SlideShare a Scribd company logo
1 of 45
Download to read offline
Norm-variation of bilinear averages
Vjekoslav Kovač (University of Zagreb)
joint work with
Polona Durcik (University of Bonn)
Kristina Ana Škreb (University of Zagreb)
Christoph Thiele (University of Bonn)
Singular integrals and partial differential equations,
University of Helsinki, May 24, 2016
§1. Motivation: ergodic averages
Single averages
Mnf(x) :=
1
n
n−1∑
i=0
f(Si
x)
2
§1. Motivation: ergodic averages
Single averages
Mnf(x) :=
1
n
n−1∑
i=0
f(Si
x)
The setting:
• (X, F, µ) a probability space
• S: X → X measure-preserving: µ
(
S−1
E
)
= µ(E)
• f ∈ L2
(X)
2
§1. Motivation: ergodic averages
Single averages
Mnf(x) :=
1
n
n−1∑
i=0
f(Si
x)
The setting:
• (X, F, µ) a probability space
• S: X → X measure-preserving: µ
(
S−1
E
)
= µ(E)
• f ∈ L2
(X)
Convergence as n → ∞:
• in L2
(X) ⇝ von Neumann (1932)
• pointwise a.e. ⇝ Birkhoff (1931)
• Can we quantify the L2
convergence by controlling the number
of jumps in the norm?
2
§1. Motivation: ergodic averages
Single averages
Mnf(x) :=
1
n
n−1∑
i=0
f(Si
x)
Norm-variation estimate [Jones, Ostrovskii, and Rosenblatt (1996)]
sup
n0<n1<···<nm
m∑
j=1
Mnj
f − Mnj−1
f
2
L2 ≤ C ∥f∥2
L2
3
§1. Motivation: ergodic averages
Single averages
Mnf(x) :=
1
n
n−1∑
i=0
f(Si
x)
Norm-variation estimate [Jones, Ostrovskii, and Rosenblatt (1996)]
sup
n0<n1<···<nm
m∑
j=1
Mnj
f − Mnj−1
f
2
L2 ≤ C ∥f∥2
L2
Consequence
If ∥f∥L2 = 1, then
(
Mnf
)∞
n=1
has O(ε−2
) jumps of size ≥ ε in the L2
norm
m1 < n1 ≤ m2 < n2 ≤ · · · ≤ mJ < nJ s.t. ∥Mnj
f − Mmj
f∥L2 ≥ ε
3
§1. Motivation: ergodic averages
Double averages
Mn(f, g)(x) :=
1
n
n−1∑
i=0
f(Si
x)g(Ti
x)
4
§1. Motivation: ergodic averages
Double averages
Mn(f, g)(x) :=
1
n
n−1∑
i=0
f(Si
x)g(Ti
x)
The setting:
• (X, F, µ) a probability space
• S, T: X → X commuting and measure-preserving
• f, g ∈ L∞
(X)
• motivated by Furstenberg’s work in additive combinatorics
4
§1. Motivation: ergodic averages
Double averages
Mn(f, g)(x) :=
1
n
n−1∑
i=0
f(Si
x)g(Ti
x)
The setting:
• (X, F, µ) a probability space
• S, T: X → X commuting and measure-preserving
• f, g ∈ L∞
(X)
• motivated by Furstenberg’s work in additive combinatorics
Convergence as n → ∞:
• in L2
(X) (and in Lp
(X), p < ∞) ⇝ Conze and Lesigne (1984)
• pointwise a.e. ⇝ an old open problem! (Calderón?)
• quantitative L2
convergence? metric entropy bounds?
4
§1. Motivation: ergodic averages
Double averages
Mn(f, g)(x) :=
1
n
n−1∑
i=0
f(Si
x)g(Ti
x)
Previous results:
• T = Sm
, m ∈ Z, pointwise a.e. convergence
⇝ Bourgain (1990), Demeter (2007)
• T = Sm
, m ∈ Z, pointwise variation estimate
⇝ Do, Oberlin, and Palsson (2015)
5
§1. Motivation: ergodic averages
Double averages
Mn(f, g)(x) :=
1
n
n−1∑
i=0
f(Si
x)g(Ti
x)
Previous results:
• T = Sm
, m ∈ Z, pointwise a.e. convergence
⇝ Bourgain (1990), Demeter (2007)
• T = Sm
, m ∈ Z, pointwise variation estimate
⇝ Do, Oberlin, and Palsson (2015)
General commuting and measure-preserving S, T:
any explicit quantitative results for norm convergence
⇝ posed by Avigad and Rute (2012) and others
5
§1. Motivation: ergodic averages
Double averages
Mn(f, g)(x) :=
1
n
n−1∑
i=0
f(Si
x)g(Ti
x)
Norm-variation estimate [Durcik, K., Škreb, and Thiele (2016)]
sup
n0<n1<···<nm
m∑
j=1
Mnj
(f, g) − Mnj−1
(f, g)
2
L2 ≤ C ∥f∥2
L4 ∥g∥2
L4
6
§1. Motivation: ergodic averages
Double averages
Mn(f, g)(x) :=
1
n
n−1∑
i=0
f(Si
x)g(Ti
x)
Norm-variation estimate [Durcik, K., Škreb, and Thiele (2016)]
sup
n0<n1<···<nm
m∑
j=1
Mnj
(f, g) − Mnj−1
(f, g)
2
L2 ≤ C ∥f∥2
L4 ∥g∥2
L4
Consequence
If ∥f∥L4 = ∥g∥L4 = 1, then
(
Mn(f, g)
)∞
n=1
has O(ε−2
) jumps of size ≥ ε in
the L2
norm
6
§1. Motivation: ergodic averages
Multiple averages
Mn(f1, f2, . . . , fr)(x) :=
1
n
n−1∑
i=0
f1(Ti
1x)f2(Ti
2x) · · · fr(Ti
rx)
7
§1. Motivation: ergodic averages
Multiple averages
Mn(f1, f2, . . . , fr)(x) :=
1
n
n−1∑
i=0
f1(Ti
1x)f2(Ti
2x) · · · fr(Ti
rx)
The setting:
• r ≥ 3
• (X, F, µ) a probability space
• T1, T2, . . . , Tr : X → X commuting and measure-preserving
• f1, f2, . . . , fr ∈ L∞
(X)
7
§1. Motivation: ergodic averages
Multiple averages
Mn(f1, f2, . . . , fr)(x) :=
1
n
n−1∑
i=0
f1(Ti
1x)f2(Ti
2x) · · · fr(Ti
rx)
The setting:
• r ≥ 3
• (X, F, µ) a probability space
• T1, T2, . . . , Tr : X → X commuting and measure-preserving
• f1, f2, . . . , fr ∈ L∞
(X)
Convergence as n → ∞:
• in L2
(X) (and in Lp
(X), p < ∞) ⇝ Tao (2007) and also by Austin
(2008), Walsh (2011), Zorin-Kranich (2011)
• no quantitative norm-convergence results known
7
§2. (Smooth) averages on R2
Bilinear averages
Aφ
t (F, G)(x, y) :=
∫
R
F(x + s, y)G(x, y + s) t−1
φ(t−1
s) ds
8
§2. (Smooth) averages on R2
Bilinear averages
Aφ
t (F, G)(x, y) :=
∫
R
F(x + s, y)G(x, y + s) t−1
φ(t−1
s) ds
Norm-variation estimate [DKŠT (2016)]
sup
t0<···<tm
m∑
j=1
∥Aφ
tj
(F, G) − Aφ
tj−1
(F, G)∥2
L2(R2) ≤ Cφ∥F∥2
L4(R2)∥G∥2
L4(R2)
8
§2. (Smooth) averages on R2
Bilinear averages
Aφ
t (F, G)(x, y) :=
∫
R
F(x + s, y)G(x, y + s) t−1
φ(t−1
s) ds
Norm-variation estimate [DKŠT (2016)]
sup
t0<···<tm
m∑
j=1
∥Aφ
tj
(F, G) − Aφ
tj−1
(F, G)∥2
L2(R2) ≤ Cφ∥F∥2
L4(R2)∥G∥2
L4(R2)
• φ is a Schwartz function
• φ = [0,1) =⇒ At(F, G)(x, y)=
1
t
∫ t
0
F(x+s, y)G(x, y+s)ds
8
§2. (Smooth) averages on R2
Bilinear averages
Aφ
t (F, G)(x, y) :=
∫
R
F(x + s, y)G(x, y + s) t−1
φ(t−1
s)
φt(s)
ds
tj = 2j
, φ Schwartz
ψ(s) := φ(s) − 2φ(2s) =⇒ ψ2j = φ2j − φ2j−1
S(F, G)(x, y) :=
( ∑
j∈Z
∫
R
F(x + s, y)G(x, y + s)ψ2j (s)ds
Aφ
2j
(F,G)(x,y)−Aφ
2j−1
(F,G)(x,y)
2)1/2
9
§2. (Smooth) averages on R2
Bilinear averages
Aφ
t (F, G)(x, y) :=
∫
R
F(x + s, y)G(x, y + s) t−1
φ(t−1
s)
φt(s)
ds
tj = 2j
, φ Schwartz
ψ(s) := φ(s) − 2φ(2s) =⇒ ψ2j = φ2j − φ2j−1
S(F, G)(x, y) :=
( ∑
j∈Z
∫
R
F(x + s, y)G(x, y + s)ψ2j (s)ds
Aφ
2j
(F,G)(x,y)−Aφ
2j−1
(F,G)(x,y)
2)1/2
Consequence
∥S(F, G)∥L2(R2) ≤ Cψ∥F∥L4(R2)∥G∥L4(R2)
9
§2. (Smooth) averages on R2
Bilinear averages
Aφ
t (F, G)(x, y) :=
∫
R
F(x + s, y)G(x, y + s) t−1
φ(t−1
s)
φt(s)
ds
S(f, g)(x) :=
( ∑
j∈Z
∫
R
f(x + s) g(x − s) 2−j
ψ(2−j
s) ds
2)1/2
F(x, y) := f(x − y)R−1/4
ϑ(R−1
y)
G(x, y) := g(x − y)R−1/4
ϑ(R−1
x)
10
§2. (Smooth) averages on R2
Bilinear averages
Aφ
t (F, G)(x, y) :=
∫
R
F(x + s, y)G(x, y + s) t−1
φ(t−1
s)
φt(s)
ds
S(f, g)(x) :=
( ∑
j∈Z
∫
R
f(x + s) g(x − s) 2−j
ψ(2−j
s) ds
2)1/2
F(x, y) := f(x − y)R−1/4
ϑ(R−1
y)
G(x, y) := g(x − y)R−1/4
ϑ(R−1
x)
Consequence [Lacey, Thiele (1997), bilinear Hilbert transform]
∥S(f, g)∥L2(R) ≤ Cψ∥f∥L4(R)∥g∥L4(R)
10
§2. (Smooth) averages on R2
Bilinear averages
Aφ
t (F, G)(x, y) :=
∫
R
F(x + s, y)G(x, y + s) t−1
φ(t−1
s)
φt(s)
ds
Compare with the “triangular Hilbert transform”:
T(F, G)(x, y) := p.v.
∫
R
F(x + s, y) G(x, y + s)
ds
s
11
§2. (Smooth) averages on R2
Bilinear averages
Aφ
t (F, G)(x, y) :=
∫
R
F(x + s, y)G(x, y + s) t−1
φ(t−1
s)
φt(s)
ds
Compare with the “triangular Hilbert transform”:
T(F, G)(x, y) := p.v.
∫
R
F(x + s, y) G(x, y + s)
ds
s
• one function specialized ⇝ K., Thiele, Zorin-Kranich (2015)
• nontrivial cancellation ⇝ Zorin-Kranich (2015)
• no-estimates known!
• p.v.1
s =
∑
j ψ2j (s) ⇝ the square function vs. the singular integral
11
§2. (Smooth) averages on R2
The “triangular Hilbert transform”:
T(F, G)(x, y) := p.v.
∫
R
F(x + s, y) G(x, y + s)
ds
s
It has to be difficult! Dualize:
Λ(F, G, H) =
∫
R2
p.v.
∫
R
F(x + s, y)G(x, y + s)H(x, y)
ds
s
dxdy
By taking
F(x, y) = f(x), G(x, y) = g(x)eiN(x)y
, H(x, y) = h(x)e−iN(x)y
we obtain bounds for the linearized Carleson operator
(Cf)(x) =
∫
R
f(x + s)eiN(x)s ds
s
Λ(F, G, H) =
⟨
Cf, gh
⟩
⇝ Carleson (1966)
12
§2. (Smooth) averages on R2
Bilinear averages on Z2
An(F, G)(k, l) :=
1
n
n−1∑
i=0
F(k + i, l) G(k, l + i)
13
§2. (Smooth) averages on R2
Bilinear averages on Z2
An(F, G)(k, l) :=
1
n
n−1∑
i=0
F(k + i, l) G(k, l + i)
Norm-variation estimate [DKŠT (2016)]
sup
n0···nm
m∑
j=1
∥Anj
(F, G) − Anj−1
(F, G)∥2
ℓ2(Z2) ≤ C∥F∥2
ℓ4(Z2)∥G∥2
ℓ4(Z2)
13
§2. (Smooth) averages on R2
Bilinear averages on Z2
An(F, G)(k, l) :=
1
n
n−1∑
i=0
F(k + i, l) G(k, l + i)
Norm-variation estimate [DKŠT (2016)]
sup
n0···nm
m∑
j=1
∥Anj
(F, G) − Anj−1
(F, G)∥2
ℓ2(Z2) ≤ C∥F∥2
ℓ4(Z2)∥G∥2
ℓ4(Z2)
Calderón’s transference: R2
Z2
(X, F, µ, S, T)
13
§2. (Smooth) averages on R2
Calderón’s transference:
R2
Z2
(X, F, µ, S, T)
F, G F, G f, g
14
§2. (Smooth) averages on R2
Calderón’s transference:
R2
Z2
(X, F, µ, S, T)
F, G F, G f, g
F(x, y) :=
∑
i,l∈Z
F(i − l, l) [i,i+1)(x + y) [l,l+1)(y)
G(x, y) :=
∑
i,k∈Z
G(k, i − k) [k,k+1)(x) [i,i+1)(x + y)
14
§2. (Smooth) averages on R2
Calderón’s transference:
R2
Z2
(X, F, µ, S, T)
F, G F, G f, g
F(x, y) :=
∑
i,l∈Z
F(i − l, l) [i,i+1)(x + y) [l,l+1)(y)
G(x, y) :=
∑
i,k∈Z
G(k, i − k) [k,k+1)(x) [i,i+1)(x + y)
Fx(k, l) := f(Sk
Tl
x)
Gx(k, l) := g(Sk
Tl
x)
14
§3. Cheap tricks
• just the ideas, technical oversimplifications
• sometimes work in discrete, sometimes in continuous scales
• sometimes apply before, sometimes after decompositions
15
§3. Cheap tricks, #1 Long and short variations
Split into “long” and “short” variations
[Jones, Seeger, Wright (2004)]:
t0  t1  · · · tj−1  tj  · · ·  tm
Insert the closest powers 2k
, k ∈ Z
• Long variation / long jumps:
corresponding to the scales tj ∈ {2k
: k ∈ Z}
• Short variation / short jumps:
corresponding to tj from a fixed interval [2k
, 2k+1
]
16
§3. Cheap tricks, #2 Telescoping
Expand out the L2
norm for the long variation:
m∑
j=1
Aφ
2
kj
(F, G) − Aφ
2
kj−1
(F, G)
2
L2(R2)
=
m∑
j=1
∫
R4
F(x + u, y)G(x, y + u)F(x + v, y)G(x, y + v)
(φ2
kj − φ2
kj−1 )(u)(φ2
kj − φ2
kj−1 )(v) dxdydudv
A telescoping identity:
(φ2
kj − φ2
kj−1 )(u)(φ2
kj − φ2
kj−1 )(v)
= φ2
kj−1 (u)φ2
kj−1 (v) − φ2
kj (u)φ2
kj (v)
telescopes into a single-scale quantity
+ φ2
kj (u)(φ2
kj − φ2
kj−1 )(v)
+ (φ2
kj − φ2
kj−1 )(u)φ2
kj (v)
17
§3. Cheap tricks, #2 Telescoping
Kernel of the 4-linear form:
K(u, v) :=
m∑
j=1
φ2
kj (u)(φ2
kj − φ2
kj−1 )(v)
Denote ψ := φ − φ2
φ2
kj−1 − φ2
kj =
kj−1
∑
l=kj−1
ψ2l
Leads to a single-index sum (one parameter),
not a double-index one (two parameters)
18
§3. Cheap tricks, #3 Moving the cancellation
F(x + u, y)G(x, y + u)F(x + v, y)G(x, y + v) φ(u)ψ(v)
Change of variables:
z = x + y + u, w = x + y + v
leads to:
F(y, z)G(x, z)F(y, w)G(x, w) φ(z − x − y)ψ(w − x − y)
The Fourier inversion formula:
φ(z − x − y)ψ(w − x − y)
=
∫
R2
φ(ξ)ψ(η)e2πiξ(z−x−y)
e2πiη(w−x−y)
dξdη
19
§3. Cheap tricks, #3 Moving the cancellation
φ(z − x − y)ψ(w − x − y)
=
∫
R2
φ(ξ)ψ(η)e−2πi(ξ+η)x
e−2πi(ξ+η)y
e2πiξz
e2πiηw
dξdη
If φ has only “low” frequencies and ψ has only “high frequencies”,
then (ξ, η) is far from the antidiagonal η = −ξ
=⇒ e−2πi(ξ+η)x
and e−2πi(ξ+η)y
bring useful cancellation
Approach η = −ξ using an appropriate L-P decomposition
20
§3. Cheap tricks, #4 Positivity
Continuous scales are easier [Durcik (2014)]
Take a Gaussian cutoff function: g(s) := e−πs2
Θ(F) :=
m∑
j=1
∫
R4
F(y, z)F(x, z)F(y, w)F(x, w)
g2
kj (z − w)(g2
kj−1 − g2
kj )(x − y) dxdydzdw
Θ(F) :=
m∑
j=1
∫
R4
F(y, z)F(x, z)F(y, w)F(x, w)
(g2
kj−1 − g2
kj )(z − w)g2
kj−1 (x − y) dxdydzdw
Integration by parts and/or summation by parts:
Θ(F)
≥0
+ Θ(F)
≥0
= a single scale quantity
easy to bound
21
§3. Cheap tricks, #5 Dominating by the Gaussians
Can we dominate a Schwartz function by the Gaussian function? Tail
decaying too rapidly!
22
§3. Cheap tricks, #5 Dominating by the Gaussians
Can we dominate a Schwartz function by the Gaussian function? Tail
decaying too rapidly!
We can dominate by a superposition of the Gaussians
[Durcik (2014)]:
g(s) := e−πs2
, σ(s) :=
∫ ∞
1
gα(s)α−λ
dα, λ  1
lim
|s|→∞
|s|λ
σ(s) ∈ (0, ∞) =⇒ (1 + |s|)−λ
≲λ σ(s)
22
§4. The actual auxiliary results
Proposition
Let λ  1 and let ϑ, φ ∈ S(R) be such that
|ϑ(s)| ≤ (1 + |s|)−λ
, |φ(s)| ≤ (1 + |s|)−λ
.
Assume that ϑ is supported in [−2−4
, 2−4
], while φ is supported in
[−1, 1] and constant on [−2−2
, 2−2
].
Then for any m ∈ N, k0, . . . , km ∈ Z, and any F, G ∈ S(R2
) we have
m∑
j=1
∫
R4
F(x + u, y)G(x, y + u)F(x + v, y)G(x, y + v)
ϑ2
kj (u)(φ2
kj − φ2
kj−1 )(v) dxdydudv ≲λ ∥F∥2
L4(R2)∥G∥2
L4(R2).
23
§4. The actual auxiliary results
Proposition
Let λ  1 and let Φ ∈ S(R2
) be such that
|Φ(u, v)| ≤ (1 + |u + v|)−λ
(1 + |u − v|)−2λ
.
Assume that Φ is supported in ([−2, −2−5
] ∪ [2−5
, 2])2
.
Then for any F, G ∈ S(R2
) and any N ∈ N we have
N∑
j=−N
∫
R4
F(x + u, y)G(x, y + u)F(x + v, y)G(x, y + v)
Φ2j (u, v) dxdydudv ≲λ ∥F∥2
L4(R2)∥G∥2
L4(R2).
24
§4. The actual auxiliary results
Treating the long variation:
V(F, G) :=
m∑
j=1
Aφ
2
kj
(F, G) − Aφ
2
kj−1
(F, G)
2
L2(R2)
φ = φ ∗ χ + φ ∗ ω
supp χ ⊆ [−2−4
, 2−4
], supp ω ⊆ [−2, −2−5
] ∪ [2−5
, 2]
Λ(F, G) :=
m∑
j=1
∫
R4
F(x + u, y)G(x, y + u)F(x + v, y)G(x, y + v)
(φ ∗ χ)2
kj (u)(φ2
kj − φ2
kj−1 )(v) dxdydudv
Λ(F, G) :=
N∑
j=−N
∫
R2
( ∫
R
F(x + u, y)G(x, y + u)(φ ∗ ω)2j (u) du
)2
dxdy
A bootstrapping estimate:
V(F, G) ≲ ∥F∥2
L4(R2)∥G∥2
L4(R2) + |Λ(F, G)| + Λ(F, G)1/2
V(F, G)1/2
25
Thank you for your attention!
26

More Related Content

What's hot

Tales on two commuting transformations or flows
Tales on two commuting transformations or flowsTales on two commuting transformations or flows
Tales on two commuting transformations or flowsVjekoslavKovac1
 
Bellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproductsBellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproductsVjekoslavKovac1
 
Density theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsDensity theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsVjekoslavKovac1
 
Estimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliersEstimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliersVjekoslavKovac1
 
On maximal and variational Fourier restriction
On maximal and variational Fourier restrictionOn maximal and variational Fourier restriction
On maximal and variational Fourier restrictionVjekoslavKovac1
 
Multilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureMultilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureVjekoslavKovac1
 
A Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeA Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeVjekoslavKovac1
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsVjekoslavKovac1
 
Multilinear Twisted Paraproducts
Multilinear Twisted ParaproductsMultilinear Twisted Paraproducts
Multilinear Twisted ParaproductsVjekoslavKovac1
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesVjekoslavKovac1
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeVjekoslavKovac1
 
Paraproducts with general dilations
Paraproducts with general dilationsParaproducts with general dilations
Paraproducts with general dilationsVjekoslavKovac1
 
On the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract meansOn the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract meansFrank Nielsen
 
Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013Jurgen Riedel
 

What's hot (20)

Tales on two commuting transformations or flows
Tales on two commuting transformations or flowsTales on two commuting transformations or flows
Tales on two commuting transformations or flows
 
Bellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproductsBellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproducts
 
Density theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsDensity theorems for Euclidean point configurations
Density theorems for Euclidean point configurations
 
Estimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliersEstimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliers
 
On maximal and variational Fourier restriction
On maximal and variational Fourier restrictionOn maximal and variational Fourier restriction
On maximal and variational Fourier restriction
 
Multilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureMultilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structure
 
A Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeA Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cube
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurations
 
Multilinear Twisted Paraproducts
Multilinear Twisted ParaproductsMultilinear Twisted Paraproducts
Multilinear Twisted Paraproducts
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averages
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cube
 
Paraproducts with general dilations
Paraproducts with general dilationsParaproducts with general dilations
Paraproducts with general dilations
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli...
 Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli... Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli...
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
On the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract meansOn the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract means
 
Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013
 

Similar to Norm-variation of bilinear averages

Limits and Continuity of Functions
Limits and Continuity of Functions Limits and Continuity of Functions
Limits and Continuity of Functions OlooPundit
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionCharles Deledalle
 
Andreas Eberle
Andreas EberleAndreas Eberle
Andreas EberleBigMC
 
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...Frank Nielsen
 
Actuarial Science Reference Sheet
Actuarial Science Reference SheetActuarial Science Reference Sheet
Actuarial Science Reference SheetDaniel Nolan
 
1531 fourier series- integrals and trans
1531 fourier series- integrals and trans1531 fourier series- integrals and trans
1531 fourier series- integrals and transDr Fereidoun Dejahang
 
Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524kazuhase2011
 
A common fixed point theorem in cone metric spaces
A common fixed point theorem in cone metric spacesA common fixed point theorem in cone metric spaces
A common fixed point theorem in cone metric spacesAlexander Decker
 
Fourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 lFourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 lPepa Vidosa Serradilla
 
lesson10-thechainrule034slides-091006133832-phpapp01.pptx
lesson10-thechainrule034slides-091006133832-phpapp01.pptxlesson10-thechainrule034slides-091006133832-phpapp01.pptx
lesson10-thechainrule034slides-091006133832-phpapp01.pptxJohnReyManzano2
 
02 2d systems matrix
02 2d systems matrix02 2d systems matrix
02 2d systems matrixRumah Belajar
 
Group theory notes
Group theory notesGroup theory notes
Group theory notesmkumaresan
 
A unique common fixed point theorem for four
A unique common fixed point theorem for fourA unique common fixed point theorem for four
A unique common fixed point theorem for fourAlexander Decker
 
Topic: Fourier Series ( Periodic Function to change of interval)
Topic: Fourier Series ( Periodic Function to  change of interval)Topic: Fourier Series ( Periodic Function to  change of interval)
Topic: Fourier Series ( Periodic Function to change of interval)Abhishek Choksi
 
Coincidence points for mappings under generalized contraction
Coincidence points for mappings under generalized contractionCoincidence points for mappings under generalized contraction
Coincidence points for mappings under generalized contractionAlexander Decker
 
Fixed point theorem of discontinuity and weak compatibility in non complete n...
Fixed point theorem of discontinuity and weak compatibility in non complete n...Fixed point theorem of discontinuity and weak compatibility in non complete n...
Fixed point theorem of discontinuity and weak compatibility in non complete n...Alexander Decker
 
11.fixed point theorem of discontinuity and weak compatibility in non complet...
11.fixed point theorem of discontinuity and weak compatibility in non complet...11.fixed point theorem of discontinuity and weak compatibility in non complet...
11.fixed point theorem of discontinuity and weak compatibility in non complet...Alexander Decker
 

Similar to Norm-variation of bilinear averages (20)

Limits and Continuity of Functions
Limits and Continuity of Functions Limits and Continuity of Functions
Limits and Continuity of Functions
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - Introduction
 
Andreas Eberle
Andreas EberleAndreas Eberle
Andreas Eberle
 
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
 
Actuarial Science Reference Sheet
Actuarial Science Reference SheetActuarial Science Reference Sheet
Actuarial Science Reference Sheet
 
1531 fourier series- integrals and trans
1531 fourier series- integrals and trans1531 fourier series- integrals and trans
1531 fourier series- integrals and trans
 
Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524
 
A common fixed point theorem in cone metric spaces
A common fixed point theorem in cone metric spacesA common fixed point theorem in cone metric spaces
A common fixed point theorem in cone metric spaces
 
Fourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 lFourier series of odd functions with period 2 l
Fourier series of odd functions with period 2 l
 
lesson10-thechainrule034slides-091006133832-phpapp01.pptx
lesson10-thechainrule034slides-091006133832-phpapp01.pptxlesson10-thechainrule034slides-091006133832-phpapp01.pptx
lesson10-thechainrule034slides-091006133832-phpapp01.pptx
 
02 2d systems matrix
02 2d systems matrix02 2d systems matrix
02 2d systems matrix
 
Group theory notes
Group theory notesGroup theory notes
Group theory notes
 
A unique common fixed point theorem for four
A unique common fixed point theorem for fourA unique common fixed point theorem for four
A unique common fixed point theorem for four
 
Topic: Fourier Series ( Periodic Function to change of interval)
Topic: Fourier Series ( Periodic Function to  change of interval)Topic: Fourier Series ( Periodic Function to  change of interval)
Topic: Fourier Series ( Periodic Function to change of interval)
 
Coincidence points for mappings under generalized contraction
Coincidence points for mappings under generalized contractionCoincidence points for mappings under generalized contraction
Coincidence points for mappings under generalized contraction
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
 
Imc2017 day2-solutions
Imc2017 day2-solutionsImc2017 day2-solutions
Imc2017 day2-solutions
 
Holographic Cotton Tensor
Holographic Cotton TensorHolographic Cotton Tensor
Holographic Cotton Tensor
 
Fixed point theorem of discontinuity and weak compatibility in non complete n...
Fixed point theorem of discontinuity and weak compatibility in non complete n...Fixed point theorem of discontinuity and weak compatibility in non complete n...
Fixed point theorem of discontinuity and weak compatibility in non complete n...
 
11.fixed point theorem of discontinuity and weak compatibility in non complet...
11.fixed point theorem of discontinuity and weak compatibility in non complet...11.fixed point theorem of discontinuity and weak compatibility in non complet...
11.fixed point theorem of discontinuity and weak compatibility in non complet...
 

Recently uploaded

❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.Nitya salvi
 
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts ServiceJustdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Servicemonikaservice1
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxSuji236384
 
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedDelhi Call girls
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxRizalinePalanog2
 
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)Joonhun Lee
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)Areesha Ahmad
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLkantirani197
 
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...ssuser79fe74
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfSumit Kumar yadav
 
IDENTIFICATION OF THE LIVING- forensic medicine
IDENTIFICATION OF THE LIVING- forensic medicineIDENTIFICATION OF THE LIVING- forensic medicine
IDENTIFICATION OF THE LIVING- forensic medicinesherlingomez2
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learninglevieagacer
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPirithiRaju
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticssakshisoni2385
 
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Servicenishacall1
 
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...Silpa
 
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...Mohammad Khajehpour
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfrohankumarsinghrore1
 

Recently uploaded (20)

❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
 
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts ServiceJustdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
Justdial Call Girls In Indirapuram, Ghaziabad, 8800357707 Escorts Service
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
 
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verifiedConnaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
Connaught Place, Delhi Call girls :8448380779 Model Escorts | 100% verified
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
 
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
Feature-aligned N-BEATS with Sinkhorn divergence (ICLR '24)
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRLKochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
Kochi ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Kochi ESCORT SERVICE❤CALL GIRL
 
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
Chemical Tests; flame test, positive and negative ions test Edexcel Internati...
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdf
 
IDENTIFICATION OF THE LIVING- forensic medicine
IDENTIFICATION OF THE LIVING- forensic medicineIDENTIFICATION OF THE LIVING- forensic medicine
IDENTIFICATION OF THE LIVING- forensic medicine
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
 
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
 
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...
Dopamine neurotransmitter determination using graphite sheet- graphene nano-s...
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 

Norm-variation of bilinear averages

  • 1. Norm-variation of bilinear averages Vjekoslav Kovač (University of Zagreb) joint work with Polona Durcik (University of Bonn) Kristina Ana Škreb (University of Zagreb) Christoph Thiele (University of Bonn) Singular integrals and partial differential equations, University of Helsinki, May 24, 2016
  • 2. §1. Motivation: ergodic averages Single averages Mnf(x) := 1 n n−1∑ i=0 f(Si x) 2
  • 3. §1. Motivation: ergodic averages Single averages Mnf(x) := 1 n n−1∑ i=0 f(Si x) The setting: • (X, F, µ) a probability space • S: X → X measure-preserving: µ ( S−1 E ) = µ(E) • f ∈ L2 (X) 2
  • 4. §1. Motivation: ergodic averages Single averages Mnf(x) := 1 n n−1∑ i=0 f(Si x) The setting: • (X, F, µ) a probability space • S: X → X measure-preserving: µ ( S−1 E ) = µ(E) • f ∈ L2 (X) Convergence as n → ∞: • in L2 (X) ⇝ von Neumann (1932) • pointwise a.e. ⇝ Birkhoff (1931) • Can we quantify the L2 convergence by controlling the number of jumps in the norm? 2
  • 5. §1. Motivation: ergodic averages Single averages Mnf(x) := 1 n n−1∑ i=0 f(Si x) Norm-variation estimate [Jones, Ostrovskii, and Rosenblatt (1996)] sup n0<n1<···<nm m∑ j=1 Mnj f − Mnj−1 f 2 L2 ≤ C ∥f∥2 L2 3
  • 6. §1. Motivation: ergodic averages Single averages Mnf(x) := 1 n n−1∑ i=0 f(Si x) Norm-variation estimate [Jones, Ostrovskii, and Rosenblatt (1996)] sup n0<n1<···<nm m∑ j=1 Mnj f − Mnj−1 f 2 L2 ≤ C ∥f∥2 L2 Consequence If ∥f∥L2 = 1, then ( Mnf )∞ n=1 has O(ε−2 ) jumps of size ≥ ε in the L2 norm m1 < n1 ≤ m2 < n2 ≤ · · · ≤ mJ < nJ s.t. ∥Mnj f − Mmj f∥L2 ≥ ε 3
  • 7. §1. Motivation: ergodic averages Double averages Mn(f, g)(x) := 1 n n−1∑ i=0 f(Si x)g(Ti x) 4
  • 8. §1. Motivation: ergodic averages Double averages Mn(f, g)(x) := 1 n n−1∑ i=0 f(Si x)g(Ti x) The setting: • (X, F, µ) a probability space • S, T: X → X commuting and measure-preserving • f, g ∈ L∞ (X) • motivated by Furstenberg’s work in additive combinatorics 4
  • 9. §1. Motivation: ergodic averages Double averages Mn(f, g)(x) := 1 n n−1∑ i=0 f(Si x)g(Ti x) The setting: • (X, F, µ) a probability space • S, T: X → X commuting and measure-preserving • f, g ∈ L∞ (X) • motivated by Furstenberg’s work in additive combinatorics Convergence as n → ∞: • in L2 (X) (and in Lp (X), p < ∞) ⇝ Conze and Lesigne (1984) • pointwise a.e. ⇝ an old open problem! (Calderón?) • quantitative L2 convergence? metric entropy bounds? 4
  • 10. §1. Motivation: ergodic averages Double averages Mn(f, g)(x) := 1 n n−1∑ i=0 f(Si x)g(Ti x) Previous results: • T = Sm , m ∈ Z, pointwise a.e. convergence ⇝ Bourgain (1990), Demeter (2007) • T = Sm , m ∈ Z, pointwise variation estimate ⇝ Do, Oberlin, and Palsson (2015) 5
  • 11. §1. Motivation: ergodic averages Double averages Mn(f, g)(x) := 1 n n−1∑ i=0 f(Si x)g(Ti x) Previous results: • T = Sm , m ∈ Z, pointwise a.e. convergence ⇝ Bourgain (1990), Demeter (2007) • T = Sm , m ∈ Z, pointwise variation estimate ⇝ Do, Oberlin, and Palsson (2015) General commuting and measure-preserving S, T: any explicit quantitative results for norm convergence ⇝ posed by Avigad and Rute (2012) and others 5
  • 12. §1. Motivation: ergodic averages Double averages Mn(f, g)(x) := 1 n n−1∑ i=0 f(Si x)g(Ti x) Norm-variation estimate [Durcik, K., Škreb, and Thiele (2016)] sup n0<n1<···<nm m∑ j=1 Mnj (f, g) − Mnj−1 (f, g) 2 L2 ≤ C ∥f∥2 L4 ∥g∥2 L4 6
  • 13. §1. Motivation: ergodic averages Double averages Mn(f, g)(x) := 1 n n−1∑ i=0 f(Si x)g(Ti x) Norm-variation estimate [Durcik, K., Škreb, and Thiele (2016)] sup n0<n1<···<nm m∑ j=1 Mnj (f, g) − Mnj−1 (f, g) 2 L2 ≤ C ∥f∥2 L4 ∥g∥2 L4 Consequence If ∥f∥L4 = ∥g∥L4 = 1, then ( Mn(f, g) )∞ n=1 has O(ε−2 ) jumps of size ≥ ε in the L2 norm 6
  • 14. §1. Motivation: ergodic averages Multiple averages Mn(f1, f2, . . . , fr)(x) := 1 n n−1∑ i=0 f1(Ti 1x)f2(Ti 2x) · · · fr(Ti rx) 7
  • 15. §1. Motivation: ergodic averages Multiple averages Mn(f1, f2, . . . , fr)(x) := 1 n n−1∑ i=0 f1(Ti 1x)f2(Ti 2x) · · · fr(Ti rx) The setting: • r ≥ 3 • (X, F, µ) a probability space • T1, T2, . . . , Tr : X → X commuting and measure-preserving • f1, f2, . . . , fr ∈ L∞ (X) 7
  • 16. §1. Motivation: ergodic averages Multiple averages Mn(f1, f2, . . . , fr)(x) := 1 n n−1∑ i=0 f1(Ti 1x)f2(Ti 2x) · · · fr(Ti rx) The setting: • r ≥ 3 • (X, F, µ) a probability space • T1, T2, . . . , Tr : X → X commuting and measure-preserving • f1, f2, . . . , fr ∈ L∞ (X) Convergence as n → ∞: • in L2 (X) (and in Lp (X), p < ∞) ⇝ Tao (2007) and also by Austin (2008), Walsh (2011), Zorin-Kranich (2011) • no quantitative norm-convergence results known 7
  • 17. §2. (Smooth) averages on R2 Bilinear averages Aφ t (F, G)(x, y) := ∫ R F(x + s, y)G(x, y + s) t−1 φ(t−1 s) ds 8
  • 18. §2. (Smooth) averages on R2 Bilinear averages Aφ t (F, G)(x, y) := ∫ R F(x + s, y)G(x, y + s) t−1 φ(t−1 s) ds Norm-variation estimate [DKŠT (2016)] sup t0<···<tm m∑ j=1 ∥Aφ tj (F, G) − Aφ tj−1 (F, G)∥2 L2(R2) ≤ Cφ∥F∥2 L4(R2)∥G∥2 L4(R2) 8
  • 19. §2. (Smooth) averages on R2 Bilinear averages Aφ t (F, G)(x, y) := ∫ R F(x + s, y)G(x, y + s) t−1 φ(t−1 s) ds Norm-variation estimate [DKŠT (2016)] sup t0<···<tm m∑ j=1 ∥Aφ tj (F, G) − Aφ tj−1 (F, G)∥2 L2(R2) ≤ Cφ∥F∥2 L4(R2)∥G∥2 L4(R2) • φ is a Schwartz function • φ = [0,1) =⇒ At(F, G)(x, y)= 1 t ∫ t 0 F(x+s, y)G(x, y+s)ds 8
  • 20. §2. (Smooth) averages on R2 Bilinear averages Aφ t (F, G)(x, y) := ∫ R F(x + s, y)G(x, y + s) t−1 φ(t−1 s) φt(s) ds tj = 2j , φ Schwartz ψ(s) := φ(s) − 2φ(2s) =⇒ ψ2j = φ2j − φ2j−1 S(F, G)(x, y) := ( ∑ j∈Z ∫ R F(x + s, y)G(x, y + s)ψ2j (s)ds Aφ 2j (F,G)(x,y)−Aφ 2j−1 (F,G)(x,y) 2)1/2 9
  • 21. §2. (Smooth) averages on R2 Bilinear averages Aφ t (F, G)(x, y) := ∫ R F(x + s, y)G(x, y + s) t−1 φ(t−1 s) φt(s) ds tj = 2j , φ Schwartz ψ(s) := φ(s) − 2φ(2s) =⇒ ψ2j = φ2j − φ2j−1 S(F, G)(x, y) := ( ∑ j∈Z ∫ R F(x + s, y)G(x, y + s)ψ2j (s)ds Aφ 2j (F,G)(x,y)−Aφ 2j−1 (F,G)(x,y) 2)1/2 Consequence ∥S(F, G)∥L2(R2) ≤ Cψ∥F∥L4(R2)∥G∥L4(R2) 9
  • 22. §2. (Smooth) averages on R2 Bilinear averages Aφ t (F, G)(x, y) := ∫ R F(x + s, y)G(x, y + s) t−1 φ(t−1 s) φt(s) ds S(f, g)(x) := ( ∑ j∈Z ∫ R f(x + s) g(x − s) 2−j ψ(2−j s) ds 2)1/2 F(x, y) := f(x − y)R−1/4 ϑ(R−1 y) G(x, y) := g(x − y)R−1/4 ϑ(R−1 x) 10
  • 23. §2. (Smooth) averages on R2 Bilinear averages Aφ t (F, G)(x, y) := ∫ R F(x + s, y)G(x, y + s) t−1 φ(t−1 s) φt(s) ds S(f, g)(x) := ( ∑ j∈Z ∫ R f(x + s) g(x − s) 2−j ψ(2−j s) ds 2)1/2 F(x, y) := f(x − y)R−1/4 ϑ(R−1 y) G(x, y) := g(x − y)R−1/4 ϑ(R−1 x) Consequence [Lacey, Thiele (1997), bilinear Hilbert transform] ∥S(f, g)∥L2(R) ≤ Cψ∥f∥L4(R)∥g∥L4(R) 10
  • 24. §2. (Smooth) averages on R2 Bilinear averages Aφ t (F, G)(x, y) := ∫ R F(x + s, y)G(x, y + s) t−1 φ(t−1 s) φt(s) ds Compare with the “triangular Hilbert transform”: T(F, G)(x, y) := p.v. ∫ R F(x + s, y) G(x, y + s) ds s 11
  • 25. §2. (Smooth) averages on R2 Bilinear averages Aφ t (F, G)(x, y) := ∫ R F(x + s, y)G(x, y + s) t−1 φ(t−1 s) φt(s) ds Compare with the “triangular Hilbert transform”: T(F, G)(x, y) := p.v. ∫ R F(x + s, y) G(x, y + s) ds s • one function specialized ⇝ K., Thiele, Zorin-Kranich (2015) • nontrivial cancellation ⇝ Zorin-Kranich (2015) • no-estimates known! • p.v.1 s = ∑ j ψ2j (s) ⇝ the square function vs. the singular integral 11
  • 26. §2. (Smooth) averages on R2 The “triangular Hilbert transform”: T(F, G)(x, y) := p.v. ∫ R F(x + s, y) G(x, y + s) ds s It has to be difficult! Dualize: Λ(F, G, H) = ∫ R2 p.v. ∫ R F(x + s, y)G(x, y + s)H(x, y) ds s dxdy By taking F(x, y) = f(x), G(x, y) = g(x)eiN(x)y , H(x, y) = h(x)e−iN(x)y we obtain bounds for the linearized Carleson operator (Cf)(x) = ∫ R f(x + s)eiN(x)s ds s Λ(F, G, H) = ⟨ Cf, gh ⟩ ⇝ Carleson (1966) 12
  • 27. §2. (Smooth) averages on R2 Bilinear averages on Z2 An(F, G)(k, l) := 1 n n−1∑ i=0 F(k + i, l) G(k, l + i) 13
  • 28. §2. (Smooth) averages on R2 Bilinear averages on Z2 An(F, G)(k, l) := 1 n n−1∑ i=0 F(k + i, l) G(k, l + i) Norm-variation estimate [DKŠT (2016)] sup n0···nm m∑ j=1 ∥Anj (F, G) − Anj−1 (F, G)∥2 ℓ2(Z2) ≤ C∥F∥2 ℓ4(Z2)∥G∥2 ℓ4(Z2) 13
  • 29. §2. (Smooth) averages on R2 Bilinear averages on Z2 An(F, G)(k, l) := 1 n n−1∑ i=0 F(k + i, l) G(k, l + i) Norm-variation estimate [DKŠT (2016)] sup n0···nm m∑ j=1 ∥Anj (F, G) − Anj−1 (F, G)∥2 ℓ2(Z2) ≤ C∥F∥2 ℓ4(Z2)∥G∥2 ℓ4(Z2) Calderón’s transference: R2 Z2 (X, F, µ, S, T) 13
  • 30. §2. (Smooth) averages on R2 Calderón’s transference: R2 Z2 (X, F, µ, S, T) F, G F, G f, g 14
  • 31. §2. (Smooth) averages on R2 Calderón’s transference: R2 Z2 (X, F, µ, S, T) F, G F, G f, g F(x, y) := ∑ i,l∈Z F(i − l, l) [i,i+1)(x + y) [l,l+1)(y) G(x, y) := ∑ i,k∈Z G(k, i − k) [k,k+1)(x) [i,i+1)(x + y) 14
  • 32. §2. (Smooth) averages on R2 Calderón’s transference: R2 Z2 (X, F, µ, S, T) F, G F, G f, g F(x, y) := ∑ i,l∈Z F(i − l, l) [i,i+1)(x + y) [l,l+1)(y) G(x, y) := ∑ i,k∈Z G(k, i − k) [k,k+1)(x) [i,i+1)(x + y) Fx(k, l) := f(Sk Tl x) Gx(k, l) := g(Sk Tl x) 14
  • 33. §3. Cheap tricks • just the ideas, technical oversimplifications • sometimes work in discrete, sometimes in continuous scales • sometimes apply before, sometimes after decompositions 15
  • 34. §3. Cheap tricks, #1 Long and short variations Split into “long” and “short” variations [Jones, Seeger, Wright (2004)]: t0 t1 · · · tj−1 tj · · · tm Insert the closest powers 2k , k ∈ Z • Long variation / long jumps: corresponding to the scales tj ∈ {2k : k ∈ Z} • Short variation / short jumps: corresponding to tj from a fixed interval [2k , 2k+1 ] 16
  • 35. §3. Cheap tricks, #2 Telescoping Expand out the L2 norm for the long variation: m∑ j=1 Aφ 2 kj (F, G) − Aφ 2 kj−1 (F, G) 2 L2(R2) = m∑ j=1 ∫ R4 F(x + u, y)G(x, y + u)F(x + v, y)G(x, y + v) (φ2 kj − φ2 kj−1 )(u)(φ2 kj − φ2 kj−1 )(v) dxdydudv A telescoping identity: (φ2 kj − φ2 kj−1 )(u)(φ2 kj − φ2 kj−1 )(v) = φ2 kj−1 (u)φ2 kj−1 (v) − φ2 kj (u)φ2 kj (v) telescopes into a single-scale quantity + φ2 kj (u)(φ2 kj − φ2 kj−1 )(v) + (φ2 kj − φ2 kj−1 )(u)φ2 kj (v) 17
  • 36. §3. Cheap tricks, #2 Telescoping Kernel of the 4-linear form: K(u, v) := m∑ j=1 φ2 kj (u)(φ2 kj − φ2 kj−1 )(v) Denote ψ := φ − φ2 φ2 kj−1 − φ2 kj = kj−1 ∑ l=kj−1 ψ2l Leads to a single-index sum (one parameter), not a double-index one (two parameters) 18
  • 37. §3. Cheap tricks, #3 Moving the cancellation F(x + u, y)G(x, y + u)F(x + v, y)G(x, y + v) φ(u)ψ(v) Change of variables: z = x + y + u, w = x + y + v leads to: F(y, z)G(x, z)F(y, w)G(x, w) φ(z − x − y)ψ(w − x − y) The Fourier inversion formula: φ(z − x − y)ψ(w − x − y) = ∫ R2 φ(ξ)ψ(η)e2πiξ(z−x−y) e2πiη(w−x−y) dξdη 19
  • 38. §3. Cheap tricks, #3 Moving the cancellation φ(z − x − y)ψ(w − x − y) = ∫ R2 φ(ξ)ψ(η)e−2πi(ξ+η)x e−2πi(ξ+η)y e2πiξz e2πiηw dξdη If φ has only “low” frequencies and ψ has only “high frequencies”, then (ξ, η) is far from the antidiagonal η = −ξ =⇒ e−2πi(ξ+η)x and e−2πi(ξ+η)y bring useful cancellation Approach η = −ξ using an appropriate L-P decomposition 20
  • 39. §3. Cheap tricks, #4 Positivity Continuous scales are easier [Durcik (2014)] Take a Gaussian cutoff function: g(s) := e−πs2 Θ(F) := m∑ j=1 ∫ R4 F(y, z)F(x, z)F(y, w)F(x, w) g2 kj (z − w)(g2 kj−1 − g2 kj )(x − y) dxdydzdw Θ(F) := m∑ j=1 ∫ R4 F(y, z)F(x, z)F(y, w)F(x, w) (g2 kj−1 − g2 kj )(z − w)g2 kj−1 (x − y) dxdydzdw Integration by parts and/or summation by parts: Θ(F) ≥0 + Θ(F) ≥0 = a single scale quantity easy to bound 21
  • 40. §3. Cheap tricks, #5 Dominating by the Gaussians Can we dominate a Schwartz function by the Gaussian function? Tail decaying too rapidly! 22
  • 41. §3. Cheap tricks, #5 Dominating by the Gaussians Can we dominate a Schwartz function by the Gaussian function? Tail decaying too rapidly! We can dominate by a superposition of the Gaussians [Durcik (2014)]: g(s) := e−πs2 , σ(s) := ∫ ∞ 1 gα(s)α−λ dα, λ 1 lim |s|→∞ |s|λ σ(s) ∈ (0, ∞) =⇒ (1 + |s|)−λ ≲λ σ(s) 22
  • 42. §4. The actual auxiliary results Proposition Let λ 1 and let ϑ, φ ∈ S(R) be such that |ϑ(s)| ≤ (1 + |s|)−λ , |φ(s)| ≤ (1 + |s|)−λ . Assume that ϑ is supported in [−2−4 , 2−4 ], while φ is supported in [−1, 1] and constant on [−2−2 , 2−2 ]. Then for any m ∈ N, k0, . . . , km ∈ Z, and any F, G ∈ S(R2 ) we have m∑ j=1 ∫ R4 F(x + u, y)G(x, y + u)F(x + v, y)G(x, y + v) ϑ2 kj (u)(φ2 kj − φ2 kj−1 )(v) dxdydudv ≲λ ∥F∥2 L4(R2)∥G∥2 L4(R2). 23
  • 43. §4. The actual auxiliary results Proposition Let λ 1 and let Φ ∈ S(R2 ) be such that |Φ(u, v)| ≤ (1 + |u + v|)−λ (1 + |u − v|)−2λ . Assume that Φ is supported in ([−2, −2−5 ] ∪ [2−5 , 2])2 . Then for any F, G ∈ S(R2 ) and any N ∈ N we have N∑ j=−N ∫ R4 F(x + u, y)G(x, y + u)F(x + v, y)G(x, y + v) Φ2j (u, v) dxdydudv ≲λ ∥F∥2 L4(R2)∥G∥2 L4(R2). 24
  • 44. §4. The actual auxiliary results Treating the long variation: V(F, G) := m∑ j=1 Aφ 2 kj (F, G) − Aφ 2 kj−1 (F, G) 2 L2(R2) φ = φ ∗ χ + φ ∗ ω supp χ ⊆ [−2−4 , 2−4 ], supp ω ⊆ [−2, −2−5 ] ∪ [2−5 , 2] Λ(F, G) := m∑ j=1 ∫ R4 F(x + u, y)G(x, y + u)F(x + v, y)G(x, y + v) (φ ∗ χ)2 kj (u)(φ2 kj − φ2 kj−1 )(v) dxdydudv Λ(F, G) := N∑ j=−N ∫ R2 ( ∫ R F(x + u, y)G(x, y + u)(φ ∗ ω)2j (u) du )2 dxdy A bootstrapping estimate: V(F, G) ≲ ∥F∥2 L4(R2)∥G∥2 L4(R2) + |Λ(F, G)| + Λ(F, G)1/2 V(F, G)1/2 25
  • 45. Thank you for your attention! 26