SlideShare a Scribd company logo
1 of 59
Download to read offline
Multilinear singular integrals with entangled
structure
Vjekoslav Kovaˇc (University of Zagreb)
Joint work with: Fr´ed´eric Bernicot (University of Nantes),
Kristina Ana ˇSkreb (University of Zagreb),
Christoph Thiele (University of Bonn)
Real Analysis, Harmonic Analysis and Applications
Oberwolfach, July 25, 2014
Examples of multilinear singular integrals
One-dimensional examples:
T(f1, . . . , fn)(x) :=
p.v.
Rn
K(x, y1, . . . , yn) f1(y1) · · · fn(yn) dy1 · · · dyn
(multilinear C-Z operators)
T(f , g)(x) := p.v.
R
1
t
f (x−t)g(x+t)dt
(bilinear Hilbert transform)
T(f , g, h)(x) := p.v.
R
1
t
f (x−t)g(x+t)h(x+2t)dt
(trilinear Hilbert transform, still unresolved)
Examples of multilinear singular integrals
Higher-dimensional complications (already in R2):
T(F1, . . . , Fn)(x) :=
p.v.
(R2)n
K(x, y1, . . . , yn) F1(y1) · · · Fn(yn) dy1 · · · dyn
(still multilinear C-Z operators)
T(F, G)(x, y) :=
p.v.
R2
K(s, t) F (x, y)+A(s, t) G (x, y)+B(s, t) dsdt
(2D bilinear Hilbert transform)
T(F, G)(x, y) := p.v.
R
1
t
F(x+t, y)G(x, y +t)dt
(triangular Hilbert transform, still unresolved)
Entangled structure
Object of our study:
Multilinear singular integral forms with functions that partially
share variables
Schematically:
Λ(F1, F2, . . .) =
Rn
F1(x1, x2) F2(x1, x3) . . .
K(x1, . . . , xn) dx1dx2dx3 . . . dxn
K = singular kernel
F1, F2, . . . = functions on R2
Entangled structure — Generalized modulation invariance
An alternative viewpoint: generalized modulation invariances
Rn
F1(x1, x2) F2(x1, x3) . . .
K(x1, . . . , xn) dx1dx2dx3 . . . dxn
=
Rn
e2πiax1
F1(x1, x2) e−2πiax1
F2(x1, x3) . . .
K(x1, . . . , xn) dx1dx2dx3 . . . dxn
=
Rn
ϕ(x1)F1(x1, x2)
1
ϕ(x1)
F2(x1, x3) . . .
K(x1, . . . , xn) dx1dx2dx3 . . . dxn
Wave packet decompositions are not efficient
Entangled structure — Estimates
Our goal: Lp estimates
|Λ(F1, F2, . . . , Fk)| F1 Lp1 F2 Lp2 . . . Fk Lpk
in a nonempty open subrange of
1
p1
+
1
p2
+ . . . +
1
pk
= 1
Entangled structure — Graph structure
Structure determined by K and a simple undirected graph on
x1, x2, . . .
◦ ◦
x ◦
F
◦ y
◦ ◦
Λ(F, . . .) = · · · F(x, y) · · · dx dy · · ·
Entangled structure — Example: Triangular HT
T(F, G)(x, y) := p.v.
R
F(x + t, y)G(x, y + t)
dt
t
No positive or negative results are known!
It has to be difficult:
A conjectured bound is invariant under affine transformations
Implies bounds for
Λ(F, G, H) =
R2
p.v.
R
F(x + tv1) G(x + tv2) H(x + tv3)
dt
t
dx
uniformly over all choices of non-collinear vectors v1, v2, v3 ∈ R2
Entangled structure — Example: Triangular HT
Implies bounds for
Λ(F, G, H) =
R2
p.v.
R
F(x + tv1) G(x + tv2) H(x + tv3)
dt
t
dx
uniformly over all choices of non-collinear vectors v1, v2, v3 ∈ R2
In the limit towards the degenerate case
v1 = (β1, 0), v2 = (β2, 0), v3 = (β3, 0)
we would recover uniform bounds for the BHT
Λ(f , g, h) =
R
p.v.
R
f (x + tβ1) g(x + tβ2) h(x + tβ3)
dt
t
dx
Lacey and Thiele (1997, 1999), Thiele (2002)
Entangled structure — Example: Triangular HT
Λ(F, G, H) =
R2
p.v.
R
F(x + t, y)G(x, y + t)H(x, y)
dt
t
dxdy
By taking
F(x, y) = f (x), G(x, y) = g(x)eiN(x)y
, H(x, y) = h(x)e−iN(x)y
we obtain bounds for the linearized Carleson operator
(Cf )(x) =
R
f (x + t)eiN(x)t dt
t
Λ(F, G, H) = Cf , gh
Carleson (1966)
Entangled structure — Example: Triangular HT
T(F, G)(x, y) := p.v.
R
F(x + t, y)G(x, y + t)
dt
t
Substitute: z = −x − y − t,
F1(x, y) = H(x, y), F2(y, z) = F(−y −z, y), F3(z, x) = G(x, −x−z)
Λ(F, G, H) = T(F, G), H
=
R3
F1(x, y) F2(y, z) F3(z, x)
−1
x + y + z
dxdydz
Entangled structure — Example: Triangular HT
Λ(F1, F2, F3) =
R3
F1(x, y) F2(y, z) F3(z, x)
−1
x + y + z
dxdydz
Associated graph:
x
◦
F3F1
y ◦
F2
◦ z
Note: this graph is not bipartite
Entangled structure — Example: A modification
Quadrilinear variant:
Λ(F1, F2, F3, F4)
=
R4
F1(u, v)F2(u, y)F3(x, y)F4(x, v) K(u, v, x, y) dudvdxdy
Associated graph:
x ◦
F3
F4
◦
F2
y
v ◦
F1
◦ u
x ◦
F3
F2
◦
F4
y
u ◦
F1
◦ v
Note: this graph is bipartite
Dyadic T(1) — Dyadic model operators
Scope of our techniques
We specialize to:
bipartite graphs
multilinear Calder´on-Zygmund kernels K
“perfect” dyadic models
Dyadic T(1) — Perfect dyadic conditions
m, n = positive integers
D := (x, . . . , x
m
, y, . . . , y
n
) : x, y ∈ R
the “diagonal” in Rm+n
Perfect dyadic Calder´on-Zygmund kernel K : Rm+n → C,
Auscher, Hofmann, Muscalu, Tao, Thiele (2002):
|K(x1, . . . , xm, y1, . . . , yn)|
i1<i2
|xi1 − xi2 | + j1<j2
|yj1 − yj2 |
2−m−n
K is constant on (m+n)-dimensional dyadic cubes disjoint
from D
K is bounded and compactly supported
Dyadic T(1) — Bipartite structure
E ⊆ {1, . . . , m}×{1, . . . , n}
G = simple bipartite undirected graph on
{x1, . . . , xm} and {y1, . . . , yn}
xi —yj ⇔ (i, j) ∈ E
|E|-linear singular form:
Λ (Fi,j )(i,j)∈E :=
Rm+n
K(x1, . . . , xm, y1, . . . , yn)
(i,j)∈E
Fi,j (xi , yj ) dx1 . . . dxmdy1 . . . dyn
Assume: there are no isolated vertices in G
avoids degeneracy
Dyadic T(1) — Adjoints
There are |E| mutually adjoint (|E|−1)-linear operators Tu,v ,
(u, v) ∈ E:
Λ (Fi,j )(i,j)∈E =
R2
Tu,v (Fi,j )(i,j)=(u,v) Fu,v
Explicitly:
Tu,v (Fi,j )(i,j)∈E{(u,v)} (xu, yv )
=
Rm+n−2
K(x1, . . . , xm, y1, . . . , yn)
(i,j)∈E{(u,v)}
Fi,j (xi , yj )
i=u
dxi
j=v
dyj
Dyadic T(1) — A T(1)-type theorem
Theorem. “Entangled” T(1) — K. and Thiele (2011, 2013)
(a) For m, n ≥ 2 and a graph G there exist positive integers di,j
such that (i,j)∈E
1
di,j
> 1 and the following holds. If
|Λ(1Q, . . . , 1Q)| |Q|, Q dyadic square,
Tu,v (1R2 , . . . , 1R2 ) BMO(R2) 1, (u, v) ∈ E,
then
Λ (Fi,j )(i,j)∈E
(i,j)∈E
Fi,j L
pi,j (R2)
for exponents pi,j s.t. (i,j)∈E
1
pi,j
= 1, di,j < pi,j ≤ ∞.
(b) Conversely, the estimate for some choice of exponents implies
the conditions.
Dyadic T(1) — A T(1)-type theorem, reformulation
Theorem. “Entangled” T(1) — K. and Thiele (2011, 2013)
For m, n ≥ 2 and a graph G there exist positive integers di,j such
that (i,j)∈E
1
di,j
> 1 and the following holds. If
Tu,v (1Q, . . . , 1Q) L1
(Q)
|Q|, Q dyadic square, (u, v) ∈ E,
then
Λ (Fi,j )(i,j)∈E
(i,j)∈E
Fi,j L
pi,j (R2)
for exponents pi,j s.t. (i,j)∈E
1
pi,j
= 1, di,j < pi,j ≤ ∞.
Dyadic T(1) — Proof outline
The only nonstandard part — sufficiency of the testing conditions
Outline of the proof:
decomposition into paraproducts
a stopping time argument for reducing global estimates to
local estimates
cancellative paraproducts with ∞ coefficients
“most” cases of graphs G
di,j related to sizes of connected components of G
stuctural induction + Bellman function technique
exceptional cases of graphs G
non-cancellative paraproducts with BMO coefficients
reduction to cancellative paraproducts
counterexample for m = 1 or n = 1
Dyadic T(1) — Decomposition into paraproducts
hI = 1Ileft
− 1Iright
L∞-normalized Haar wavelet
Kernel decomposition:
K(x1, . . . , xm, y1, . . . , yn)
=
I1×...×Im×J1×...×Jn
a(1),...,a(m), b(1),...,b(n)∈{1,h}
a(i), b(j) not all equal 1
νa(1),...,a(m),b(1),...,b(n)
I1×...×Im×J1×...×Jn
a
(1)
I1
(x1) . . . a
(m)
Im
(xm)b
(1)
J1
(y1) . . . b
(n)
Jn
(yn)
[perfect dyadic condition]
=
I×J
a(1),...,a(m), b(1),...,b(n)∈{1,h}
a(i), b(j) not all equal 1
λa(1),...,a(m),b(1),...,b(n)
I×J |I|2−m−n
a
(1)
I (x1) . . . a
(m)
I (xm)b
(1)
J (y1) . . . b
(n)
J (yn)
Dyadic T(1) — Decomposition into paraproducts
Decomposition of Λ:
Λ =
a(1),...,a(m), b(1),...,b(n)∈{1,h}
a(i), b(j) are not all equal 1
Θa(1),...,a(m),b(1),...,b(n)
E
It remains to bound each individual “entangled” paraproduct
Θa(1),...,a(m),b(1),...,b(n)
E
Two types:
cancellative require only ∞ coefficients λI×J
non-cancellative require BMO coefficients λI×J
Dyadic T(1) — Decomposition into paraproducts
S := i ∈ {1, . . . , m} : a(i)
= h
T := j ∈ {1, . . . , n} : b(j)
= h
y
y
x
x
x
y
x
TS
E
.
..
..
.
n
2
1
m
3
2
1
Dyadic T(1) — Decomposition into paraproducts
S := i ∈ {1, . . . , m} : a(i)
= h
T := j ∈ {1, . . . , n} : b(j)
= h
Cancellative subtypes:
(C1) max{|S|, |T|} ≥ 2
(C2) S = {i}, T = {j}, and (i, j) ∈ E
Non-cancellative subtypes:
(NC1) |S| + |T| = 1
(NC2) S = {i}, T = {j}, and (i, j) ∈ E
Dyadic T(1) — Reduction to local estimates
C = dyadic squares in R2
T = a finite convex tree of dyadic squares
QT = root or tree-top of T
L(T ) = leaves of T , squares that are not contained in T but their
parents are
Dyadic T(1) — Paraproduct estimates
Bounds for cancellative paraproducts
(a) λ ∞ := sup
Q∈C
|λQ| 1
(b) ΘT (Fi,j )(i,j)∈E λ ∞ |QT |
(i,j)∈E
max
Q∈T ∪L(T )
F
di,j
i,j
1/di,j
Q
Bounds for non-cancellative paraproducts
(a) λ bmo := sup
Q0∈C
1
|Q0|
Q∈C : Q⊆Q0
|Q||λQ|2
1/2
1
(b) ΘT (Fi,j )(i,j)∈E λ bmo |QT |
(i,j)∈E
max
Q∈T ∪L(T )
F
di,j
i,j
1/di,j
Q
Dyadic T(1) — Bellman functions in multilinear setting
Bellman functions in harmonic analysis
“Invented” by Burkholder (1980s)
Developed by Nazarov, Treil, and Volberg (1990s)
We primarily keep the “induction on scales” idea
A broad class of interesting dyadic objects can be reduced to
bounding expressions of the form
ΛT (F1, . . . , F ) =
Q∈T
|Q| AQ(F1, . . . , F )
T = a finite convex tree of dyadic squares
AQ(F1, . . . , F ) = some “scale-invariant” quantity depending on
F1, . . . , F and Q ∈ T
Dyadic T(1) — Calculus of finite differences
B = BQ(F1, . . . , F )
First order difference of B:
B = BQ(F1, . . . , F )
BI×J := 1
4BIleft×Jleft
+ 1
4BIleft×Jright
+ 1
4BIright×Jleft
+ 1
4BIright×Jright
− BI×J
Dyadic T(1) — Calculus of finite differences
Suppose: |A| ≤ B, i.e.
|AQ(F1, . . . , F )| ≤ BQ(F1, . . . , F )
for all Q ∈ T and nonnegative bounded measurable F1, . . . , F
|Q| |AQ(F1, . . . , F )| ≤
Q is a child of Q
|Q| BQ
(F1, . . . , F )
− |Q| BQ(F1, . . . , F )
|ΛT (F1, . . . , F )| ≤
Q∈L(T )
|Q| BQ(F1, . . . , F )
− |QT | BQT
(F1, . . . , F )
B = a Bellman function for ΛT
Entangled structure — Open problems
General bipartite graphs G
How to obtain boundedness of
Λ (Fi,j )(i,j)∈E :=
Rm+n
K(x1, . . . , xm, y1, . . . , yn)
(i,j)∈E
Fi,j (xi , yj ) dx1 . . . dxmdy1 . . . dyn
at least for some (class of) continuous singular kernels K,
when the graph G is bipartite, has at least 4 edges, and K is a
C-Z kernel,
when the graph G is a triangle and K(x, y, z) = 1
x+y+z ?
Still far from a complete T(1)-type theorem
Appl. #1 — 2D BHT
A variant of the 2D bilinear Hilbert transform
T(F, G)(x, y) = p.v.
R2
K(s, t) F (x, y)−A(s, t)
G (x, y)−B(s, t) ds dt
Introduced by Demeter and Thiele and bounded for “most” cases
of A, B ∈ M2(R) (2008)
Essentially the only case that was left out:
A =
1 0
0 0
and B =
0 0
0 1
Appl. #1 — 2D BHT
As a multiplier:
T(F, G)(x, y) =
R4
µ(ξ1, ξ2, η1, η2)e2πi(x(ξ1+η1)+y(ξ2+η2))
F(ξ1, ξ2)G(η1, η2) dξ1dξ2dη1dη2
µ(ξ1, ξ2, η1, η2) = m Aτ (ξ1, ξ2) + Bτ (η1, η2) , m = K
m ∈ C∞
R2{(0, 0)}
∂α1
τ1
∂α2
τ2
m(τ1, τ2) ≤ Cα1,α2 (|τ1| + |τ2|)−α1−α2
Note: µ(ξ1, ξ2, η1, η2) is singular along the 2-plane
Aτ (ξ1, ξ2) + Bτ (η1, η2) = (0, 0)
Appl. #1 — Remaining case of 2D BHT
T(F, G)(x, y) =
R4
m(ξ1, η2)e2πi(x(ξ1+η1)+y(ξ2+η2))
F(ξ1, ξ2)G(η1, η2)dξ1dξ2dη1dη2
Theorem. Lp
estimate — Bernicot (2010), K. (2010)
T(F, G) Lr ≤ Cp,q,r F Lp G Lq
for 1 < p, q < ∞, 0 < r < 2, 1
p + 1
q = 1
r .
Theorem. Sobolev estimate — Bernicot and K. (2013)
If supp m ⊆ (ξ1, η2) : |ξ1| ≤ c |η2| , then
T(F, G) Lr
y (Ws,r
x ) ≤ Cp,q,r,s F Lp G Ws,q
for s ≥ 0, 1 < p, q < ∞, 1 < r < 2, 1
p + 1
q = 1
r .
Appl. #1 — Remaining case of 2D BHT
T(F, G)(x, y) =
R2
F(x − s, y) G(x, y − t) K(s, t) ds dt
Outline of the proof:
Substitute u = x − s, v = y − t:
Λ(F, G, H) = T(F, G), H
=
R4
F(u, y)G(x, v)H(x, y)K(x − u, y − v) dudvdxdy
Non-translation-invariant generalization:
Λ(F, G, H) =
R4
F(u, y)G(x, v)H(x, y)K(u, v, x, y) dudvdxdy
Appl. #1 — Remaining case of 2D BHT
Λ(F, G, H) =
R4
F(u, y)G(x, v)H(x, y)K(u, v, x, y) dudvdxdy
Graph associated with its structure:
x ◦
H
G
◦
F
y
v ◦ ◦ u
Appl. #1 — Remaining case of 2D BHT
Λ(F, G, H) =
R4
F(u, y)G(x, v)H(x, y)K(u, v, x, y) dudvdxdy
Perform cone decomposition of the symbol m = K:
m =
j
m[j]
m[j]
(ξ1, η2) =
k∈Z
ϕ
[j]
k (ξ1) ψ
[j]
k (η2)
Appl. #1 — Ordinary paraproduct
Dyadic version
Td(f , g) :=
k∈Z
(Ekf )(∆kg)
Ekf := |I|=2−k
1
|I| I f 1I , ∆kg := Ek+1g − Ekg
Continuous version
Tc(f , g) :=
k∈Z
(Pϕk
f )(Pψk
g)
Pϕk
f := f ∗ ϕk, Pψk
g := g ∗ ψk
ϕ, ψ Schwartz, supp( ˆψ) ⊆ {ξ ∈ R : 1
2 ≤|ξ| ≤ 2}
ϕk(t) := 2kϕ(2kt), ψk(t) := 2kψ(2kt)
Appl. #1 — Twisted paraproduct
Dyadic version
Td(F, G) :=
k∈Z
(E
(1)
k F)(∆
(2)
k G)
E
(1)
k martingale averages in the 1st variable
∆
(2)
k martingale differences in the 2nd variable
Continuous version
Tc(F, G) :=
k∈Z
(P(1)
ϕk
F)(P
(2)
ψk
G)
P
(1)
ϕk , P
(2)
ψk
L-P projections in the 1st and the 2nd variable
(P
(1)
ϕk F)(x, y) := R F(x−t, y)ϕk(t)dt
(P
(2)
ψk
G)(x, y) := R G(x, y −t)ψk(t)dt
Appl. #1 — Twisted paraproduct, estimates
B( ), _
2
1 C( )_
2
1 , _
2
1
1
2
_,1
4
_ )(E
D( )_
2
1 ,
0
0,1
2
_ )(A
_
4
1
_1
q
p
1_
1
0
10
the shaded region – the
strong estimate
two solid sides of the square
– the weak estimate
two dashed sides of the
square – no estimates
the white region –
unresolved
Appl. #1 — Proof outline
B( ), _
2
1 C( )_
2
1 , _
2
1
1
2
_,1
4
_ )(E
D( )_
2
1 ,
0
0,1
2
_ )(A
_
4
1
_1
q
p
1_
1
0
10
Dyadic version Td
ABC – a special case of
dyadic entangled results
(bipartite, 3 edges)
the rest of the shaded region
– fiberwise C-Z decomp.
Bernicot (2010)
dashed segments –
counterexamples
D, E – an alternative (more
direct) proof
Continuous version Tc
comparing with the dyadic
version
Appl. #1 — Transition to cont. version
Assume: ψk = φk+1 − φk for some φ Schwartz, R φ = 1
The general case is then obtained by composing with a bounded
Fourier multiplier in the second variable
Calder´on (1960s), Jones, Seeger, and Wright (2008)
If ϕ is Schwartz and R ϕ = 1, then the square function
SF :=
k∈Z
Pϕk
F − EkF
2 1/2
satisfies SF Lp
(R) p F Lp
(R)
for 1 < p < ∞.
Proposition
Tc(F, G) − Td(F, G) Lpq/(p+q) p,q F Lp G Lq
Appl. #1a — General dilations
Rd = Rd1 × Rd2
(δ
(1)
t )t>0, (δ
(2)
t )t>0 groups of dilations:
δ
(j)
t : Rdj → Rdj is a linear transformation,
δ
(j)
1 is the identity and δ
(j)
st = δ
(j)
s δ
(j)
t for s, t > 0,
0, +∞ × Rdj → Rdj , (t, x) → δ
(j)
t x is continuous,
limt→0 δ
(j)
t x = 0
Equivalently, for some Aj ∈ Mdj
(R), Re(σ(Aj )) > 0
δ
(j)
t = tAj
= e(log t)Aj
, t > 0, j = 1, 2
Example: non-isotropic dilations on Rn,
δt(x1, . . . , xn) := ta1
x1, . . . , tan
xn
Appl. #1a — General dilations
Take two Schwartz functions ϕ(j) : Rdj → C, j = 1, 2 normalized by
R
dj ϕ(j)(x)dx = 1
Denote the dilates:
ϕ
(j)
t (x) := det δ
(j)
t ϕ(j)
δ
(j)
t x , x ∈ Rdj
, t > 0, j = 1, 2
Fix 0 < α, β < 1
(P
(1)
k F)(x, y) :=
Rd1
F(x − u, y)ϕ
(1)
αk (u)du
(P
(2)
k F)(x, y) :=
Rd2
F(x, y − v)ϕ
(2)
βk (v)dv
Appl. #1a — General dilations
General-dilation twisted paraproduct:
Tα,β(F, G) :=
k∈Z
P
(1)
k F P
(2)
k+1G − P
(2)
k G
Theorem. K. and ˇSkreb (2014)
There exist parameters 0 < α, β < 1, depending only on the
dilation structure, such that the estimate
Tα,β(F, G) Lr (Rd )
≤ C F Lp(Rd ) G Lq(Rd )
holds whenever 1 < r < 2 < p, q < ∞ and 1/r = 1/p + 1/q, with
a constant C depending on p, q, r, α, β, ϕ(1), ϕ(2), and the dilation
groups.
Appl. #1a — General dilations
Sketch of the proof:
generalize the needed dyadic estimate to more general
martingales
consider the corresponding space of homogeneous type
Stein and Wainger (1978)
apply the estimate to martingales on dyadic cubes constructed
by Christ (1990)
use the full generality of the Jones-Seeger-Wright square
function
Appl. #2 — Several commuting transformations
Multiple averages
Mn(f1, f2, . . . , fr ) :=
1
n
n−1
k=0
(f1 ◦ Tk
1 )(f2 ◦ Tk
2 ) · · · (fr ◦ Tk
r )
(X, F, µ) a probability space
T1, T2, . . . , Tr : X → X commuting, measure preserving:
Ti Tj = Tj Ti , µ T−1
i (E) = µ(E) for E ∈ F
f1, f2, . . . , fr ∈ L∞
Motivation:
Furstenberg and Katznelson (1978)
(multidimensional Szemer´edi’s theorem)
Appl. #2 — Several commuting transformations
Multiple averages
Mn(f1, f2, . . . , fr ) :=
1
n
n−1
k=0
(f1 ◦ Tk
1 )(f2 ◦ Tk
2 ) · · · (fr ◦ Tk
r )
Convergence in L2
as n → ∞:
r = 1 von Neumann (1930)
r = 2 Conze and Lesigne (1984)
r ≥ 3 Tao (2008)
generalizations
Austin (2010); Walsh (2011); Zorin-Kranich (2011)
Appl. #2 — Several commuting transformations
Multiple averages
Mn(f1, f2, . . . , fr ) :=
1
n
n−1
k=0
(f1 ◦ Tk
1 )(f2 ◦ Tk
2 ) · · · (fr ◦ Tk
r )
Convergence a.e. as n → ∞:
r = 1 Birkhoff (1931)
r ≥ 2 a long-standing open problem Calder´on?
r = 2 and T2 = Tm
1 , m ∈ Z Bourgain (1990)
many other partial results
We do not discuss a.e. convergence here
Appl. #2 — Connection with entangled forms
A real-analytic approach to bilinear ergodic averages
(suggested by Demeter, Muscalu, Thiele):
Mn(f1, f2)(ω) :=
1
n
n−1
k=0
f1(Tk
1 ω)f2(Tk
2 ω), ω ∈ Ω
AT (F1, F2)(x, y) :=
1
T
T
0
F1(x +t, y)F2(x, y +t)dt, (x, y) ∈ R2
Appl. #2 — Connection with entangled forms
AT (F1, F2)(x, y) :=
1
T
T
0
F1(x +t, y)F2(x, y +t)dt, (x, y) ∈ R2
We can suspect the entangled structure from:
AT (F1, F2)
2
L2
=
R4
F1(x + s, y)F2(x, y + s)F1(x + t, y)F2(x, y + t)
T−2
1[0,T](s)1[0,T](t)dsdtdxdy
substitute u = x + y + s, v = x + y + t
=
R4
F1(u, y)F2(u, x)F1(v, y)F2(v, x)
T−2
1[0,T](u−x−y)1[0,T](v −x−y)dudvdxdy
a 4-cycle of variables!
Appl. #2 — Several commuting transformations
Single averages
Mn(f ) :=
1
n
n−1
k=0
f ◦ Tk
Quantify L2
convergence of the sequence:
control the number of jumps in the norm
bound the norm-variation
Appl. #2 — Several commuting transformations
Single averages
Mn(f ) :=
1
n
n−1
k=0
f ◦ Tk
Jones, Ostrovskii, and Rosenblatt (1996) p = 2;
Jones, Kaufman, Rosenblatt, and Wierdl (1998) p ≥ 2
sup
n0<n1<···<nm
m
j=1
Mnj−1 (f ) − Mnj (f )
p
Lp ≤ Cp f p
Lp
Consequence:
Mn(f )
∞
n=0
has O ε−p f p
Lp jumps of size ≥ ε in the Lp
norm
Avigad and Rute (2013) in more general Banach spaces
Appl. #2 — Several commuting transformations
Double averages
Mn(f , g) :=
1
n
n−1
k=0
(f ◦ Sk
)(g ◦ Tk
)
Avigad and Rute (2012) asked for any (reasonable/explicit)
quantitative estimates of norm convergence of multiple averages
Partial results:
T = Sm, m ∈ Z Bourgain (1990); Demeter (2007)
variational estimate for the dyadic model of BHT
Do, Oberlin, and Palsson (2012)
Appl. #2 — The result: Commuting Aω
actions
”Cantor group” model of the integers
Aω
:=
∞
k=1
A = A ⊕ A ⊕ · · ·
for some finite abelian group A
Typically: A = Z/dZ
Aω
= a = (ak)∞
k=1 : (∃k0)(∀k > k0)(ak = 0)
Følner sequence (Fn)∞
n=1: limn→∞
|(a+Fn) Fn|
|Fn| = 0
The most natural choice:
Fn = a = (ak)∞
k=1 : (∀k > n)(ak = 0) ∼= An
Appl. #2 — The result: Commuting Aω
actions
”Cantor group” model of the integers
Aω
:=
∞
k=1
A = A ⊕ A ⊕ · · ·
for some finite abelian group A
S = (Sa)a∈Aω and T = (Ta)a∈Aω commuting measure preserving
Aω-actions on a probability space (X, F, µ):
Sa, Ta : X → X are measurable
S0 = T0 = id, SaSb = Sa+b, TaTb = Ta+b, SaTb = TbSa
µ(SaE) = µ(E) = µ(TaE) for a ∈ Aω, E ∈ F
Appl. #2 — The result: Commuting Aω
actions
Toy-model of double averages
Mn(f , g) :=
1
|Fn|
a∈Fn
(f ◦ Sa
)(g ◦ Ta
)
Such multiple averages have already appeared in the literature:
general countable amenable group Bergelson, McCutcheon,
and Zhang (1997); Zorin-Kranich (2011); Austin (2013)
“powers” of the same action of (Z/pZ)ω, p prime
Bergelson, Tao, and Ziegler (2013)
Note: All known convergence results are only qualitative or
extremely weakly quantitative in nature
Appl. #2 — The result: Commuting Aω
actions
Toy-model of double averages
Mn(f , g) :=
1
|Fn|
a∈Fn
(f ◦ Sa
)(g ◦ Ta
)
Theorem. K. (2014) p ≥ 2
sup
n0<n1<···<nm
m
j=1
Mnj−1 (f , g) − Mnj (f , g)
p
Lp ≤ Cp f p
L2p g p
L2p
Consequences:
f L2p = g L2p =1 ⇒ O ε−p ε-jumps in Lp
, p ≥ 2
f L∞ = g L∞ =1 ⇒ O(ε−max{p,2}) ε-jumps in Lp
, p ≥ 1
Appl. #2 — Open problems
Open problem: double averages, Z+-actions or Z-actions
Mn(f , g) :=
1
n
n−1
k=0
(f ◦ Sk
)(g ◦ Tk
)
sup
n0<n1<···<nm
m
j=1
Mnj−1 (f , g) − Mnj (f , g)
p
Lp ≤ Cp f p
L2p g p
L2p
Open problem: triple averages, “powers” of a single Aω-action
Mn(f , g, h) :=
1
|Fn|
a∈Fn
(f ◦ Tc1a
)(g ◦ Tc2a
)(h ◦ Tc3a
), c1, c2, c3 ∈ Z
sup
n0<···<nm
m
j=1
Mnj−1
(f , g, h) − Mnj
(f , g, h)
p
Lp ≤ Cp f p
L3p g p
L3p h p
L3p
Thank you!
Thank you for your attention!

More Related Content

What's hot

A sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentialsA sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentialsVjekoslavKovac1
 
Bellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproductsBellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproductsVjekoslavKovac1
 
Estimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliersEstimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliersVjekoslavKovac1
 
Density theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsDensity theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsVjekoslavKovac1
 
Some Examples of Scaling Sets
Some Examples of Scaling SetsSome Examples of Scaling Sets
Some Examples of Scaling SetsVjekoslavKovac1
 
Multilinear Twisted Paraproducts
Multilinear Twisted ParaproductsMultilinear Twisted Paraproducts
Multilinear Twisted ParaproductsVjekoslavKovac1
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeVjekoslavKovac1
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsVjekoslavKovac1
 
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...VjekoslavKovac1
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsVjekoslavKovac1
 
On maximal and variational Fourier restriction
On maximal and variational Fourier restrictionOn maximal and variational Fourier restriction
On maximal and variational Fourier restrictionVjekoslavKovac1
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesVjekoslavKovac1
 
Bregman divergences from comparative convexity
Bregman divergences from comparative convexityBregman divergences from comparative convexity
Bregman divergences from comparative convexityFrank Nielsen
 
Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013Jurgen Riedel
 
A series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropyA series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropyFrank Nielsen
 

What's hot (20)

A sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentialsA sharp nonlinear Hausdorff-Young inequality for small potentials
A sharp nonlinear Hausdorff-Young inequality for small potentials
 
Bellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproductsBellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproducts
 
Estimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliersEstimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliers
 
Density theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsDensity theorems for Euclidean point configurations
Density theorems for Euclidean point configurations
 
Some Examples of Scaling Sets
Some Examples of Scaling SetsSome Examples of Scaling Sets
Some Examples of Scaling Sets
 
Multilinear Twisted Paraproducts
Multilinear Twisted ParaproductsMultilinear Twisted Paraproducts
Multilinear Twisted Paraproducts
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cube
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurations
 
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operators
 
On maximal and variational Fourier restriction
On maximal and variational Fourier restrictionOn maximal and variational Fourier restriction
On maximal and variational Fourier restriction
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averages
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli...
 Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli... Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Appli...
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Bregman divergences from comparative convexity
Bregman divergences from comparative convexityBregman divergences from comparative convexity
Bregman divergences from comparative convexity
 
Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013
 
A series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropyA series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropy
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 

Similar to Multilinear Singular Integrals with Entangled Structure

Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problemsDelta Pi Systems
 
GradStudentSeminarSept30
GradStudentSeminarSept30GradStudentSeminarSept30
GradStudentSeminarSept30Ryan White
 
A new Perron-Frobenius theorem for nonnegative tensors
A new Perron-Frobenius theorem for nonnegative tensorsA new Perron-Frobenius theorem for nonnegative tensors
A new Perron-Frobenius theorem for nonnegative tensorsFrancesco Tudisco
 
Ecfft zk studyclub 9.9
Ecfft zk studyclub 9.9Ecfft zk studyclub 9.9
Ecfft zk studyclub 9.9Alex Pruden
 
THE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCE
THE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCETHE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCE
THE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCEFrank Nielsen
 
Divergence center-based clustering and their applications
Divergence center-based clustering and their applicationsDivergence center-based clustering and their applications
Divergence center-based clustering and their applicationsFrank Nielsen
 
k-MLE: A fast algorithm for learning statistical mixture models
k-MLE: A fast algorithm for learning statistical mixture modelsk-MLE: A fast algorithm for learning statistical mixture models
k-MLE: A fast algorithm for learning statistical mixture modelsFrank Nielsen
 
The dual geometry of Shannon information
The dual geometry of Shannon informationThe dual geometry of Shannon information
The dual geometry of Shannon informationFrank Nielsen
 
On the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract meansOn the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract meansFrank Nielsen
 
Bregman Voronoi Diagrams (SODA 2007)
Bregman Voronoi Diagrams (SODA 2007)  Bregman Voronoi Diagrams (SODA 2007)
Bregman Voronoi Diagrams (SODA 2007) Frank Nielsen
 
Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics Alexander Litvinenko
 
Lecture4 kenrels functions_rkhs
Lecture4 kenrels functions_rkhsLecture4 kenrels functions_rkhs
Lecture4 kenrels functions_rkhsStéphane Canu
 
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALESNONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALESTahia ZERIZER
 
A Note on BPTT for LSTM LM
A Note on BPTT for LSTM LMA Note on BPTT for LSTM LM
A Note on BPTT for LSTM LMTomonari Masada
 
02Application of Derivative # 1 (Tangent & Normal)~1 Module-4.pdf
02Application of Derivative # 1 (Tangent & Normal)~1 Module-4.pdf02Application of Derivative # 1 (Tangent & Normal)~1 Module-4.pdf
02Application of Derivative # 1 (Tangent & Normal)~1 Module-4.pdfRajuSingh806014
 
Fixed point theorem of discontinuity and weak compatibility in non complete n...
Fixed point theorem of discontinuity and weak compatibility in non complete n...Fixed point theorem of discontinuity and weak compatibility in non complete n...
Fixed point theorem of discontinuity and weak compatibility in non complete n...Alexander Decker
 

Similar to Multilinear Singular Integrals with Entangled Structure (20)

Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
 
GradStudentSeminarSept30
GradStudentSeminarSept30GradStudentSeminarSept30
GradStudentSeminarSept30
 
A new Perron-Frobenius theorem for nonnegative tensors
A new Perron-Frobenius theorem for nonnegative tensorsA new Perron-Frobenius theorem for nonnegative tensors
A new Perron-Frobenius theorem for nonnegative tensors
 
Tables
TablesTables
Tables
 
Imc2017 day2-solutions
Imc2017 day2-solutionsImc2017 day2-solutions
Imc2017 day2-solutions
 
Ecfft zk studyclub 9.9
Ecfft zk studyclub 9.9Ecfft zk studyclub 9.9
Ecfft zk studyclub 9.9
 
THE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCE
THE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCETHE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCE
THE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCE
 
Divergence center-based clustering and their applications
Divergence center-based clustering and their applicationsDivergence center-based clustering and their applications
Divergence center-based clustering and their applications
 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
 
k-MLE: A fast algorithm for learning statistical mixture models
k-MLE: A fast algorithm for learning statistical mixture modelsk-MLE: A fast algorithm for learning statistical mixture models
k-MLE: A fast algorithm for learning statistical mixture models
 
The dual geometry of Shannon information
The dual geometry of Shannon informationThe dual geometry of Shannon information
The dual geometry of Shannon information
 
On the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract meansOn the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract means
 
Tcu12 crc multi
Tcu12 crc multiTcu12 crc multi
Tcu12 crc multi
 
Bregman Voronoi Diagrams (SODA 2007)
Bregman Voronoi Diagrams (SODA 2007)  Bregman Voronoi Diagrams (SODA 2007)
Bregman Voronoi Diagrams (SODA 2007)
 
Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics
 
Lecture4 kenrels functions_rkhs
Lecture4 kenrels functions_rkhsLecture4 kenrels functions_rkhs
Lecture4 kenrels functions_rkhs
 
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALESNONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
 
A Note on BPTT for LSTM LM
A Note on BPTT for LSTM LMA Note on BPTT for LSTM LM
A Note on BPTT for LSTM LM
 
02Application of Derivative # 1 (Tangent & Normal)~1 Module-4.pdf
02Application of Derivative # 1 (Tangent & Normal)~1 Module-4.pdf02Application of Derivative # 1 (Tangent & Normal)~1 Module-4.pdf
02Application of Derivative # 1 (Tangent & Normal)~1 Module-4.pdf
 
Fixed point theorem of discontinuity and weak compatibility in non complete n...
Fixed point theorem of discontinuity and weak compatibility in non complete n...Fixed point theorem of discontinuity and weak compatibility in non complete n...
Fixed point theorem of discontinuity and weak compatibility in non complete n...
 

Recently uploaded

G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptMAESTRELLAMesa2
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
Types of different blotting techniques.pptx
Types of different blotting techniques.pptxTypes of different blotting techniques.pptx
Types of different blotting techniques.pptxkhadijarafiq2012
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physicsvishikhakeshava1
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 

Recently uploaded (20)

G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.ppt
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Types of different blotting techniques.pptx
Types of different blotting techniques.pptxTypes of different blotting techniques.pptx
Types of different blotting techniques.pptx
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physics
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 

Multilinear Singular Integrals with Entangled Structure

  • 1. Multilinear singular integrals with entangled structure Vjekoslav Kovaˇc (University of Zagreb) Joint work with: Fr´ed´eric Bernicot (University of Nantes), Kristina Ana ˇSkreb (University of Zagreb), Christoph Thiele (University of Bonn) Real Analysis, Harmonic Analysis and Applications Oberwolfach, July 25, 2014
  • 2. Examples of multilinear singular integrals One-dimensional examples: T(f1, . . . , fn)(x) := p.v. Rn K(x, y1, . . . , yn) f1(y1) · · · fn(yn) dy1 · · · dyn (multilinear C-Z operators) T(f , g)(x) := p.v. R 1 t f (x−t)g(x+t)dt (bilinear Hilbert transform) T(f , g, h)(x) := p.v. R 1 t f (x−t)g(x+t)h(x+2t)dt (trilinear Hilbert transform, still unresolved)
  • 3. Examples of multilinear singular integrals Higher-dimensional complications (already in R2): T(F1, . . . , Fn)(x) := p.v. (R2)n K(x, y1, . . . , yn) F1(y1) · · · Fn(yn) dy1 · · · dyn (still multilinear C-Z operators) T(F, G)(x, y) := p.v. R2 K(s, t) F (x, y)+A(s, t) G (x, y)+B(s, t) dsdt (2D bilinear Hilbert transform) T(F, G)(x, y) := p.v. R 1 t F(x+t, y)G(x, y +t)dt (triangular Hilbert transform, still unresolved)
  • 4. Entangled structure Object of our study: Multilinear singular integral forms with functions that partially share variables Schematically: Λ(F1, F2, . . .) = Rn F1(x1, x2) F2(x1, x3) . . . K(x1, . . . , xn) dx1dx2dx3 . . . dxn K = singular kernel F1, F2, . . . = functions on R2
  • 5. Entangled structure — Generalized modulation invariance An alternative viewpoint: generalized modulation invariances Rn F1(x1, x2) F2(x1, x3) . . . K(x1, . . . , xn) dx1dx2dx3 . . . dxn = Rn e2πiax1 F1(x1, x2) e−2πiax1 F2(x1, x3) . . . K(x1, . . . , xn) dx1dx2dx3 . . . dxn = Rn ϕ(x1)F1(x1, x2) 1 ϕ(x1) F2(x1, x3) . . . K(x1, . . . , xn) dx1dx2dx3 . . . dxn Wave packet decompositions are not efficient
  • 6. Entangled structure — Estimates Our goal: Lp estimates |Λ(F1, F2, . . . , Fk)| F1 Lp1 F2 Lp2 . . . Fk Lpk in a nonempty open subrange of 1 p1 + 1 p2 + . . . + 1 pk = 1
  • 7. Entangled structure — Graph structure Structure determined by K and a simple undirected graph on x1, x2, . . . ◦ ◦ x ◦ F ◦ y ◦ ◦ Λ(F, . . .) = · · · F(x, y) · · · dx dy · · ·
  • 8. Entangled structure — Example: Triangular HT T(F, G)(x, y) := p.v. R F(x + t, y)G(x, y + t) dt t No positive or negative results are known! It has to be difficult: A conjectured bound is invariant under affine transformations Implies bounds for Λ(F, G, H) = R2 p.v. R F(x + tv1) G(x + tv2) H(x + tv3) dt t dx uniformly over all choices of non-collinear vectors v1, v2, v3 ∈ R2
  • 9. Entangled structure — Example: Triangular HT Implies bounds for Λ(F, G, H) = R2 p.v. R F(x + tv1) G(x + tv2) H(x + tv3) dt t dx uniformly over all choices of non-collinear vectors v1, v2, v3 ∈ R2 In the limit towards the degenerate case v1 = (β1, 0), v2 = (β2, 0), v3 = (β3, 0) we would recover uniform bounds for the BHT Λ(f , g, h) = R p.v. R f (x + tβ1) g(x + tβ2) h(x + tβ3) dt t dx Lacey and Thiele (1997, 1999), Thiele (2002)
  • 10. Entangled structure — Example: Triangular HT Λ(F, G, H) = R2 p.v. R F(x + t, y)G(x, y + t)H(x, y) dt t dxdy By taking F(x, y) = f (x), G(x, y) = g(x)eiN(x)y , H(x, y) = h(x)e−iN(x)y we obtain bounds for the linearized Carleson operator (Cf )(x) = R f (x + t)eiN(x)t dt t Λ(F, G, H) = Cf , gh Carleson (1966)
  • 11. Entangled structure — Example: Triangular HT T(F, G)(x, y) := p.v. R F(x + t, y)G(x, y + t) dt t Substitute: z = −x − y − t, F1(x, y) = H(x, y), F2(y, z) = F(−y −z, y), F3(z, x) = G(x, −x−z) Λ(F, G, H) = T(F, G), H = R3 F1(x, y) F2(y, z) F3(z, x) −1 x + y + z dxdydz
  • 12. Entangled structure — Example: Triangular HT Λ(F1, F2, F3) = R3 F1(x, y) F2(y, z) F3(z, x) −1 x + y + z dxdydz Associated graph: x ◦ F3F1 y ◦ F2 ◦ z Note: this graph is not bipartite
  • 13. Entangled structure — Example: A modification Quadrilinear variant: Λ(F1, F2, F3, F4) = R4 F1(u, v)F2(u, y)F3(x, y)F4(x, v) K(u, v, x, y) dudvdxdy Associated graph: x ◦ F3 F4 ◦ F2 y v ◦ F1 ◦ u x ◦ F3 F2 ◦ F4 y u ◦ F1 ◦ v Note: this graph is bipartite
  • 14. Dyadic T(1) — Dyadic model operators Scope of our techniques We specialize to: bipartite graphs multilinear Calder´on-Zygmund kernels K “perfect” dyadic models
  • 15. Dyadic T(1) — Perfect dyadic conditions m, n = positive integers D := (x, . . . , x m , y, . . . , y n ) : x, y ∈ R the “diagonal” in Rm+n Perfect dyadic Calder´on-Zygmund kernel K : Rm+n → C, Auscher, Hofmann, Muscalu, Tao, Thiele (2002): |K(x1, . . . , xm, y1, . . . , yn)| i1<i2 |xi1 − xi2 | + j1<j2 |yj1 − yj2 | 2−m−n K is constant on (m+n)-dimensional dyadic cubes disjoint from D K is bounded and compactly supported
  • 16. Dyadic T(1) — Bipartite structure E ⊆ {1, . . . , m}×{1, . . . , n} G = simple bipartite undirected graph on {x1, . . . , xm} and {y1, . . . , yn} xi —yj ⇔ (i, j) ∈ E |E|-linear singular form: Λ (Fi,j )(i,j)∈E := Rm+n K(x1, . . . , xm, y1, . . . , yn) (i,j)∈E Fi,j (xi , yj ) dx1 . . . dxmdy1 . . . dyn Assume: there are no isolated vertices in G avoids degeneracy
  • 17. Dyadic T(1) — Adjoints There are |E| mutually adjoint (|E|−1)-linear operators Tu,v , (u, v) ∈ E: Λ (Fi,j )(i,j)∈E = R2 Tu,v (Fi,j )(i,j)=(u,v) Fu,v Explicitly: Tu,v (Fi,j )(i,j)∈E{(u,v)} (xu, yv ) = Rm+n−2 K(x1, . . . , xm, y1, . . . , yn) (i,j)∈E{(u,v)} Fi,j (xi , yj ) i=u dxi j=v dyj
  • 18. Dyadic T(1) — A T(1)-type theorem Theorem. “Entangled” T(1) — K. and Thiele (2011, 2013) (a) For m, n ≥ 2 and a graph G there exist positive integers di,j such that (i,j)∈E 1 di,j > 1 and the following holds. If |Λ(1Q, . . . , 1Q)| |Q|, Q dyadic square, Tu,v (1R2 , . . . , 1R2 ) BMO(R2) 1, (u, v) ∈ E, then Λ (Fi,j )(i,j)∈E (i,j)∈E Fi,j L pi,j (R2) for exponents pi,j s.t. (i,j)∈E 1 pi,j = 1, di,j < pi,j ≤ ∞. (b) Conversely, the estimate for some choice of exponents implies the conditions.
  • 19. Dyadic T(1) — A T(1)-type theorem, reformulation Theorem. “Entangled” T(1) — K. and Thiele (2011, 2013) For m, n ≥ 2 and a graph G there exist positive integers di,j such that (i,j)∈E 1 di,j > 1 and the following holds. If Tu,v (1Q, . . . , 1Q) L1 (Q) |Q|, Q dyadic square, (u, v) ∈ E, then Λ (Fi,j )(i,j)∈E (i,j)∈E Fi,j L pi,j (R2) for exponents pi,j s.t. (i,j)∈E 1 pi,j = 1, di,j < pi,j ≤ ∞.
  • 20. Dyadic T(1) — Proof outline The only nonstandard part — sufficiency of the testing conditions Outline of the proof: decomposition into paraproducts a stopping time argument for reducing global estimates to local estimates cancellative paraproducts with ∞ coefficients “most” cases of graphs G di,j related to sizes of connected components of G stuctural induction + Bellman function technique exceptional cases of graphs G non-cancellative paraproducts with BMO coefficients reduction to cancellative paraproducts counterexample for m = 1 or n = 1
  • 21. Dyadic T(1) — Decomposition into paraproducts hI = 1Ileft − 1Iright L∞-normalized Haar wavelet Kernel decomposition: K(x1, . . . , xm, y1, . . . , yn) = I1×...×Im×J1×...×Jn a(1),...,a(m), b(1),...,b(n)∈{1,h} a(i), b(j) not all equal 1 νa(1),...,a(m),b(1),...,b(n) I1×...×Im×J1×...×Jn a (1) I1 (x1) . . . a (m) Im (xm)b (1) J1 (y1) . . . b (n) Jn (yn) [perfect dyadic condition] = I×J a(1),...,a(m), b(1),...,b(n)∈{1,h} a(i), b(j) not all equal 1 λa(1),...,a(m),b(1),...,b(n) I×J |I|2−m−n a (1) I (x1) . . . a (m) I (xm)b (1) J (y1) . . . b (n) J (yn)
  • 22. Dyadic T(1) — Decomposition into paraproducts Decomposition of Λ: Λ = a(1),...,a(m), b(1),...,b(n)∈{1,h} a(i), b(j) are not all equal 1 Θa(1),...,a(m),b(1),...,b(n) E It remains to bound each individual “entangled” paraproduct Θa(1),...,a(m),b(1),...,b(n) E Two types: cancellative require only ∞ coefficients λI×J non-cancellative require BMO coefficients λI×J
  • 23. Dyadic T(1) — Decomposition into paraproducts S := i ∈ {1, . . . , m} : a(i) = h T := j ∈ {1, . . . , n} : b(j) = h y y x x x y x TS E . .. .. . n 2 1 m 3 2 1
  • 24. Dyadic T(1) — Decomposition into paraproducts S := i ∈ {1, . . . , m} : a(i) = h T := j ∈ {1, . . . , n} : b(j) = h Cancellative subtypes: (C1) max{|S|, |T|} ≥ 2 (C2) S = {i}, T = {j}, and (i, j) ∈ E Non-cancellative subtypes: (NC1) |S| + |T| = 1 (NC2) S = {i}, T = {j}, and (i, j) ∈ E
  • 25. Dyadic T(1) — Reduction to local estimates C = dyadic squares in R2 T = a finite convex tree of dyadic squares QT = root or tree-top of T L(T ) = leaves of T , squares that are not contained in T but their parents are
  • 26. Dyadic T(1) — Paraproduct estimates Bounds for cancellative paraproducts (a) λ ∞ := sup Q∈C |λQ| 1 (b) ΘT (Fi,j )(i,j)∈E λ ∞ |QT | (i,j)∈E max Q∈T ∪L(T ) F di,j i,j 1/di,j Q Bounds for non-cancellative paraproducts (a) λ bmo := sup Q0∈C 1 |Q0| Q∈C : Q⊆Q0 |Q||λQ|2 1/2 1 (b) ΘT (Fi,j )(i,j)∈E λ bmo |QT | (i,j)∈E max Q∈T ∪L(T ) F di,j i,j 1/di,j Q
  • 27. Dyadic T(1) — Bellman functions in multilinear setting Bellman functions in harmonic analysis “Invented” by Burkholder (1980s) Developed by Nazarov, Treil, and Volberg (1990s) We primarily keep the “induction on scales” idea A broad class of interesting dyadic objects can be reduced to bounding expressions of the form ΛT (F1, . . . , F ) = Q∈T |Q| AQ(F1, . . . , F ) T = a finite convex tree of dyadic squares AQ(F1, . . . , F ) = some “scale-invariant” quantity depending on F1, . . . , F and Q ∈ T
  • 28. Dyadic T(1) — Calculus of finite differences B = BQ(F1, . . . , F ) First order difference of B: B = BQ(F1, . . . , F ) BI×J := 1 4BIleft×Jleft + 1 4BIleft×Jright + 1 4BIright×Jleft + 1 4BIright×Jright − BI×J
  • 29. Dyadic T(1) — Calculus of finite differences Suppose: |A| ≤ B, i.e. |AQ(F1, . . . , F )| ≤ BQ(F1, . . . , F ) for all Q ∈ T and nonnegative bounded measurable F1, . . . , F |Q| |AQ(F1, . . . , F )| ≤ Q is a child of Q |Q| BQ (F1, . . . , F ) − |Q| BQ(F1, . . . , F ) |ΛT (F1, . . . , F )| ≤ Q∈L(T ) |Q| BQ(F1, . . . , F ) − |QT | BQT (F1, . . . , F ) B = a Bellman function for ΛT
  • 30. Entangled structure — Open problems General bipartite graphs G How to obtain boundedness of Λ (Fi,j )(i,j)∈E := Rm+n K(x1, . . . , xm, y1, . . . , yn) (i,j)∈E Fi,j (xi , yj ) dx1 . . . dxmdy1 . . . dyn at least for some (class of) continuous singular kernels K, when the graph G is bipartite, has at least 4 edges, and K is a C-Z kernel, when the graph G is a triangle and K(x, y, z) = 1 x+y+z ? Still far from a complete T(1)-type theorem
  • 31. Appl. #1 — 2D BHT A variant of the 2D bilinear Hilbert transform T(F, G)(x, y) = p.v. R2 K(s, t) F (x, y)−A(s, t) G (x, y)−B(s, t) ds dt Introduced by Demeter and Thiele and bounded for “most” cases of A, B ∈ M2(R) (2008) Essentially the only case that was left out: A = 1 0 0 0 and B = 0 0 0 1
  • 32. Appl. #1 — 2D BHT As a multiplier: T(F, G)(x, y) = R4 µ(ξ1, ξ2, η1, η2)e2πi(x(ξ1+η1)+y(ξ2+η2)) F(ξ1, ξ2)G(η1, η2) dξ1dξ2dη1dη2 µ(ξ1, ξ2, η1, η2) = m Aτ (ξ1, ξ2) + Bτ (η1, η2) , m = K m ∈ C∞ R2{(0, 0)} ∂α1 τ1 ∂α2 τ2 m(τ1, τ2) ≤ Cα1,α2 (|τ1| + |τ2|)−α1−α2 Note: µ(ξ1, ξ2, η1, η2) is singular along the 2-plane Aτ (ξ1, ξ2) + Bτ (η1, η2) = (0, 0)
  • 33. Appl. #1 — Remaining case of 2D BHT T(F, G)(x, y) = R4 m(ξ1, η2)e2πi(x(ξ1+η1)+y(ξ2+η2)) F(ξ1, ξ2)G(η1, η2)dξ1dξ2dη1dη2 Theorem. Lp estimate — Bernicot (2010), K. (2010) T(F, G) Lr ≤ Cp,q,r F Lp G Lq for 1 < p, q < ∞, 0 < r < 2, 1 p + 1 q = 1 r . Theorem. Sobolev estimate — Bernicot and K. (2013) If supp m ⊆ (ξ1, η2) : |ξ1| ≤ c |η2| , then T(F, G) Lr y (Ws,r x ) ≤ Cp,q,r,s F Lp G Ws,q for s ≥ 0, 1 < p, q < ∞, 1 < r < 2, 1 p + 1 q = 1 r .
  • 34. Appl. #1 — Remaining case of 2D BHT T(F, G)(x, y) = R2 F(x − s, y) G(x, y − t) K(s, t) ds dt Outline of the proof: Substitute u = x − s, v = y − t: Λ(F, G, H) = T(F, G), H = R4 F(u, y)G(x, v)H(x, y)K(x − u, y − v) dudvdxdy Non-translation-invariant generalization: Λ(F, G, H) = R4 F(u, y)G(x, v)H(x, y)K(u, v, x, y) dudvdxdy
  • 35. Appl. #1 — Remaining case of 2D BHT Λ(F, G, H) = R4 F(u, y)G(x, v)H(x, y)K(u, v, x, y) dudvdxdy Graph associated with its structure: x ◦ H G ◦ F y v ◦ ◦ u
  • 36. Appl. #1 — Remaining case of 2D BHT Λ(F, G, H) = R4 F(u, y)G(x, v)H(x, y)K(u, v, x, y) dudvdxdy Perform cone decomposition of the symbol m = K: m = j m[j] m[j] (ξ1, η2) = k∈Z ϕ [j] k (ξ1) ψ [j] k (η2)
  • 37. Appl. #1 — Ordinary paraproduct Dyadic version Td(f , g) := k∈Z (Ekf )(∆kg) Ekf := |I|=2−k 1 |I| I f 1I , ∆kg := Ek+1g − Ekg Continuous version Tc(f , g) := k∈Z (Pϕk f )(Pψk g) Pϕk f := f ∗ ϕk, Pψk g := g ∗ ψk ϕ, ψ Schwartz, supp( ˆψ) ⊆ {ξ ∈ R : 1 2 ≤|ξ| ≤ 2} ϕk(t) := 2kϕ(2kt), ψk(t) := 2kψ(2kt)
  • 38. Appl. #1 — Twisted paraproduct Dyadic version Td(F, G) := k∈Z (E (1) k F)(∆ (2) k G) E (1) k martingale averages in the 1st variable ∆ (2) k martingale differences in the 2nd variable Continuous version Tc(F, G) := k∈Z (P(1) ϕk F)(P (2) ψk G) P (1) ϕk , P (2) ψk L-P projections in the 1st and the 2nd variable (P (1) ϕk F)(x, y) := R F(x−t, y)ϕk(t)dt (P (2) ψk G)(x, y) := R G(x, y −t)ψk(t)dt
  • 39. Appl. #1 — Twisted paraproduct, estimates B( ), _ 2 1 C( )_ 2 1 , _ 2 1 1 2 _,1 4 _ )(E D( )_ 2 1 , 0 0,1 2 _ )(A _ 4 1 _1 q p 1_ 1 0 10 the shaded region – the strong estimate two solid sides of the square – the weak estimate two dashed sides of the square – no estimates the white region – unresolved
  • 40. Appl. #1 — Proof outline B( ), _ 2 1 C( )_ 2 1 , _ 2 1 1 2 _,1 4 _ )(E D( )_ 2 1 , 0 0,1 2 _ )(A _ 4 1 _1 q p 1_ 1 0 10 Dyadic version Td ABC – a special case of dyadic entangled results (bipartite, 3 edges) the rest of the shaded region – fiberwise C-Z decomp. Bernicot (2010) dashed segments – counterexamples D, E – an alternative (more direct) proof Continuous version Tc comparing with the dyadic version
  • 41. Appl. #1 — Transition to cont. version Assume: ψk = φk+1 − φk for some φ Schwartz, R φ = 1 The general case is then obtained by composing with a bounded Fourier multiplier in the second variable Calder´on (1960s), Jones, Seeger, and Wright (2008) If ϕ is Schwartz and R ϕ = 1, then the square function SF := k∈Z Pϕk F − EkF 2 1/2 satisfies SF Lp (R) p F Lp (R) for 1 < p < ∞. Proposition Tc(F, G) − Td(F, G) Lpq/(p+q) p,q F Lp G Lq
  • 42. Appl. #1a — General dilations Rd = Rd1 × Rd2 (δ (1) t )t>0, (δ (2) t )t>0 groups of dilations: δ (j) t : Rdj → Rdj is a linear transformation, δ (j) 1 is the identity and δ (j) st = δ (j) s δ (j) t for s, t > 0, 0, +∞ × Rdj → Rdj , (t, x) → δ (j) t x is continuous, limt→0 δ (j) t x = 0 Equivalently, for some Aj ∈ Mdj (R), Re(σ(Aj )) > 0 δ (j) t = tAj = e(log t)Aj , t > 0, j = 1, 2 Example: non-isotropic dilations on Rn, δt(x1, . . . , xn) := ta1 x1, . . . , tan xn
  • 43. Appl. #1a — General dilations Take two Schwartz functions ϕ(j) : Rdj → C, j = 1, 2 normalized by R dj ϕ(j)(x)dx = 1 Denote the dilates: ϕ (j) t (x) := det δ (j) t ϕ(j) δ (j) t x , x ∈ Rdj , t > 0, j = 1, 2 Fix 0 < α, β < 1 (P (1) k F)(x, y) := Rd1 F(x − u, y)ϕ (1) αk (u)du (P (2) k F)(x, y) := Rd2 F(x, y − v)ϕ (2) βk (v)dv
  • 44. Appl. #1a — General dilations General-dilation twisted paraproduct: Tα,β(F, G) := k∈Z P (1) k F P (2) k+1G − P (2) k G Theorem. K. and ˇSkreb (2014) There exist parameters 0 < α, β < 1, depending only on the dilation structure, such that the estimate Tα,β(F, G) Lr (Rd ) ≤ C F Lp(Rd ) G Lq(Rd ) holds whenever 1 < r < 2 < p, q < ∞ and 1/r = 1/p + 1/q, with a constant C depending on p, q, r, α, β, ϕ(1), ϕ(2), and the dilation groups.
  • 45. Appl. #1a — General dilations Sketch of the proof: generalize the needed dyadic estimate to more general martingales consider the corresponding space of homogeneous type Stein and Wainger (1978) apply the estimate to martingales on dyadic cubes constructed by Christ (1990) use the full generality of the Jones-Seeger-Wright square function
  • 46. Appl. #2 — Several commuting transformations Multiple averages Mn(f1, f2, . . . , fr ) := 1 n n−1 k=0 (f1 ◦ Tk 1 )(f2 ◦ Tk 2 ) · · · (fr ◦ Tk r ) (X, F, µ) a probability space T1, T2, . . . , Tr : X → X commuting, measure preserving: Ti Tj = Tj Ti , µ T−1 i (E) = µ(E) for E ∈ F f1, f2, . . . , fr ∈ L∞ Motivation: Furstenberg and Katznelson (1978) (multidimensional Szemer´edi’s theorem)
  • 47. Appl. #2 — Several commuting transformations Multiple averages Mn(f1, f2, . . . , fr ) := 1 n n−1 k=0 (f1 ◦ Tk 1 )(f2 ◦ Tk 2 ) · · · (fr ◦ Tk r ) Convergence in L2 as n → ∞: r = 1 von Neumann (1930) r = 2 Conze and Lesigne (1984) r ≥ 3 Tao (2008) generalizations Austin (2010); Walsh (2011); Zorin-Kranich (2011)
  • 48. Appl. #2 — Several commuting transformations Multiple averages Mn(f1, f2, . . . , fr ) := 1 n n−1 k=0 (f1 ◦ Tk 1 )(f2 ◦ Tk 2 ) · · · (fr ◦ Tk r ) Convergence a.e. as n → ∞: r = 1 Birkhoff (1931) r ≥ 2 a long-standing open problem Calder´on? r = 2 and T2 = Tm 1 , m ∈ Z Bourgain (1990) many other partial results We do not discuss a.e. convergence here
  • 49. Appl. #2 — Connection with entangled forms A real-analytic approach to bilinear ergodic averages (suggested by Demeter, Muscalu, Thiele): Mn(f1, f2)(ω) := 1 n n−1 k=0 f1(Tk 1 ω)f2(Tk 2 ω), ω ∈ Ω AT (F1, F2)(x, y) := 1 T T 0 F1(x +t, y)F2(x, y +t)dt, (x, y) ∈ R2
  • 50. Appl. #2 — Connection with entangled forms AT (F1, F2)(x, y) := 1 T T 0 F1(x +t, y)F2(x, y +t)dt, (x, y) ∈ R2 We can suspect the entangled structure from: AT (F1, F2) 2 L2 = R4 F1(x + s, y)F2(x, y + s)F1(x + t, y)F2(x, y + t) T−2 1[0,T](s)1[0,T](t)dsdtdxdy substitute u = x + y + s, v = x + y + t = R4 F1(u, y)F2(u, x)F1(v, y)F2(v, x) T−2 1[0,T](u−x−y)1[0,T](v −x−y)dudvdxdy a 4-cycle of variables!
  • 51. Appl. #2 — Several commuting transformations Single averages Mn(f ) := 1 n n−1 k=0 f ◦ Tk Quantify L2 convergence of the sequence: control the number of jumps in the norm bound the norm-variation
  • 52. Appl. #2 — Several commuting transformations Single averages Mn(f ) := 1 n n−1 k=0 f ◦ Tk Jones, Ostrovskii, and Rosenblatt (1996) p = 2; Jones, Kaufman, Rosenblatt, and Wierdl (1998) p ≥ 2 sup n0<n1<···<nm m j=1 Mnj−1 (f ) − Mnj (f ) p Lp ≤ Cp f p Lp Consequence: Mn(f ) ∞ n=0 has O ε−p f p Lp jumps of size ≥ ε in the Lp norm Avigad and Rute (2013) in more general Banach spaces
  • 53. Appl. #2 — Several commuting transformations Double averages Mn(f , g) := 1 n n−1 k=0 (f ◦ Sk )(g ◦ Tk ) Avigad and Rute (2012) asked for any (reasonable/explicit) quantitative estimates of norm convergence of multiple averages Partial results: T = Sm, m ∈ Z Bourgain (1990); Demeter (2007) variational estimate for the dyadic model of BHT Do, Oberlin, and Palsson (2012)
  • 54. Appl. #2 — The result: Commuting Aω actions ”Cantor group” model of the integers Aω := ∞ k=1 A = A ⊕ A ⊕ · · · for some finite abelian group A Typically: A = Z/dZ Aω = a = (ak)∞ k=1 : (∃k0)(∀k > k0)(ak = 0) Følner sequence (Fn)∞ n=1: limn→∞ |(a+Fn) Fn| |Fn| = 0 The most natural choice: Fn = a = (ak)∞ k=1 : (∀k > n)(ak = 0) ∼= An
  • 55. Appl. #2 — The result: Commuting Aω actions ”Cantor group” model of the integers Aω := ∞ k=1 A = A ⊕ A ⊕ · · · for some finite abelian group A S = (Sa)a∈Aω and T = (Ta)a∈Aω commuting measure preserving Aω-actions on a probability space (X, F, µ): Sa, Ta : X → X are measurable S0 = T0 = id, SaSb = Sa+b, TaTb = Ta+b, SaTb = TbSa µ(SaE) = µ(E) = µ(TaE) for a ∈ Aω, E ∈ F
  • 56. Appl. #2 — The result: Commuting Aω actions Toy-model of double averages Mn(f , g) := 1 |Fn| a∈Fn (f ◦ Sa )(g ◦ Ta ) Such multiple averages have already appeared in the literature: general countable amenable group Bergelson, McCutcheon, and Zhang (1997); Zorin-Kranich (2011); Austin (2013) “powers” of the same action of (Z/pZ)ω, p prime Bergelson, Tao, and Ziegler (2013) Note: All known convergence results are only qualitative or extremely weakly quantitative in nature
  • 57. Appl. #2 — The result: Commuting Aω actions Toy-model of double averages Mn(f , g) := 1 |Fn| a∈Fn (f ◦ Sa )(g ◦ Ta ) Theorem. K. (2014) p ≥ 2 sup n0<n1<···<nm m j=1 Mnj−1 (f , g) − Mnj (f , g) p Lp ≤ Cp f p L2p g p L2p Consequences: f L2p = g L2p =1 ⇒ O ε−p ε-jumps in Lp , p ≥ 2 f L∞ = g L∞ =1 ⇒ O(ε−max{p,2}) ε-jumps in Lp , p ≥ 1
  • 58. Appl. #2 — Open problems Open problem: double averages, Z+-actions or Z-actions Mn(f , g) := 1 n n−1 k=0 (f ◦ Sk )(g ◦ Tk ) sup n0<n1<···<nm m j=1 Mnj−1 (f , g) − Mnj (f , g) p Lp ≤ Cp f p L2p g p L2p Open problem: triple averages, “powers” of a single Aω-action Mn(f , g, h) := 1 |Fn| a∈Fn (f ◦ Tc1a )(g ◦ Tc2a )(h ◦ Tc3a ), c1, c2, c3 ∈ Z sup n0<···<nm m j=1 Mnj−1 (f , g, h) − Mnj (f , g, h) p Lp ≤ Cp f p L3p g p L3p h p L3p
  • 59. Thank you! Thank you for your attention!