Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×

Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Wird geladen in …3
×

Hier ansehen

1 von 25 Anzeige

Weitere Verwandte Inhalte

Diashows für Sie (20)

Ähnlich wie Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks (20)

Anzeige

Aktuellste (20)

Anzeige

Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

  1. 1. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks Yoonho Lee Department of Computer Science and Engineering Pohang University of Science and Technology September 14, 2017
  2. 2. Meta-learning Learning to learn(faster, safer etc)
  3. 3. Meta-learning RL methods take a long time to train: needs meta-learning The meta-train set for humans would be: objects in real life, experience playing different games etc
  4. 4. Previous Deep Meta-Learning Methods
  5. 5. Previous Deep Meta-Learning Methods RNNs as learners[10][12][2][7] Metric Learning[5][11] Optimizer Learning[9][1]
  6. 6. Previous Deep Meta-Learning Methods RNNs as learners
  7. 7. Previous Deep Meta-Learning Methods RNNs as learners12 (assuming a sufficiently expressive RNN) Search space includes all conceivable ML algorithms Moves the burden of innovation to RNNs Ignores advances achieved in ML by humans Subpar results 1 Adam Santoro et al. “One-shot Learning with Memory-Augmented Neural Networks”. In: ICML (2016). 2 Yan Duan et al. “RLˆ2: Fast Reinforcement Learning via Slow Reinforcement Learning”. In: (2016).
  8. 8. Previous Deep Meta-Learning Methods Metric Learning
  9. 9. Previous Deep Meta-Learning Methods Metric Learning34 Learn a metric in input space Specialized to one/few-shot classification(Omniglot, MiniImageNet etc) Cannot use in other problems (e.g. RL) 3 Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. “Siamese Neural Networks for One-shot Image Recognition”. In: ICML (2015). 4 Oriol Vinyals et al. “Matching Networks for One Shot Learning”. In: NIPS (2016).
  10. 10. Previous Deep Meta-Learning Methods Optimizer Learning
  11. 11. Previous Deep Meta-Learning Methods Optimizer Learning56 Learn parameter update given gradients (search space includes SGD, RMSProp, Adam etc) Applicable to any architecture/task Best performance on Omniglot, MiniImageNet 5 Sachin Ravi and Hugo Larochelle. “Optimization as a Model for Few-shot Learning”. In: ICLR (2017). 6 Marcin Andrychowicz et al. “Learning to learn by gradient descent by gradient descent”. In: NIPS (2016).
  12. 12. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks Chelsea Finn Pieter Abbeel, Sergey Levine
  13. 13. ImageNet pre-training Pretrain network on ImageNet classification, then fine-tune network on new task. Enables NNs to learn new vision tasks using relatively small datasets. This works because we have a huge labelled image dataset and the manifold of images have a somewhat consistent structure even between different datasets and tasks. How do we bring ’Initialization as meta-learning’ to non-vision domains such as speech/NLP/RL?
  14. 14. Model-Agnostic Meta-Learning
  15. 15. Model-Agnostic Meta-Learning
  16. 16. Model-Agnostic Meta-Learning Supervised Learning
  17. 17. Model-Agnostic Meta-Learning Few-shot Sine wave regression experiments
  18. 18. Model-Agnostic Meta-Learning One/few-shot Classification experiments
  19. 19. Model-Agnostic Meta-Learning Reinforcement Learning Score function estimator in lines 6/10, since we cannot backprop through environment dynamics
  20. 20. Model-Agnostic Meta-Learning RL experiments https://sites.google.com/view/maml
  21. 21. Model-Agnostic Meta-Learning Extension7 7 Zhenguo Li et al. “Meta-SGD: Learning to Learn Quickly for Few Shot Learning”. In: (2017).
  22. 22. Discussion Parameter space noise (as opposed to policy space noise) has been shown to result in more consistent exploration89. This supports MAML’s idea. Why does MAML not overfit when taking multiple gradient steps? Do we need to overwrite all weights during adaptation? 8 Matthias Plappert et al. “Parameter Space Noise for Exploration”. In: (2017). 9 Meire Fortunato et al. “Noisy Networks for Exploration”. In: (2017).
  23. 23. References I [1] Marcin Andrychowicz et al. “Learning to learn by gradient descent by gradient descent”. In: NIPS (2016). [2] Yan Duan et al. “RLˆ2: Fast Reinforcement Learning via Slow Reinforcement Learning”. In: (2016). [3] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks”. In: (2017). [4] Meire Fortunato et al. “Noisy Networks for Exploration”. In: (2017). [5] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. “Siamese Neural Networks for One-shot Image Recognition”. In: ICML (2015). [6] Zhenguo Li et al. “Meta-SGD: Learning to Learn Quickly for Few Shot Learning”. In: (2017).
  24. 24. References II [7] Nikhil Mishra, Mostafa Rohaninejad, and Xi UC Chen Pieter Abbeel Berkeley. “Meta-Learning with Temporal Convolutions”. In: (2017). [8] Matthias Plappert et al. “Parameter Space Noise for Exploration”. In: (2017). [9] Sachin Ravi and Hugo Larochelle. “Optimization as a Model for Few-shot Learning”. In: ICLR (2017). [10] Adam Santoro et al. “One-shot Learning with Memory-Augmented Neural Networks”. In: ICML (2016). [11] Oriol Vinyals et al. “Matching Networks for One Shot Learning”. In: NIPS (2016). [12] Jx Wang et al. “Learning to Reinforcement Learn”. In: (2016).
  25. 25. Thank You

×