Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.
Wird geladen in …3
×
1 von 13

Wrangle 2016 - Digital Vulnerability: Characterizing Risks and Contemplating Responses

0

Teilen

Herunterladen, um offline zu lesen

By Chris Diehl, The Data Guild

Our modern world represents an inextricable blend of the cyber and physical domains. Networked devices with sensing and computational capabilities continue to expand the extent of the cyber-physical interface, increasing risks across scales from the individual to the societal level. No longer do we fully understand the extent of what is being collected and assimilated about us. For marginalized populations globally, the consequences of this can be severe. What is the nature of the risk at the level of the individual? How can the data science community respond to improve the current reality? Chris will present some initial thoughts to frame the concerns and outline a way forward.

Weitere Verwandte Inhalte

Das Könnte Ihnen Auch Gefallen

Ähnliche Bücher

Kostenlos mit einer 30-tägigen Testversion von Scribd

Alle anzeigen

Ähnliche Hörbücher

Kostenlos mit einer 30-tägigen Testversion von Scribd

Alle anzeigen

Wrangle 2016 - Digital Vulnerability: Characterizing Risks and Contemplating Responses

  1. 1. Digital Vulnerability: Characterizing Risks and Contemplating Responses @ChrisDiehl July 28, 2016
  2. 2. Global Impact & Local Perspective
  3. 3. Agenda Current Risks Potential Responses Existing Gaps Future Options
  4. 4. Digital Vulnerability Unwitting Disclosure Discrimination Witting Disclosure Privilege Marginalization Opportunity
  5. 5. Disclosure Risk
  6. 6. Prediction Risk
  7. 7. Actuation Risk
  8. 8. Where to Start? The Design Conversation
  9. 9. Defining the Middle Ground No Raw Data Collection and Retention Unconstrained Raw Data Collection and Retention No Personalization “Measure and Predict All the Things” Private, Fair, Interpretable Inference “Equitable Inference”
  10. 10. Existing Gaps Widely Understood Options Trusted Implementations Design Patterns and Principles
  11. 11. Community Knowledge Creation and Dissemination 1. Define Algorithmic Options 2. Develop Best Practices and Open-Source Implementations 3. Teach the Approaches 4. Gather Feedback from Practitioners
  12. 12. Let’s Do This! bit.ly/equitable_inference_experim ent chris@thedataguild.com

×