unit. This is achieved throughcollector and storage unit. This is achieved through three elements: insulation, collection, and storage.three elements: insulation, collection, and storage.
  5. 5. Solar Energy to Heat WaterSolar Energy to Heat Water  A flat-plate collector is usedA flat-plate collector is used to absorb the sun’s energy toto absorb the sun’s energy to heat the water.heat the water.  The water circulatesThe water circulates throughout the closed systemthroughout the closed system due to convection currents.due to convection currents.  Tanks of hot water are usedTanks of hot water are used as storage.as storage.
  6. 6. PhotovoltaicsPhotovoltaics PhotoPhoto++voltaicvoltaic = convert= convert lightlight toto electricityelectricity
  7. 7. Solar Cells BackgroundSolar Cells Background  1839 - French physicist A. E. Becquerel first recognized the photovoltaic1839 - French physicist A. E. Becquerel first recognized the photovoltaic effect.effect.  1883 - first solar cell built, by Charles Fritts, coated semiconductor1883 - first solar cell built, by Charles Fritts, coated semiconductor selenium with an extremely thin layer of gold to form the junctions.selenium with an extremely thin layer of gold to form the junctions.  1954 - Bell Laboratories, experimenting with semiconductors, accidentally1954 - Bell Laboratories, experimenting with semiconductors, accidentally found that silicon doped with certain impurities was very sensitive to light.found that silicon doped with certain impurities was very sensitive to light. Daryl Chapin, Calvin Fuller and Gerald Pearson, invented the firstDaryl Chapin, Calvin Fuller and Gerald Pearson, invented the first practical device for converting sunlight into useful electrical power.practical device for converting sunlight into useful electrical power. Resulted in the production of the first practical solar cells with a sunlightResulted in the production of the first practical solar cells with a sunlight energy conversion efficiency of around 6%.energy conversion efficiency of around 6%.  1958 - First spacecraft to use solar panels was US satellite Vanguard 11958 - First spacecraft to use solar panels was US satellite Vanguard 1
  8. 8. Driven by Space Applications inDriven by Space Applications in Early DaysEarly Days
  9. 9. The heart of a photovoltaic system is a solid-state device called aThe heart of a photovoltaic system is a solid-state device called a solar cell.solar cell. How does it workHow does it work
  10. 10. Energy Band Formation in SolidEnergy Band Formation in Solid  Each isolated atom has discrete energy level, with two electrons of opposite spin occupying a state.  When atoms are brought into close contact, these energy levels split.  If there are a large number of atoms, the discrete energy levels form a “continuous” band.
  11. 11. Energy Band Diagram of a Conductor,Energy Band Diagram of a Conductor, Semiconductor, and InsulatorSemiconductor, and Insulator a conductor a semiconductor an insulator  Semiconductor is interest because their conductivity can be readily modulated (by impurity doping or electrical potential), offering a pathway to control electronic circuits.
  12. 12. SiliconSilicon Si Si Si Si Si - Si Si Si Si SiSi Si Si Si Shared electrons  Silicon is group IV element – with 4 electrons in their valence shell.  When silicon atoms are brought together, each atom forms covalent bond with 4 silicon atoms in a tetrahedron geometry.
  13. 13. Intrinsic SemiconductorIntrinsic Semiconductor  At 0 ºK, each electron is in its lowest energy state so each covalent bond position is filled. If a small electric field is applied to the material, no electrons will move because they are bound to their individual atoms. => At 0 ºK, silicon is an insulator.  As temperature increases, the valence electrons gain thermal energy. If a valence electron gains enough energy (Eg), it may break its covalent bond and move away from its original position. This electron is free to move within the crystal.  Conductor Eg <0.1eV, many electrons can be thermally excited at room temperature.  Semiconductor Eg ~1eV, a few electrons can be excited (e.g. 1/billion)  Insulator, Eg >3-5eV, essentially no electron can be thermally excited at room temperature.
  14. 14. Extrinsic Semiconductor, n-type DopingExtrinsic Semiconductor, n-type Doping Electron - Si Si Si Si SiSi Si Si As Extra Valence band, Ev Eg = 1.1 eV Conducting band, Ec Ed ~ 0.05 eV  Doping silicon lattice with group V elements can creates extra electrons in the conduction band — negative charge carriers (n-type), As- donor.  Doping concentration #/cm3 (1016 /cm3 ~ 1/million).
  15. 15. Valence band, Ev Eg = 1.1 eV Conducting band, Ec Ea ~ 0.05 eV Electron - Si Si Si Si SiSi Si Si B Hole  Doping silicon with group III elements can creates empty holes in the conduction band — positive charge carriers (p-type), B-(acceptor). Extrinsic Semiconductor, p-type dopingExtrinsic Semiconductor, p-type doping
  16. 16. V I R O F p n p n V>0 V<0 Reverse bias Forward bias p-n Junction (p-n diode)p-n Junction (p-n diode)  A p-n junction is a junction formed by combining p-type and n-type semiconductors together in very close contact.  In p-n junction, the current is only allowed to flow along one direction from p-type to n-type materials. i p n V<0 V>0 depletion layer - +
  17. 17. Solar Cells Light-emitting Diodes Diode Lasers Photodetectors Transistors p-n Junction (p-n diode)p-n Junction (p-n diode)  A p-n junction is the basic device component for many functional electronic devices listed above.
  18. 18. How Solar Cells WorkHow Solar Cells Work  Photons in sunlight hit the solar panel and are absorbed by semiconducting materials to create electron hole pairs.  Electrons (negatively charged) are knocked loose from their atoms, allowing them to flow through the material to produce electricity. p n - + - + - + - + - + hv > Eg
  19. 19. Cost vs. Efficiency TradeoffCost vs. Efficiency Tradeoff Efficiency ∝ τ1/2 Long d High τ High Cost d Long d Low τ Lower Cost d τ decreases as grain size (and cost) decreases Large Grain Single Crystals Small Grain and/or Polycrystalline Solids
  20. 20. 89.6% of 2007 Production89.6% of 2007 Production 45.2% Single Crystal Si45.2% Single Crystal Si 42.2% Multi-crystal SI42.2% Multi-crystal SI  Limit efficiency 31%Limit efficiency 31%  Single crystal silicon - 16-19%Single crystal silicon - 16-19% efficiencyefficiency  Multi-crystal silicon - 14-15%Multi-crystal silicon - 14-15% efficiencyefficiency  Best efficiency by SunPower Inc 22%Best efficiency by SunPower Inc 22% Silicon Cell Average Efficiency First GenerationFirst Generation –– Single Junction Silicon CellsSingle Junction Silicon Cells
  21. 21. CdTe 4.7% & CIGS 0.5% of 2007 ProductionCdTe 4.7% & CIGS 0.5% of 2007 Production  New materials and processes to improve efficiencyNew materials and processes to improve efficiency and reduce cost.and reduce cost.  Thin film cells use about 1% of the expensiveThin film cells use about 1% of the expensive semiconductors compared to First Generation cells.semiconductors compared to First Generation cells.  CdTe – 8 – 11% efficiency (18% demonstrated)CdTe – 8 – 11% efficiency (18% demonstrated)  CIGS – 7-11% efficiency (20% demonstrated)CIGS – 7-11% efficiency (20% demonstrated) Second GenerationSecond Generation –– Thin Film CellsThin Film Cells
  22. 22.  Enhance poor electrical performance while maintaining very lowEnhance poor electrical performance while maintaining very low production costs.production costs.  Current research is targetingCurrent research is targeting conversion efficiencies of 30-60%conversion efficiencies of 30-60% while retainingwhile retaining low cost materials and manufacturing techniques.low cost materials and manufacturing techniques.  Multi-junction cells – 30% efficiency (40-43% demonstrated)Multi-junction cells – 30% efficiency (40-43% demonstrated) Third GenerationThird Generation –– Multi-junction CellsMulti-junction Cells
  23. 23. Solar Home Systems Space Water Pumping Telecom Main Application Areas – Off-grid
  24. 24. Residential Home Systems (2-8 kW) PV Power Plants ( > 100 kW) Commercial Building Systems (50 kW) Main Application Areas Grid Connected
  25. 25. Future Energy MixFuture Energy Mix
  26. 26. Renewable Energy ConsumptionRenewable Energy Consumption in the US Energy Supply, 2007in the US Energy Supply, 2007
  27. 27. Top 10 PV Cell ProducersTop 10 PV Cell Producers Top 10 produce 53% of world total Q-Cells, SolarWorld - Germany Sharp, Kyocera, Sharp, Sanyo – Japan Suntech, Yingli, JA Solar – China Motech - Taiwan
  28. 28. (in the U.S. in 2002) 1-4 ¢ 2.3-5.0 ¢ 6-8 ¢ 5-7 ¢ Production Cost of ElectricityProduction Cost of Electricity 0 5 10 15 20 25 C o al G a s O il W ind Nucle ar S o la r C o s t 6-7 ¢ 25-50 ¢ Cost,¢/kW-hr
  29. 29. Future GenerationFuture Generation –– Printable CellsPrintable Cells Organic Cell Nanostructured Cell Solution Processible Semiconductor

×