SlideShare a Scribd company logo
1 of 12
Download to read offline
µA741, µA741Y
GENERAL-PURPOSE OPERATIONAL AMPLIFIERS
SLOS094B – NOVEMBER 1970 – REVISED SEPTEMBER 2000
1POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
D Short-Circuit Protection
D Offset-Voltage Null Capability
D Large Common-Mode and Differential
Voltage Ranges
D No Frequency Compensation Required
D Low Power Consumption
D No Latch-Up
D Designed to Be Interchangeable With
Fairchild µA741
description
The µA741 is a general-purpose operational
amplifier featuring offset-voltage null capability.
The high common-mode input voltage range and
the absence of latch-up make the amplifier ideal
for voltage-follower applications. The device is
short-circuit protected and the internal frequency
compensation ensures stability without external
components. A low value potentiometer may be
connected between the offset null inputs to null
out the offset voltage as shown in Figure 2.
The µA741C is characterized for operation from
0°C to 70°C. The µA741I is characterized for
operation from –40°C to 85°C.The µA741M is
characterized for operation over the full military
temperature range of –55°C to 125°C.
symbol
IN +
IN –
OUT
+
–
OFFSET N1
OFFSET N2
Copyright © 2000, Texas Instruments IncorporatedPRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
1
2
3
4
5
6
7
14
13
12
11
10
9
8
NC
NC
OFFSET N1
IN–
IN+
VCC–
NC
NC
NC
NC
VCC+
OUT
OFFSET N2
NC
µA741M . . . J PACKAGE
(TOP VIEW)
1
2
3
4
8
7
6
5
OFFSET N1
IN–
IN+
VCC–
NC
VCC+
OUT
OFFSET N2
µA741M . . . JG PACKAGE
µA741C, µA741I . . . D, P, OR PW PACKAGE
(TOP VIEW)
1
2
3
4
5
10
9
8
7
6
NC
OFFSET N1
IN–
IN+
VCC–
NC
NC
VCC+
OUT
OFFSET N2
µA741M . . . U PACKAGE
(TOP VIEW)
3 2 1 20 19
9 10 11 12 13
4
5
6
7
8
18
17
16
15
14
NC
VCC+
NC
OUT
NC
NC
IN–
NC
IN+
NC
µA741M . . . FK PACKAGE
(TOP VIEW)
NC
OFFSETN1
NC
OFFSETN2
NC
NC
NC
NC
V
NC
CC–
NC – No internal connection
µA741, µA741Y
GENERAL-PURPOSE OPERATIONAL AMPLIFIERS
SLOS094B – NOVEMBER 1970 – REVISED SEPTEMBER 2000
2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
AVAILABLE OPTIONS
PACKAGED DEVICES
CHIP
TA
SMALL
OUTLINE
(D)
CHIP
CARRIER
(FK)
CERAMIC
DIP
(J)
CERAMIC
DIP
(JG)
PLASTIC
DIP
(P)
TSSOP
(PW)
FLAT
PACK
(U)
CHIP
FORM
(Y)
0°C to 70°C µA741CD µA741CP µA741CPW µA741Y
–40°C to 85°C µA741ID µA741IP
–55°C to 125°C µA741MFK µA741MJ µA741MJG µA741MU
The D package is available taped and reeled. Add the suffix R (e.g., µA741CDR).
schematic
IN–
IN+
VCC+
VCC–
OUT
OFFSET N1
OFFSET N2
Transistors 22
Resistors 11
Diode 1
Capacitor 1
Component Count
µA741, µA741Y
GENERAL-PURPOSE OPERATIONAL AMPLIFIERS
SLOS094B – NOVEMBER 1970 – REVISED SEPTEMBER 2000
3POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
µA741Y chip information
This chip, when properly assembled, displays characteristics similar to the µA741C. Thermal compression or
ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive
epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
CHIP THICKNESS: 15 TYPICAL
BONDING PADS: 4 × 4 MINIMUM
TJmax = 150°C.
TOLERANCES ARE ±10%.
ALL DIMENSIONS ARE IN MILS.
+
–
OUT
IN+
IN–
VCC+
(7)
(3)
(2)
(6)
(4)
VCC–(5)
(1)
OFFSET N2
OFFSET N1
45
36
(1)
(8)
(7) (6)
(5)
(4)
(3)(2)
µA741, µA741Y
GENERAL-PURPOSE OPERATIONAL AMPLIFIERS
SLOS094B – NOVEMBER 1970 – REVISED SEPTEMBER 2000
4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
µA741C µA741I µA741M UNIT
Supply voltage, VCC+ (see Note 1) 18 22 22 V
Supply voltage, VCC– (see Note 1) –18 –22 –22 V
Differential input voltage, VID (see Note 2) ±15 ±30 ±30 V
Input voltage, VI any input (see Notes 1 and 3) ±15 ±15 ±15 V
Voltage between offset null (either OFFSET N1 or OFFSET N2) and VCC– ±15 ±0.5 ±0.5 V
Duration of output short circuit (see Note 4) unlimited unlimited unlimited
Continuous total power dissipation See Dissipation Rating Table
Operating free-air temperature range, TA 0 to 70 –40 to 85 –55 to 125 °C
Storage temperature range –65 to 150 –65 to 150 –65 to 150 °C
Case temperature for 60 seconds FK package 260 °C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds J, JG, or U package 300 °C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds D, P, or PW package 260 260 °C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between VCC+ and VCC–.
2. Differential voltages are at IN+ with respect to IN–.
3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
4. The output may be shorted to ground or either power supply. For the µA741M only, the unlimited duration of the short circuit applies
at (or below) 125°C case temperature or 75°C free-air temperature.
DISSIPATION RATING TABLE
PACKAGE
TA ≤ 25°C
POWER RATING
DERATING
FACTOR
DERATE
ABOVE TA
TA = 70°C
POWER RATING
TA = 85°C
POWER RATING
TA = 125°C
POWER RATING
D 500 mW 5.8 mW/°C 64°C 464 mW 377 mW N/A
FK 500 mW 11.0 mW/°C 105°C 500 mW 500 mW 275 mW
J 500 mW 11.0 mW/°C 105°C 500 mW 500 mW 275 mW
JG 500 mW 8.4 mW/°C 90°C 500 mW 500 mW 210 mW
P 500 mW N/A N/A 500 mW 500 mW N/A
PW 525 mW 4.2 mW/°C 25°C 336 mW N/A N/A
U 500 mW 5.4 mW/°C 57°C 432 mW 351 mW 135 mW
µA741, µA741Y
GENERAL-PURPOSE OPERATIONAL AMPLIFIERS
SLOS094B – NOVEMBER 1970 – REVISED SEPTEMBER 2000
5POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VCC± = ±15 V (unless otherwise noted)
PARAMETER
TEST
TA†
µA741C µA741I, µA741M
UNITPARAMETER
CONDITIONS
TA†
MIN TYP MAX MIN TYP MAX
UNIT
VIO Input offset voltage VO = 0
25°C 1 6 1 5
mVVIO Input offset voltage VO = 0
Full range 7.5 6
mV
∆VIO(adj) Offset voltage adjust range VO = 0 25°C ±15 ±15 mV
IIO Input offset current VO = 0
25°C 20 200 20 200
nAIIO Input offset current VO = 0
Full range 300 500
nA
IIB Input bias current VO = 0
25°C 80 500 80 500
nAIIB Input bias current VO = 0
Full range 800 1500
nA
VICR
Common-mode input 25°C ±12 ±13 ±12 ±13
VVICR voltage range Full range ±12 ±12
V
RL = 10 kΩ 25°C ±12 ±14 ±12 ±14
VOM
Maximum peak output RL ≥ 10 kΩ Full range ±12 ±12
VVOM voltage swing RL = 2 kΩ 25°C ±10 ±13 ±10 ±13
V
RL ≥ 2 kΩ Full range ±10 ±10
AVD
Large-signal differential RL ≥ 2 kΩ 25°C 20 200 50 200
V/mVAVD
g g
voltage amplification VO = ±10 V Full range 15 25
V/mV
ri Input resistance 25°C 0.3 2 0.3 2 MΩ
ro Output resistance VO = 0, See Note 5 25°C 75 75 Ω
Ci Input capacitance 25°C 1.4 1.4 pF
CMRR
Common-mode rejection
VIC = VICRmin
25°C 70 90 70 90
dBCMRR
j
ratio
VIC = VICRmin
Full range 70 70
dB
kSVS
Supply voltage sensitivity
VCC = ±9 V to ±15 V
25°C 30 150 30 150
µV/VkSVS
y g y
(∆VIO/∆VCC)
VCC = ±9 V to ±15 V
Full range 150 150
µV/V
IOS Short-circuit output current 25°C ±25 ±40 ±25 ±40 mA
ICC Supply current VO = 0 No load
25°C 1.7 2.8 1.7 2.8
mAICC Supply current VO = 0, No load
Full range 3.3 3.3
mA
PD Total power dissipation VO = 0 No load
25°C 50 85 50 85
mWPD Total power dissipation VO = 0, No load
Full range 100 100
mW
† All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range for
the µA741C is 0°C to 70°C, the µA741I is –40°C to 85°C, and the µA741M is –55°C to 125°C.
NOTE 5: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.
operating characteristics, VCC± = ±15 V, TA = 25°C
PARAMETER TEST CONDITIONS
µA741C µA741I, µA741M
UNITPARAMETER TEST CONDITIONS
MIN TYP MAX MIN TYP MAX
UNIT
tr Rise time VI = 20 mV, RL = 2 kΩ, 0.3 0.3 µs
Overshoot factor
I ,
CL = 100 pF,
L ,
See Figure 1 5% 5%
SR Slew rate at unity gain
VI = 10 V,
CL = 100 pF,
RL = 2 kΩ,
See Figure 1
0.5 0.5 V/µs
µA741, µA741Y
GENERAL-PURPOSE OPERATIONAL AMPLIFIERS
SLOS094B – NOVEMBER 1970 – REVISED SEPTEMBER 2000
6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VCC± = ±15 V, TA = 25°C (unless
otherwise noted)
PARAMETER TEST CONDITIONS
µA741Y
UNITPARAMETER TEST CONDITIONS
MIN TYP MAX
UNIT
VIO Input offset voltage VO = 0 1 6 mV
∆VIO(adj) Offset voltage adjust range VO = 0 ±15 mV
IIO Input offset current VO = 0 20 200 nA
IIB Input bias current VO = 0 80 500 nA
VICR Common-mode input voltage range ±12 ±13 V
VOM Maximum peak output voltage swing
RL = 10 kΩ ±12 ±14
VVOM Maximum peak output voltage swing
RL = 2 kΩ ±10 ±13
V
AVD Large-signal differential voltage amplification RL ≥ 2 kΩ 20 200 V/mV
ri Input resistance 0.3 2 MΩ
ro Output resistance VO = 0, See Note 5 75 Ω
Ci Input capacitance 1.4 pF
CMRR Common-mode rejection ratio VIC = VICRmin 70 90 dB
kSVS Supply voltage sensitivity (∆VIO/∆VCC) VCC = ±9 V to ±15 V 30 150 µV/V
IOS Short-circuit output current ±25 ±40 mA
ICC Supply current VO = 0, No load 1.7 2.8 mA
PD Total power dissipation VO = 0, No load 50 85 mW
† All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified.
NOTE 5: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.
operating characteristics, VCC± = ±15 V, TA = 25°C
PARAMETER TEST CONDITIONS
µA741Y
UNITPARAMETER TEST CONDITIONS
MIN TYP MAX
UNIT
tr Rise time VI = 20 mV, RL = 2 kΩ, 0.3 µs
Overshoot factor
I ,
CL = 100 pF,
L ,
See Figure 1 5%
SR Slew rate at unity gain
VI = 10 V,
CL = 100 pF,
RL = 2 kΩ,
See Figure 1
0.5 V/µs
µA741, µA741Y
GENERAL-PURPOSE OPERATIONAL AMPLIFIERS
SLOS094B – NOVEMBER 1970 – REVISED SEPTEMBER 2000
7POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
INPUT VOLTAGE
WAVEFDORM
TEST CIRCUIT
RL = 2 kΩCL = 100 pF
OUT
IN
+
–
0 V
VI
Figure 1. Rise Time, Overshoot, and Slew Rate
APPLICATION INFORMATION
Figure 2 shows a diagram for an input offset voltage null circuit.
To VCC–
OFFSET N1
10 kΩ
OFFSET N2
+
–
OUT
IN+
IN–
Figure 2. Input Offset Voltage Null Circuit
µA741, µA741Y
GENERAL-PURPOSE OPERATIONAL AMPLIFIERS
SLOS094B – NOVEMBER 1970 – REVISED SEPTEMBER 2000
8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS†
Figure 3
I
TA – Free-Air Temperature – °C
12080400–40
20
INPUT OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
IO–InputOffsetCurrent–nA
ÏÏÏÏÏ
ÏÏÏÏÏVCC– = –15 V
ÏÏÏÏÏ
ÏÏÏÏÏVCC+ = 15 V
90
70
50
30
10
0
40
60
80
100
–60 –20 20 60 100 140
Figure 4
400
300
200
100
0
0 40 80 120
TA – Free-Air Temperature – °C
I
INPUT BIAS CURRENT
vs
FREE-AIR TEMPERATURE
IB–InputBiasCurrent–nA
ÏÏÏÏÏ
ÏÏÏÏÏVCC– = –15 V
ÏÏÏÏÏVCC+ = 15 V
350
250
150
50
–40–60 –20 20 60 100 140
V
RL – Load Resistance – kΩ
1074210.70.40.20.1
±4
±5
±6
±7
±8
±9
±10
±11
±12
±13
±14
MAXIMUM PEAK OUTPUT VOLTAGE
vs
LOAD RESISTANCE
VCC+ = 15 V
VCC– = –15 V
TA = 25°C
OM–MaximumPeakOutputVoltage–V
Figure 5
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
µA741, µA741Y
GENERAL-PURPOSE OPERATIONAL AMPLIFIERS
SLOS094B – NOVEMBER 1970 – REVISED SEPTEMBER 2000
9POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 6
V
±20
f – Frequency – Hz
1M100k10k1k
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREQUENCY
OM–MaximumPeakOutputVoltage–V
±18
±16
±14
±12
±10
±8
±6
±4
±2
0
VCC+ = 15 V
VCC– = –15 V
RL = 10 kΩ
TA = 25°C
100
Figure 7
2018161412108642
400
200
100
40
20
10
0
VCC± – Supply Voltage – V
OPEN-LOOP SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
SUPPLY VOLTAGE
VO = ±10 V
RL = 2 kΩ
TA = 25°C
AVD–Open-LoopSignalDifferential
VoltageAmplification–V/mV
f – Frequency – Hz
10M1M10k1001
–10
0
10
20
70
80
90
100
110
OPEN-LOOP LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
FREQUENCY
VO = ±10 V
RL = 2 kΩ
TA = 25°C
AVD–Open-LoopSignalDifferential
VoltageAmplification–dB
10 1k 100k
60
50
30
40
VCC+ = 15 V
VCC– = –15 V
µA741, µA741Y
GENERAL-PURPOSE OPERATIONAL AMPLIFIERS
SLOS094B – NOVEMBER 1970 – REVISED SEPTEMBER 2000
10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 8
CMRR–Common-ModeRejectionRatio–dB
f – Frequency – Hz
10k 1M 100M1001
0
10
20
30
40
50
60
70
80
90
100
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
VCC+ = 15 V
VCC– = –15 V
BS = 10 kΩ
TA = 25°C
Figure 9
10%
tr
2.521.510.50
28
24
20
16
12
8
4
0–OutputVoltage–mV
t – Time − µs
–4
OUTPUT VOLTAGE
vs
ELAPSED TIME
VO
ÏÏ90%
VCC+ = 15 V
VCC– = –15 V
RL = 2 kΩ
CL = 100 pF
TA = 25°C
8
6
4
2
0
–2
–4
–6
9080706050403020100
InputandOutputVoltage–V
t – Time – µs
–8
VOLTAGE-FOLLOWER
LARGE-SIGNAL PULSE RESPONSE
VO
VI
VCC+ = 15 V
VCC– = –15 V
RL = 2 kΩ
CL = 100 pF
TA = 25°C
Figure 10
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
Customers are responsible for their applications using TI components.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright © 2000, Texas Instruments Incorporated
This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

More Related Content

What's hot (19)

Netzer ds 37-16-specsheet
Netzer ds 37-16-specsheetNetzer ds 37-16-specsheet
Netzer ds 37-16-specsheet
 
Ucc 3895 dw
Ucc 3895 dwUcc 3895 dw
Ucc 3895 dw
 
Cataloge schneider acb masterpact
Cataloge schneider acb masterpactCataloge schneider acb masterpact
Cataloge schneider acb masterpact
 
Netzer ds 247-128-specsheet
Netzer ds 247-128-specsheetNetzer ds 247-128-specsheet
Netzer ds 247-128-specsheet
 
Blf1820 90 pwr mosfet
Blf1820 90 pwr mosfetBlf1820 90 pwr mosfet
Blf1820 90 pwr mosfet
 
K49 Controller
K49 ControllerK49 Controller
K49 Controller
 
Tda 2030
Tda 2030Tda 2030
Tda 2030
 
Lsa47.2
Lsa47.2Lsa47.2
Lsa47.2
 
75176
7517675176
75176
 
Datasheet
DatasheetDatasheet
Datasheet
 
K31 Controller
K31 ControllerK31 Controller
K31 Controller
 
Tda8566(1)
Tda8566(1)Tda8566(1)
Tda8566(1)
 
Cataloge schneider Contactor CT
Cataloge schneider Contactor CTCataloge schneider Contactor CT
Cataloge schneider Contactor CT
 
Lm 3915
Lm 3915Lm 3915
Lm 3915
 
Cataloge schneider cb motor gv2
Cataloge schneider cb motor gv2Cataloge schneider cb motor gv2
Cataloge schneider cb motor gv2
 
Lm 317 to 92 datasheet
Lm 317 to 92 datasheetLm 317 to 92 datasheet
Lm 317 to 92 datasheet
 
Catalog đèn báo nút nhấn công tắc IDEC (Nhật Bản) - dòng TW
Catalog đèn báo nút nhấn công tắc IDEC (Nhật Bản) - dòng TWCatalog đèn báo nút nhấn công tắc IDEC (Nhật Bản) - dòng TW
Catalog đèn báo nút nhấn công tắc IDEC (Nhật Bản) - dòng TW
 
Cataloge schneider catalogue schneider
Cataloge schneider catalogue schneiderCataloge schneider catalogue schneider
Cataloge schneider catalogue schneider
 
K32 Controller
K32 ControllerK32 Controller
K32 Controller
 

Viewers also liked

LM317 Adjustable Regulator Datasheet
LM317 Adjustable Regulator DatasheetLM317 Adjustable Regulator Datasheet
LM317 Adjustable Regulator DatasheetYong Heui Cho
 
TestEC2015-1(Answer)
TestEC2015-1(Answer)TestEC2015-1(Answer)
TestEC2015-1(Answer)Yong Heui Cho
 
TestEC2015-2(Answer)
TestEC2015-2(Answer)TestEC2015-2(Answer)
TestEC2015-2(Answer)Yong Heui Cho
 
전자회로(설문분석)2015-2
전자회로(설문분석)2015-2전자회로(설문분석)2015-2
전자회로(설문분석)2015-2Yong Heui Cho
 
Diode - Advanced Applications
Diode - Advanced ApplicationsDiode - Advanced Applications
Diode - Advanced ApplicationsYong Heui Cho
 
Analysis of CE Amplifier
Analysis of CE AmplifierAnalysis of CE Amplifier
Analysis of CE AmplifierYong Heui Cho
 

Viewers also liked (8)

LM317 Adjustable Regulator Datasheet
LM317 Adjustable Regulator DatasheetLM317 Adjustable Regulator Datasheet
LM317 Adjustable Regulator Datasheet
 
TestEC2015-1(Answer)
TestEC2015-1(Answer)TestEC2015-1(Answer)
TestEC2015-1(Answer)
 
TestEC2015-2(Answer)
TestEC2015-2(Answer)TestEC2015-2(Answer)
TestEC2015-2(Answer)
 
전자회로(설문분석)2015-2
전자회로(설문분석)2015-2전자회로(설문분석)2015-2
전자회로(설문분석)2015-2
 
FET and Op-amp
FET and Op-ampFET and Op-amp
FET and Op-amp
 
BJT - Model
BJT - ModelBJT - Model
BJT - Model
 
Diode - Advanced Applications
Diode - Advanced ApplicationsDiode - Advanced Applications
Diode - Advanced Applications
 
Analysis of CE Amplifier
Analysis of CE AmplifierAnalysis of CE Amplifier
Analysis of CE Amplifier
 

Similar to uA741 General Purpose Operational Amplifier

M a 723 datasheet
M a 723 datasheetM a 723 datasheet
M a 723 datasheetAndy Medina
 
Lm7805
Lm7805Lm7805
Lm7805tyhfre
 
Data Sheet LM7805
Data Sheet LM7805Data Sheet LM7805
Data Sheet LM7805arwicaksono
 
ICL7660 Monolithic CMOS Voltage Converters
ICL7660 Monolithic CMOS Voltage ConvertersICL7660 Monolithic CMOS Voltage Converters
ICL7660 Monolithic CMOS Voltage ConvertersGeorgage Zim
 
Original Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 New
Original Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 NewOriginal Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 New
Original Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 NewAUTHELECTRONIC
 
Original Logic IC SN74LVC14A SN54LVC14A 74LVC14A 54LVC14A SOP-14 New Texas In...
Original Logic IC SN74LVC14A SN54LVC14A 74LVC14A 54LVC14A SOP-14 New Texas In...Original Logic IC SN74LVC14A SN54LVC14A 74LVC14A 54LVC14A SOP-14 New Texas In...
Original Logic IC SN74LVC14A SN54LVC14A 74LVC14A 54LVC14A SOP-14 New Texas In...AUTHELECTRONIC
 
Komponen ecu lm393 d
Komponen ecu lm393 dKomponen ecu lm393 d
Komponen ecu lm393 dRochimunaja
 
Original High Performance Off-Line Controller IC ACT30 CT30 30 New Active-Semi
Original High Performance Off-Line Controller IC ACT30 CT30 30 New Active-SemiOriginal High Performance Off-Line Controller IC ACT30 CT30 30 New Active-Semi
Original High Performance Off-Line Controller IC ACT30 CT30 30 New Active-SemiAUTHELECTRONIC
 
AD654 DataSheet - (ic-component.com)
AD654 DataSheet - (ic-component.com)AD654 DataSheet - (ic-component.com)
AD654 DataSheet - (ic-component.com)JamesLai60
 
Av02 3563 en-ds_acpl-c87x_04mar2013-2
Av02 3563 en-ds_acpl-c87x_04mar2013-2Av02 3563 en-ds_acpl-c87x_04mar2013-2
Av02 3563 en-ds_acpl-c87x_04mar2013-2srinivasponnaluri
 
Original IGBT N-CHANNEL IRG7IC28U IRG71C28U G7IC28U G71C28U 71C28 225A 600V T...
Original IGBT N-CHANNEL IRG7IC28U IRG71C28U G7IC28U G71C28U 71C28 225A 600V T...Original IGBT N-CHANNEL IRG7IC28U IRG71C28U G7IC28U G71C28U 71C28 225A 600V T...
Original IGBT N-CHANNEL IRG7IC28U IRG71C28U G7IC28U G71C28U 71C28 225A 600V T...authelectroniccom
 

Similar to uA741 General Purpose Operational Amplifier (20)

M a 723 datasheet
M a 723 datasheetM a 723 datasheet
M a 723 datasheet
 
Lm7805
Lm7805Lm7805
Lm7805
 
Data Sheet LM7805
Data Sheet LM7805Data Sheet LM7805
Data Sheet LM7805
 
ICL7660 Monolithic CMOS Voltage Converters
ICL7660 Monolithic CMOS Voltage ConvertersICL7660 Monolithic CMOS Voltage Converters
ICL7660 Monolithic CMOS Voltage Converters
 
Max 232
Max 232Max 232
Max 232
 
Original Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 New
Original Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 NewOriginal Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 New
Original Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 New
 
Lm555
Lm555Lm555
Lm555
 
Thông số bộ đổi nguồn Mean Well, Catalogue Bộ đổi nguồn Mean Well, Meanwell
Thông số bộ đổi nguồn Mean Well, Catalogue Bộ đổi nguồn Mean Well, MeanwellThông số bộ đổi nguồn Mean Well, Catalogue Bộ đổi nguồn Mean Well, Meanwell
Thông số bộ đổi nguồn Mean Well, Catalogue Bộ đổi nguồn Mean Well, Meanwell
 
Ne555
Ne555Ne555
Ne555
 
Original Logic IC SN74LVC14A SN54LVC14A 74LVC14A 54LVC14A SOP-14 New Texas In...
Original Logic IC SN74LVC14A SN54LVC14A 74LVC14A 54LVC14A SOP-14 New Texas In...Original Logic IC SN74LVC14A SN54LVC14A 74LVC14A 54LVC14A SOP-14 New Texas In...
Original Logic IC SN74LVC14A SN54LVC14A 74LVC14A 54LVC14A SOP-14 New Texas In...
 
Uc2907 dw
Uc2907 dwUc2907 dw
Uc2907 dw
 
Lm555
Lm555Lm555
Lm555
 
Komponen ecu lm393 d
Komponen ecu lm393 dKomponen ecu lm393 d
Komponen ecu lm393 d
 
Original High Performance Off-Line Controller IC ACT30 CT30 30 New Active-Semi
Original High Performance Off-Line Controller IC ACT30 CT30 30 New Active-SemiOriginal High Performance Off-Line Controller IC ACT30 CT30 30 New Active-Semi
Original High Performance Off-Line Controller IC ACT30 CT30 30 New Active-Semi
 
Ad524 e
Ad524 eAd524 e
Ad524 e
 
Sn5414 7414
Sn5414 7414Sn5414 7414
Sn5414 7414
 
Mean well net-75 triple out
Mean well   net-75 triple outMean well   net-75 triple out
Mean well net-75 triple out
 
AD654 DataSheet - (ic-component.com)
AD654 DataSheet - (ic-component.com)AD654 DataSheet - (ic-component.com)
AD654 DataSheet - (ic-component.com)
 
Av02 3563 en-ds_acpl-c87x_04mar2013-2
Av02 3563 en-ds_acpl-c87x_04mar2013-2Av02 3563 en-ds_acpl-c87x_04mar2013-2
Av02 3563 en-ds_acpl-c87x_04mar2013-2
 
Original IGBT N-CHANNEL IRG7IC28U IRG71C28U G7IC28U G71C28U 71C28 225A 600V T...
Original IGBT N-CHANNEL IRG7IC28U IRG71C28U G7IC28U G71C28U 71C28 225A 600V T...Original IGBT N-CHANNEL IRG7IC28U IRG71C28U G7IC28U G71C28U 71C28 225A 600V T...
Original IGBT N-CHANNEL IRG7IC28U IRG71C28U G7IC28U G71C28U 71C28 225A 600V T...
 

More from Yong Heui Cho

Android - Sensor Manager
Android - Sensor ManagerAndroid - Sensor Manager
Android - Sensor ManagerYong Heui Cho
 
Android - Broadcast Receiver
Android - Broadcast ReceiverAndroid - Broadcast Receiver
Android - Broadcast ReceiverYong Heui Cho
 
TestBCD2018-2(answer)
TestBCD2018-2(answer)TestBCD2018-2(answer)
TestBCD2018-2(answer)Yong Heui Cho
 
TestSDS2018-2(answer)
TestSDS2018-2(answer)TestSDS2018-2(answer)
TestSDS2018-2(answer)Yong Heui Cho
 
TestEC2018-2(answer)
TestEC2018-2(answer)TestEC2018-2(answer)
TestEC2018-2(answer)Yong Heui Cho
 
TestEC2018-1(answer)
TestEC2018-1(answer)TestEC2018-1(answer)
TestEC2018-1(answer)Yong Heui Cho
 
TestBCD2018-1(answer)
TestBCD2018-1(answer)TestBCD2018-1(answer)
TestBCD2018-1(answer)Yong Heui Cho
 
TestSDS2018-1(answer)
TestSDS2018-1(answer)TestSDS2018-1(answer)
TestSDS2018-1(answer)Yong Heui Cho
 
BJT - Analysis of Bias
BJT - Analysis of BiasBJT - Analysis of Bias
BJT - Analysis of BiasYong Heui Cho
 
TestCloud2018-2(answer)
TestCloud2018-2(answer)TestCloud2018-2(answer)
TestCloud2018-2(answer)Yong Heui Cho
 
TestECD2018-1(answer)
TestECD2018-1(answer)TestECD2018-1(answer)
TestECD2018-1(answer)Yong Heui Cho
 
Test-SDIC2018-2(answer)
Test-SDIC2018-2(answer)Test-SDIC2018-2(answer)
Test-SDIC2018-2(answer)Yong Heui Cho
 
TestCloud2018-1(answer)
TestCloud2018-1(answer)TestCloud2018-1(answer)
TestCloud2018-1(answer)Yong Heui Cho
 
Test-SDIC2018-1(Answer)
Test-SDIC2018-1(Answer)Test-SDIC2018-1(Answer)
Test-SDIC2018-1(Answer)Yong Heui Cho
 
RF 증폭기 설계(Design of RF Amplifier)-rev1
RF 증폭기 설계(Design of RF Amplifier)-rev1RF 증폭기 설계(Design of RF Amplifier)-rev1
RF 증폭기 설계(Design of RF Amplifier)-rev1Yong Heui Cho
 
Computing Paradigm - rev1
Computing Paradigm - rev1Computing Paradigm - rev1
Computing Paradigm - rev1Yong Heui Cho
 

More from Yong Heui Cho (20)

Android - Sensor Manager
Android - Sensor ManagerAndroid - Sensor Manager
Android - Sensor Manager
 
Android - Broadcast Receiver
Android - Broadcast ReceiverAndroid - Broadcast Receiver
Android - Broadcast Receiver
 
Android - Message
Android - MessageAndroid - Message
Android - Message
 
Cloud Computing
Cloud ComputingCloud Computing
Cloud Computing
 
Computing Paradigm
Computing ParadigmComputing Paradigm
Computing Paradigm
 
TestBCD2018-2(answer)
TestBCD2018-2(answer)TestBCD2018-2(answer)
TestBCD2018-2(answer)
 
TestSDS2018-2(answer)
TestSDS2018-2(answer)TestSDS2018-2(answer)
TestSDS2018-2(answer)
 
TestEC2018-2(answer)
TestEC2018-2(answer)TestEC2018-2(answer)
TestEC2018-2(answer)
 
TestEC2018-1(answer)
TestEC2018-1(answer)TestEC2018-1(answer)
TestEC2018-1(answer)
 
TestBCD2018-1(answer)
TestBCD2018-1(answer)TestBCD2018-1(answer)
TestBCD2018-1(answer)
 
TestSDS2018-1(answer)
TestSDS2018-1(answer)TestSDS2018-1(answer)
TestSDS2018-1(answer)
 
BJT - Analysis of Bias
BJT - Analysis of BiasBJT - Analysis of Bias
BJT - Analysis of Bias
 
TestCloud2018-2(answer)
TestCloud2018-2(answer)TestCloud2018-2(answer)
TestCloud2018-2(answer)
 
TestECD2018-1(answer)
TestECD2018-1(answer)TestECD2018-1(answer)
TestECD2018-1(answer)
 
Test-SDIC2018-2(answer)
Test-SDIC2018-2(answer)Test-SDIC2018-2(answer)
Test-SDIC2018-2(answer)
 
TestCloud2018-1(answer)
TestCloud2018-1(answer)TestCloud2018-1(answer)
TestCloud2018-1(answer)
 
Cloud Service Model
Cloud Service ModelCloud Service Model
Cloud Service Model
 
Test-SDIC2018-1(Answer)
Test-SDIC2018-1(Answer)Test-SDIC2018-1(Answer)
Test-SDIC2018-1(Answer)
 
RF 증폭기 설계(Design of RF Amplifier)-rev1
RF 증폭기 설계(Design of RF Amplifier)-rev1RF 증폭기 설계(Design of RF Amplifier)-rev1
RF 증폭기 설계(Design of RF Amplifier)-rev1
 
Computing Paradigm - rev1
Computing Paradigm - rev1Computing Paradigm - rev1
Computing Paradigm - rev1
 

Recently uploaded

08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsJoaquim Jorge
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 

Recently uploaded (20)

08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 

uA741 General Purpose Operational Amplifier

  • 1. µA741, µA741Y GENERAL-PURPOSE OPERATIONAL AMPLIFIERS SLOS094B – NOVEMBER 1970 – REVISED SEPTEMBER 2000 1POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 D Short-Circuit Protection D Offset-Voltage Null Capability D Large Common-Mode and Differential Voltage Ranges D No Frequency Compensation Required D Low Power Consumption D No Latch-Up D Designed to Be Interchangeable With Fairchild µA741 description The µA741 is a general-purpose operational amplifier featuring offset-voltage null capability. The high common-mode input voltage range and the absence of latch-up make the amplifier ideal for voltage-follower applications. The device is short-circuit protected and the internal frequency compensation ensures stability without external components. A low value potentiometer may be connected between the offset null inputs to null out the offset voltage as shown in Figure 2. The µA741C is characterized for operation from 0°C to 70°C. The µA741I is characterized for operation from –40°C to 85°C.The µA741M is characterized for operation over the full military temperature range of –55°C to 125°C. symbol IN + IN – OUT + – OFFSET N1 OFFSET N2 Copyright © 2000, Texas Instruments IncorporatedPRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. 1 2 3 4 5 6 7 14 13 12 11 10 9 8 NC NC OFFSET N1 IN– IN+ VCC– NC NC NC NC VCC+ OUT OFFSET N2 NC µA741M . . . J PACKAGE (TOP VIEW) 1 2 3 4 8 7 6 5 OFFSET N1 IN– IN+ VCC– NC VCC+ OUT OFFSET N2 µA741M . . . JG PACKAGE µA741C, µA741I . . . D, P, OR PW PACKAGE (TOP VIEW) 1 2 3 4 5 10 9 8 7 6 NC OFFSET N1 IN– IN+ VCC– NC NC VCC+ OUT OFFSET N2 µA741M . . . U PACKAGE (TOP VIEW) 3 2 1 20 19 9 10 11 12 13 4 5 6 7 8 18 17 16 15 14 NC VCC+ NC OUT NC NC IN– NC IN+ NC µA741M . . . FK PACKAGE (TOP VIEW) NC OFFSETN1 NC OFFSETN2 NC NC NC NC V NC CC– NC – No internal connection
  • 2. µA741, µA741Y GENERAL-PURPOSE OPERATIONAL AMPLIFIERS SLOS094B – NOVEMBER 1970 – REVISED SEPTEMBER 2000 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 AVAILABLE OPTIONS PACKAGED DEVICES CHIP TA SMALL OUTLINE (D) CHIP CARRIER (FK) CERAMIC DIP (J) CERAMIC DIP (JG) PLASTIC DIP (P) TSSOP (PW) FLAT PACK (U) CHIP FORM (Y) 0°C to 70°C µA741CD µA741CP µA741CPW µA741Y –40°C to 85°C µA741ID µA741IP –55°C to 125°C µA741MFK µA741MJ µA741MJG µA741MU The D package is available taped and reeled. Add the suffix R (e.g., µA741CDR). schematic IN– IN+ VCC+ VCC– OUT OFFSET N1 OFFSET N2 Transistors 22 Resistors 11 Diode 1 Capacitor 1 Component Count
  • 3. µA741, µA741Y GENERAL-PURPOSE OPERATIONAL AMPLIFIERS SLOS094B – NOVEMBER 1970 – REVISED SEPTEMBER 2000 3POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 µA741Y chip information This chip, when properly assembled, displays characteristics similar to the µA741C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS CHIP THICKNESS: 15 TYPICAL BONDING PADS: 4 × 4 MINIMUM TJmax = 150°C. TOLERANCES ARE ±10%. ALL DIMENSIONS ARE IN MILS. + – OUT IN+ IN– VCC+ (7) (3) (2) (6) (4) VCC–(5) (1) OFFSET N2 OFFSET N1 45 36 (1) (8) (7) (6) (5) (4) (3)(2)
  • 4. µA741, µA741Y GENERAL-PURPOSE OPERATIONAL AMPLIFIERS SLOS094B – NOVEMBER 1970 – REVISED SEPTEMBER 2000 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† µA741C µA741I µA741M UNIT Supply voltage, VCC+ (see Note 1) 18 22 22 V Supply voltage, VCC– (see Note 1) –18 –22 –22 V Differential input voltage, VID (see Note 2) ±15 ±30 ±30 V Input voltage, VI any input (see Notes 1 and 3) ±15 ±15 ±15 V Voltage between offset null (either OFFSET N1 or OFFSET N2) and VCC– ±15 ±0.5 ±0.5 V Duration of output short circuit (see Note 4) unlimited unlimited unlimited Continuous total power dissipation See Dissipation Rating Table Operating free-air temperature range, TA 0 to 70 –40 to 85 –55 to 125 °C Storage temperature range –65 to 150 –65 to 150 –65 to 150 °C Case temperature for 60 seconds FK package 260 °C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds J, JG, or U package 300 °C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds D, P, or PW package 260 260 °C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between VCC+ and VCC–. 2. Differential voltages are at IN+ with respect to IN–. 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less. 4. The output may be shorted to ground or either power supply. For the µA741M only, the unlimited duration of the short circuit applies at (or below) 125°C case temperature or 75°C free-air temperature. DISSIPATION RATING TABLE PACKAGE TA ≤ 25°C POWER RATING DERATING FACTOR DERATE ABOVE TA TA = 70°C POWER RATING TA = 85°C POWER RATING TA = 125°C POWER RATING D 500 mW 5.8 mW/°C 64°C 464 mW 377 mW N/A FK 500 mW 11.0 mW/°C 105°C 500 mW 500 mW 275 mW J 500 mW 11.0 mW/°C 105°C 500 mW 500 mW 275 mW JG 500 mW 8.4 mW/°C 90°C 500 mW 500 mW 210 mW P 500 mW N/A N/A 500 mW 500 mW N/A PW 525 mW 4.2 mW/°C 25°C 336 mW N/A N/A U 500 mW 5.4 mW/°C 57°C 432 mW 351 mW 135 mW
  • 5. µA741, µA741Y GENERAL-PURPOSE OPERATIONAL AMPLIFIERS SLOS094B – NOVEMBER 1970 – REVISED SEPTEMBER 2000 5POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 electrical characteristics at specified free-air temperature, VCC± = ±15 V (unless otherwise noted) PARAMETER TEST TA† µA741C µA741I, µA741M UNITPARAMETER CONDITIONS TA† MIN TYP MAX MIN TYP MAX UNIT VIO Input offset voltage VO = 0 25°C 1 6 1 5 mVVIO Input offset voltage VO = 0 Full range 7.5 6 mV ∆VIO(adj) Offset voltage adjust range VO = 0 25°C ±15 ±15 mV IIO Input offset current VO = 0 25°C 20 200 20 200 nAIIO Input offset current VO = 0 Full range 300 500 nA IIB Input bias current VO = 0 25°C 80 500 80 500 nAIIB Input bias current VO = 0 Full range 800 1500 nA VICR Common-mode input 25°C ±12 ±13 ±12 ±13 VVICR voltage range Full range ±12 ±12 V RL = 10 kΩ 25°C ±12 ±14 ±12 ±14 VOM Maximum peak output RL ≥ 10 kΩ Full range ±12 ±12 VVOM voltage swing RL = 2 kΩ 25°C ±10 ±13 ±10 ±13 V RL ≥ 2 kΩ Full range ±10 ±10 AVD Large-signal differential RL ≥ 2 kΩ 25°C 20 200 50 200 V/mVAVD g g voltage amplification VO = ±10 V Full range 15 25 V/mV ri Input resistance 25°C 0.3 2 0.3 2 MΩ ro Output resistance VO = 0, See Note 5 25°C 75 75 Ω Ci Input capacitance 25°C 1.4 1.4 pF CMRR Common-mode rejection VIC = VICRmin 25°C 70 90 70 90 dBCMRR j ratio VIC = VICRmin Full range 70 70 dB kSVS Supply voltage sensitivity VCC = ±9 V to ±15 V 25°C 30 150 30 150 µV/VkSVS y g y (∆VIO/∆VCC) VCC = ±9 V to ±15 V Full range 150 150 µV/V IOS Short-circuit output current 25°C ±25 ±40 ±25 ±40 mA ICC Supply current VO = 0 No load 25°C 1.7 2.8 1.7 2.8 mAICC Supply current VO = 0, No load Full range 3.3 3.3 mA PD Total power dissipation VO = 0 No load 25°C 50 85 50 85 mWPD Total power dissipation VO = 0, No load Full range 100 100 mW † All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range for the µA741C is 0°C to 70°C, the µA741I is –40°C to 85°C, and the µA741M is –55°C to 125°C. NOTE 5: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback. operating characteristics, VCC± = ±15 V, TA = 25°C PARAMETER TEST CONDITIONS µA741C µA741I, µA741M UNITPARAMETER TEST CONDITIONS MIN TYP MAX MIN TYP MAX UNIT tr Rise time VI = 20 mV, RL = 2 kΩ, 0.3 0.3 µs Overshoot factor I , CL = 100 pF, L , See Figure 1 5% 5% SR Slew rate at unity gain VI = 10 V, CL = 100 pF, RL = 2 kΩ, See Figure 1 0.5 0.5 V/µs
  • 6. µA741, µA741Y GENERAL-PURPOSE OPERATIONAL AMPLIFIERS SLOS094B – NOVEMBER 1970 – REVISED SEPTEMBER 2000 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 electrical characteristics at specified free-air temperature, VCC± = ±15 V, TA = 25°C (unless otherwise noted) PARAMETER TEST CONDITIONS µA741Y UNITPARAMETER TEST CONDITIONS MIN TYP MAX UNIT VIO Input offset voltage VO = 0 1 6 mV ∆VIO(adj) Offset voltage adjust range VO = 0 ±15 mV IIO Input offset current VO = 0 20 200 nA IIB Input bias current VO = 0 80 500 nA VICR Common-mode input voltage range ±12 ±13 V VOM Maximum peak output voltage swing RL = 10 kΩ ±12 ±14 VVOM Maximum peak output voltage swing RL = 2 kΩ ±10 ±13 V AVD Large-signal differential voltage amplification RL ≥ 2 kΩ 20 200 V/mV ri Input resistance 0.3 2 MΩ ro Output resistance VO = 0, See Note 5 75 Ω Ci Input capacitance 1.4 pF CMRR Common-mode rejection ratio VIC = VICRmin 70 90 dB kSVS Supply voltage sensitivity (∆VIO/∆VCC) VCC = ±9 V to ±15 V 30 150 µV/V IOS Short-circuit output current ±25 ±40 mA ICC Supply current VO = 0, No load 1.7 2.8 mA PD Total power dissipation VO = 0, No load 50 85 mW † All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified. NOTE 5: This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback. operating characteristics, VCC± = ±15 V, TA = 25°C PARAMETER TEST CONDITIONS µA741Y UNITPARAMETER TEST CONDITIONS MIN TYP MAX UNIT tr Rise time VI = 20 mV, RL = 2 kΩ, 0.3 µs Overshoot factor I , CL = 100 pF, L , See Figure 1 5% SR Slew rate at unity gain VI = 10 V, CL = 100 pF, RL = 2 kΩ, See Figure 1 0.5 V/µs
  • 7. µA741, µA741Y GENERAL-PURPOSE OPERATIONAL AMPLIFIERS SLOS094B – NOVEMBER 1970 – REVISED SEPTEMBER 2000 7POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PARAMETER MEASUREMENT INFORMATION INPUT VOLTAGE WAVEFDORM TEST CIRCUIT RL = 2 kΩCL = 100 pF OUT IN + – 0 V VI Figure 1. Rise Time, Overshoot, and Slew Rate APPLICATION INFORMATION Figure 2 shows a diagram for an input offset voltage null circuit. To VCC– OFFSET N1 10 kΩ OFFSET N2 + – OUT IN+ IN– Figure 2. Input Offset Voltage Null Circuit
  • 8. µA741, µA741Y GENERAL-PURPOSE OPERATIONAL AMPLIFIERS SLOS094B – NOVEMBER 1970 – REVISED SEPTEMBER 2000 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TYPICAL CHARACTERISTICS† Figure 3 I TA – Free-Air Temperature – °C 12080400–40 20 INPUT OFFSET CURRENT vs FREE-AIR TEMPERATURE IO–InputOffsetCurrent–nA ÏÏÏÏÏ ÏÏÏÏÏVCC– = –15 V ÏÏÏÏÏ ÏÏÏÏÏVCC+ = 15 V 90 70 50 30 10 0 40 60 80 100 –60 –20 20 60 100 140 Figure 4 400 300 200 100 0 0 40 80 120 TA – Free-Air Temperature – °C I INPUT BIAS CURRENT vs FREE-AIR TEMPERATURE IB–InputBiasCurrent–nA ÏÏÏÏÏ ÏÏÏÏÏVCC– = –15 V ÏÏÏÏÏVCC+ = 15 V 350 250 150 50 –40–60 –20 20 60 100 140 V RL – Load Resistance – kΩ 1074210.70.40.20.1 ±4 ±5 ±6 ±7 ±8 ±9 ±10 ±11 ±12 ±13 ±14 MAXIMUM PEAK OUTPUT VOLTAGE vs LOAD RESISTANCE VCC+ = 15 V VCC– = –15 V TA = 25°C OM–MaximumPeakOutputVoltage–V Figure 5 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
  • 9. µA741, µA741Y GENERAL-PURPOSE OPERATIONAL AMPLIFIERS SLOS094B – NOVEMBER 1970 – REVISED SEPTEMBER 2000 9POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TYPICAL CHARACTERISTICS Figure 6 V ±20 f – Frequency – Hz 1M100k10k1k MAXIMUM PEAK OUTPUT VOLTAGE vs FREQUENCY OM–MaximumPeakOutputVoltage–V ±18 ±16 ±14 ±12 ±10 ±8 ±6 ±4 ±2 0 VCC+ = 15 V VCC– = –15 V RL = 10 kΩ TA = 25°C 100 Figure 7 2018161412108642 400 200 100 40 20 10 0 VCC± – Supply Voltage – V OPEN-LOOP SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs SUPPLY VOLTAGE VO = ±10 V RL = 2 kΩ TA = 25°C AVD–Open-LoopSignalDifferential VoltageAmplification–V/mV f – Frequency – Hz 10M1M10k1001 –10 0 10 20 70 80 90 100 110 OPEN-LOOP LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREQUENCY VO = ±10 V RL = 2 kΩ TA = 25°C AVD–Open-LoopSignalDifferential VoltageAmplification–dB 10 1k 100k 60 50 30 40 VCC+ = 15 V VCC– = –15 V
  • 10. µA741, µA741Y GENERAL-PURPOSE OPERATIONAL AMPLIFIERS SLOS094B – NOVEMBER 1970 – REVISED SEPTEMBER 2000 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TYPICAL CHARACTERISTICS Figure 8 CMRR–Common-ModeRejectionRatio–dB f – Frequency – Hz 10k 1M 100M1001 0 10 20 30 40 50 60 70 80 90 100 COMMON-MODE REJECTION RATIO vs FREQUENCY VCC+ = 15 V VCC– = –15 V BS = 10 kΩ TA = 25°C Figure 9 10% tr 2.521.510.50 28 24 20 16 12 8 4 0–OutputVoltage–mV t – Time − µs –4 OUTPUT VOLTAGE vs ELAPSED TIME VO ÏÏ90% VCC+ = 15 V VCC– = –15 V RL = 2 kΩ CL = 100 pF TA = 25°C 8 6 4 2 0 –2 –4 –6 9080706050403020100 InputandOutputVoltage–V t – Time – µs –8 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE VO VI VCC+ = 15 V VCC– = –15 V RL = 2 kΩ CL = 100 pF TA = 25°C Figure 10
  • 11. IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Customers are responsible for their applications using TI components. In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof. Copyright © 2000, Texas Instruments Incorporated
  • 12. This datasheet has been download from: www.datasheetcatalog.com Datasheets for electronics components.