SlideShare a Scribd company logo
1 of 15
Download to read offline
INTRODUCTION TO FLUID
MECHANICS
SCOPE OF FLUID MECHANICS
Fluid mechanics is the study of fluids at rest or in motion.
It has traditionally been applied in areas as the design of canal and dam systems;
the design of pumps, compressors, and piping and ducting used in the water and 
air conditioning systems of homes and businesses, piping systems needed in 
chemical plants; the aerodynamics of automobiles and sub­ and supersonic 
airplanes; and the development of many different flow measurement devices such 
as gas pump meters.
Many exciting areas have developed in the last quarter­century. Some examples 
include environmental and energy issues (e.g., containing oil slicks, large­scale 
wind turbines, energy generation from ocean waves, the aerodynamics of large 
buildings, and the fluid mechanics of the atmosphere and ocean and of 
phenomena such as tornadoes, hurricanes, and tsunamis, biomechanics (e.g., 
artificial hearts and valves and other organs, sports, “smart fluids” (e.g., in 
automobile suspension systems to optimize motion under all terrain conditions, 
military uniforms containing a fluid layer that is “thin” until combat, when it can
be “stiffened” to give the soldier strength and protection, and fluid lenses with 
humanlike properties for use in cameras and cell phones); and microfluids (e.g., 
for extremely precise administration of medications).
DE   FI   NITION OF  FLUID AND BASIC CONCEPTS
A fluid is a substance that deforms continuously under the application of a shear 
(tangential) stress no matter how small the shear stress may be. Fluids tend to 
flow when we interact with them while solids tend to deform or bend. We can also
define a fluid as any substance that cannot sustain a shear stress when at rest. 
Difference In Behavior Of Fluid And Solid
A fluid in contact with a solid surface does not slip—it has the same velocity as 
that of surface because of the no­slip condition, an experimental fact. The amount 
of deformation of the solid depends on the solid’s modulus of rigidity. The rate of 
deformation of the fluid depends on the fluid’s viscosity μ. We refer to solids as 
being elastic and fluids as being viscous. Substances which exhibits both 
springiness and friction; they are viscoelastic. Many biological tissues are 
viscoelastic.
Basic Equations
Analysis of any problem in fluid mechanics includes statement of the basic laws 
governing the fluid motion. The basic laws, which are applicable to any fluid, 
are­
1. The conservation of mass
2. Newton’s second law of motion
3. The principle of angular momentum
4. The first law of thermodynamics
5. The second law of thermodynamics
In many problems it is necessary to bring into the analysis additional relations 
that describe the behavior of physical properties of fluids under given conditions
Differential Versus Integral Approach
The basic laws that we apply in our study of fluid mechanics can be formulated 
in terms of infinitesimal or finite systems and control volumes. In the first case 
the resulting equations are differential equations; solution of the differential 
equations of motion provides a means of determining the detailed behavior of the 
flow. We often are interested in the gross behavior of a device; in such cases it is 
more appropriate to use integral formulations of the basic laws.
Lagrangian    Versus    Eulerian    Approach 
Method of description that follows the particle is referred to as the Lagrangian 
method of description. In Lagrangian approach we analyze a fluid flow by 
assuming the fluid to be composed of a very large number of particles whose 
motion must be described.
In control volume analyses, it is convenient to use the field, or Eulerian, method 
of description, which focuses attention on the properties of a flow at a given point 
in space as a function of time. In the Eulerian method of description, the 
properties of a flow field are described as functions of space coordinates and time.
Fluid Properties
Density is mass per unit volume. Density is measured simultaneously at an 
infinite number of points in the fluid, we would obtain an expression for the 
density distribution as a function of the space coordinates, at the given instant. 
The density at a point may also vary with time (as a result of work done on or by 
the fluid and/or heat transfer to the fluid). 
The complete representation of density (the field representation) is given by­ 
Specific gravity is density of a substance (solid or fluid) compared to an 
accepted reference value, typically the maximum density of water.
Specific weight is defined as the weight of a substance per unit volume.
Velocity Field
Velocity is a vector quantity. The velocity vector can be written in terms of its 
three scalar components. 
The velocity vector, V indicates the velocity of a fluid particle that is passing 
through the point x, y, z at time instant t, in the Eulerian sense. The point x, y, z 
is not the ongoing position of an individual particle, but a point we choose to look 
at. Hence x, y, and z are independent variables.
The term uniform flow field (as opposed to
uniform flow at a cross section) is used to
describe a flow in which the velocity is
constant, i.e., independent of all space
coordinates, throughout the entire flow field.
In a flow that is uniform at a given cross section, the velocity is constant across 
any section normal to the flow, the velocity field is a function of x alone, and thus 
the flow model is one­dimensional
Steady flow­If properties at every point in a flow field do not change with time, 
the flow is termed steady
Timelines, Pathlines, Streaklines, And Streamlines
If a number of adjacent fluid particles in a flow field are marked at a given 
instant, they form a line in the fluid at that instant; this line is called a timeline. 
Timelines were introduced to demonstrate the deformation of a fluid at successive
instants. Timelines are created by marking a line in a flow and watching how it 
evolves over time.
A pathline is the path or trajectory traced out by a moving fluid particle. They 
show, over time, the paths individual particles take.
If we focus our attention on a fixed location in space and identify, by the use of 
dye or smoke, all fluid particles passing through this point. After a short period of
time we would have a number of identifiable fluid particles in the flow, all of 
which had, at some time, passed through one fixed location in space. The line 
joining these fluid particles is defined as a streakline. A streakline is the line 
produced in a flow when all particles moving through a fixed point are marked in
some way (e.g., using smoke).
Streamlines are lines drawn in the flow field so that at a given instant they are 
tangent to the direction of flow at every point in the flow field. Since the 
streamlines are tangent to the velocity vector at every point in the flow field, there 
can be no flow across a streamline.
In steady flow, the velocity at each point in the flow field remains constant with 
time and, consequently, the streamline shapes do not vary from one instant to the 
next. This implies that a particle located on a given streamline will always move 
along the same streamline. Furthermore, consecutive particles passing through a 
fixed point in space will be on the same streamline and, subsequently, will remain
on this streamline. Thus in a steady flow, pathlines, streaklines, and streamlines 
are identical lines in the flow field. For unsteady flow, streaklines, streamlines, 
and pathlines will in general have differing shapes.
Stress Field
Each fluid particle can experience: surface forces (pressure, friction) that are 
generated by contact with other particles or a solid surface; and body forces (such 
as gravity and electromagnetic) that are experienced throughout the particle. 
Surface forces on a fluid particle lead to stresses. The concept of stress is useful 
for describing how forces acting on the boundaries of a medium (fluid or solid) 
are transmitted throughout the medium. When a body moves through a fluid, 
stresses are developed within the fluid. The difference between a fluid and a solid 
is that stresses in a fluid are mostly generated by motion rather than by 
deflection.
Viscosity And Fluid Types
Newton’s law of viscosity is given for one­dimensional flow as­
μ =absolute (or dynamic) viscosity
Coefficient of dynamic viscosity­It is shear stress required to drag one layer of 
fluid with unit velocity over other layer unit distance apart.
Coefficient of kinematic viscosity ­The ratio of absolute viscosity, μ, to mass 
density, ρ, is given the name kinematic viscosity and is represented by the symbol 
ν.
Units of viscosity
[1 poise =1 g/(cm .s)]; 
In the SI system the units of viscosity are kg/(m . s)
In the Absolute Metric system of units, the unit for ν is a stoke 
(1 stoke = 1 cm ^2 /s).
Non­Newtonian Fluids­ Fluids in which shear stress is not directly 
proportional to deformation rate.
 
 
(Apparent viscosity)
The difference in viscosity and apparent viscosity is that while μ is constant 
(except for temperature effects), η depends on the shear rate.
Pseudoplastic­ Fluids in which the apparent viscosity decreases with increasing
deformation rate. 
(n <1) are called pseudoplastic (or shear thinning) fluids. Most non­Newtonian 
fluids fall into this group; examples include polymer solutions, colloidal 
suspensions, and paper pulp in water.
 
Dilatant­ If the apparent viscosity increases with increasing deformation rate 
(n >1) the fluid is termed dilatant (or shear thickening). Suspensions of starch 
and of sand are examples of dilatant fluids.
Bingham plastic­ A “fluid” that behaves as a solid until a minimum yield stress
is exceeded and subsequently exhibits a linear relation between stress and rate of 
deformation is referred to as an ideal or Bingham plastic.
Thixotropic fluids­show a decrease in η with time under a constant applied 
shear stress; many paints are thixotropic. 
Rheopectic fluids­ show an increase in η with time. 
Viscoelastic­ After deformation some fluids partially return to their original 
shape when the applied stress is released; such fluids are called viscoelastic.
Surface Tension
Whenever a liquid is in contact with other liquids or gases, an interface develops 
that acts like a stretched elastic membrane, creating surface tension.
We define a liquid as “wetting” a surface when the contact angle θ <90.
Factors that affect the contact angle include the cleanliness of the surface and the 
purity of the liquid.
A force balance on a segment of interface shows that there is a pressure jump 
across the imagined elastic membrane whenever the interface is curved. 
 
Capiliarity
Surface tension also leads to the phenomena of capillary, most important effect of 
surface tension is the creation of a curved meniscus that appears in manometers 
or barometers, leading to a (usually unwanted) capillary rise (or depression).this 
is due to difference in adhesive and cohesive forces. Capillary rise is inversely 
proportional to the radius of the tube. Therefore, the thinner the tube is, the 
greater the rise (or fall) of the liquid in the tube.
Manometer and barometer readings should be made at the level of the middle of 
the meniscus. This is away from the maximum effects of surface tension and thus 
nearest to the proper liquid level.
This relation is also valid for non­wetting liquids.
Simple analysis of  the capillary effect and gives reasonable results only for tube 
diameters less than 0.1 in. (2.54 mm) experimental data for the capillary rise 
with a water­air interface are correlated by the empirical expression.  
Excess Pressure In Droplet And Bubble
For a water droplet in air, pressure in the water
is higher than ambient; the same is true for a
gas bubble in liquid.
For a soap bubble in air, surface tension acts on
both inside and outside interfaces between the
soap film and air along the curved bubble
surface. 
FLUID FLOW
Viscous And Inviscid Flows
Consider a ball flying 
through the air, the 
ball will experiences 
the aerodynamic drag 
of the air .What is the 
nature of the drag force
of the air on the ball?
Maybe it’s due to friction of the air as it flows over the ball but air has such a low 
viscosity, friction might not contribute much to the drag, and the drag might be 
due to the pressure build­up in front of the ball as it pushes the air out of the way.
We can predict ahead of time the relative importance of the viscous force, and 
force due to the pressure build­up in front of the ball, we can estimate whether or 
not viscous forces, as opposed to pressure forces, are negligible by simply 
computing the Reynolds number.
 Here ρ and μ are the fluid density and viscosity, 
respectively, and V and L are the typical or 
“characteristic” velocity and size scale of the flow 
(in this example the ball velocity and diameter).
If the Reynolds number is “large,” viscous effects will be negligible (but will still 
have important consequences), if the Reynolds number is small, viscous effects 
will be dominant, if the Reynolds number is neither large nor small, no general 
conclusions can be drawn.
In inviscid flow the streamlines are symmetric front­to­back. Because the mass 
flow between any two streamlines is constant, wherever streamlines open up, the 
velocity must decrease, and vice versa. Hence we can see that the velocity in the 
vicinity of points A and C must be relatively low; at point B it will be high. In 
fact, the air comes to rest at points A and C they are stagnation points.
The pressure in this flow is high wherever the velocity is low, and vice versa 
hence, points A and C have relatively large (and equal) pressures; point B will be 
a point of low pressure. In fact, the pressure distribution on the sphere is 
symmetric front­to­back, and there is no net drag force due to pressure. Because 
we’re assuming inviscid flow, there can be no drag due to friction either. Hence we
have d’Alembert’s paradox of 1752: The ball experiences no drag!
The no­slip condition  requires that the velocity everywhere on the surface of the 
sphere be zero (in sphere coordinates), but inviscid theory states that it’s high at 
point B. Prandtl suggested that even though friction is negligible in general for 
high­ Reynolds number flows, there will always be a
thin boundary layer, in which friction is significant
and across the width of which the velocity increases
rapidly from zero (at the surface) to the value
inviscid flow theory predicts (on the outer edge of the
boundary layer) this boundary layer has another
important consequence: It often leads to bodies
having a wake, as shown in Fig from point D onwards. Point D is a separation 
point, where fluid particles are pushed off the object and cause a wake to develop.
Consider once again the original inviscid flow. As a particle moves along the 
surface from point B to C, it moves from low to high pressure. This adverse 
pressure gradient (a pressure change opposing fluid motion) causes the particles 
to slow down as they move along the rear of the sphere. If we now add to this the 
fact that the particles are moving in a boundary layer with friction that also 
slows down the fluid, the particles will eventually be brought to rest and then 
pushed off the sphere by the following particles, forming the wake. This is 
generally very bad news: It turns out that the wake will always be relatively low 
pressure, but the front of the sphere will still have relatively high pressure. Hence,
the sphere will now have a quite large pressure drag (or form drag—so called 
because it’s due to the shape of the object)
It’s interesting to note that although the boundary layer is necessary to explain 
the drag on the sphere, the drag is actually due mostly to the asymmetric pressure
distribution created by the boundary layer separation drag directly due to friction
is still negligible!
How Streamlining Of A Body Works?
The drag force in most aerodynamics is due to the low­pressure wake: If we can 
reduce or eliminate the wake, drag will be greatly reduced.
Consider once again why the
separation occurred. Boundary
layer friction slowed down the
particles, but so did the adverse
pressure gradient. The pressure
increased very rapidly across the
back half of the sphere in because
the streamlines opened up so
rapidly. If we make the sphere
teardrop shaped, the streamlines will open up gradually, and hence the pressure 
will increase slowly, to such an extent that fluid particles are not forced to 
separate from the object until they almost reach the end of the object, as shown. 
The wake is much smaller (and it turns out the pressure will not be as low as 
before), leading to much less pressure drag. The only negative aspect of this 
streamlining is that the total surface area on which friction occurs is larger, so 
drag due to friction will increase a little.
Laminar And Turbulent Flows
Consider water flowing out of pipe. At a very low flow rate the water will flow 
very smoothly—almost “glass­like.” If we increase the flow rate, the water will 
flow in a churned­up, chaotic manner. These are examples of how a viscous flow 
can be laminar or turbulent, respectively.
A laminar flow is one in which the fluid particles move in smooth layers, or 
laminas; a turbulent flow is one in which the fluid particles rapidly mix as they 
move along due to random three­ dimensional velocity fluctuations.
In a one­dimensional laminar flow, the shear stress is related to the velocity 
gradient by the simple relation. For a turbulent flow in which the mean velocity 
field is one­dimensional, no such simple relation is valid. Random
3­d velocity fluctuations (u', v', and w') transport momentum across the mean 
flow streamlines, increasing the effective shear stress.
Compressible And Incompressible Flows
Flows in which variations in density are negligible are termed incompressible; 
when density variations within a flow are not negligible, the flow is called 
compressible. The most common example of compressible flow concerns the flow of
gases, while the flow of liquids may frequently be treated as incompressible.
For many liquids, density is only a weak function of temperature. At modest 
pressures, liquids may be considered incompressible. However, at high pressures 
compressibility effects in liquids can be important. Pressure and density changes 
in liquids are related by the bulk compressibility modulus, or modulus of 
elasticity
 
If the bulk modulus is independent of temperature, then density is only a function
of pressure the fluid is barotropic.
Water hammer and cavitation are examples of the importance of compressibility 
effects in liquid flows. 
Water hammer is caused by acoustic waves propagating and reflecting in a 
confined liquid, for example, when a valve is closed abruptly. The resulting noise 
can be similar to “hammering” on the pipes, hence the term. 
Cavitation occurs when vapor pockets form in a liquid flow because of local 
reductions in pressure (for example at the tip of a boat’s propeller blades). 
Depending on the number and distribution of particles in the liquid to which very
small pockets of undissolved gas or air may attach, the local pressure at the onset 
of cavitation may be at or below the vapor pressure of the liquid. These particles 
act as nucleation sites to initiate vaporization. Vapor pressure of a liquid is the 
partial pressure of the vapor in contact with the saturated liquid at a given 
temperature. When pressure in a liquid is reduced to less than the vapor pressure,
the liquid may change phase suddenly and “flash” to vapor. The vapor pockets in 
a liquid flow may alter the geometry of the flow field substantially. When 
adjacent to a surface, the growth and collapse of vapor bubbles can cause serious 
damage by eroding the surface material. Very pure liquids can sustain large 
negative pressures—as much as 260 atmospheres for distilled water—before the 
liquid “ruptures” and vaporization occurs. Undissolved air is invariably present 
near the free surface of water or seawater, so cavitation occurs where the local 
total pressure is quite close to the vapor pressure.
The ratio of the flow speed, V, to the local speed of sound, c, in the gas is defined 
as the Mach number,
For M <0.3, the maximum density variation is less than 5 percent. Gas flows with
M < 0.3 can be treated as incompressible; a value of M = 0.3 in air at standard 
conditions corresponds to a speed of approximately 100 m/s.
Internal And External Flows
Flows completely bounded by solid surfaces are called internal or duct flows. 
Flows over bodies immersed in an unbounded fluid are termed external flows. 
Both internal and external flows may be laminar or turbulent, compressible or 
incompressible.
Flow will generally be laminar for Re <2300 and turbulent for larger values: 
Flow in a pipe of constant diameter will be entirely laminar or entirely turbulent, 
depending on the value of the velocity V.
The internal flow of liquids in which the duct does not flow full—where there is a 
free surface subject to a constant pressure—is termed open­channel flow. Common
examples of open­channel flow include flow in rivers, irrigation ditches, and 
aqueducts.
Supersonic flows (M > 1) will behave very differently than subsonic flows (M < 1).
For example, supersonic flows can experience oblique and normal shocks, and can
also behave in a counterintuitive way—e.g., a supersonic nozzle (a device to 
accelerate a flow) must be divergent (i.e., it has increasing cross­sectional area) in
the direction of flow! We note here also that in a subsonic nozzle (which has a 
convergent cross­sectional area), the pressure of the flow at the exit plane will 
always be the ambient pressure; for a sonic flow, the exit pressure can be higher 
than ambient; and for a supersonic flow the exit pressure can be greater than, 
equal to, or less than the ambient pressure!
USEFUL EQUATIONS
1­The variation with temperature of the viscosity of air is represented well by the 
empirical Sutherland correlation.
 
2­The velocity distribution for laminar flow between parallel plates is given by

More Related Content

What's hot

Pump selection and application
Pump selection and applicationPump selection and application
Pump selection and applicationWei Chiao Kuo
 
Fluid Mechanics Chapter 5. Dimensional Analysis and Similitude
Fluid Mechanics Chapter 5. Dimensional Analysis and SimilitudeFluid Mechanics Chapter 5. Dimensional Analysis and Similitude
Fluid Mechanics Chapter 5. Dimensional Analysis and SimilitudeAddisu Dagne Zegeye
 
Applications of fluid mechanics
Applications of fluid mechanicsApplications of fluid mechanics
Applications of fluid mechanicsVishu Sharma
 
PPT On Hydraulic Machines - Turbines
PPT On Hydraulic Machines - TurbinesPPT On Hydraulic Machines - Turbines
PPT On Hydraulic Machines - TurbinesAanand Kumar
 
Dimension less numbers in applied fluid mechanics
Dimension less numbers in applied fluid mechanicsDimension less numbers in applied fluid mechanics
Dimension less numbers in applied fluid mechanicstirath prajapati
 
Fluid dynamics 1
Fluid dynamics 1Fluid dynamics 1
Fluid dynamics 1guest7b51c7
 
VERTICAL PRESSURE VESSEL DESIGN 5.docx
VERTICAL PRESSURE VESSEL DESIGN 5.docxVERTICAL PRESSURE VESSEL DESIGN 5.docx
VERTICAL PRESSURE VESSEL DESIGN 5.docxTesemaTeshome
 
Chapter 1. introduction to fluid mechanics
Chapter 1. introduction to fluid mechanicsChapter 1. introduction to fluid mechanics
Chapter 1. introduction to fluid mechanicskidanemariam tesera
 
Fluid Mechanics - Fluid Pressure and its measurement
Fluid Mechanics - Fluid Pressure and its measurementFluid Mechanics - Fluid Pressure and its measurement
Fluid Mechanics - Fluid Pressure and its measurementMalla Reddy University
 
Hydraulics & pneumatics (AU) unit-I
Hydraulics & pneumatics (AU)   unit-IHydraulics & pneumatics (AU)   unit-I
Hydraulics & pneumatics (AU) unit-IArul Prakasam G
 
Torsion Hollow Shaft
Torsion Hollow ShaftTorsion Hollow Shaft
Torsion Hollow Shafttejasp
 

What's hot (20)

Hydrolic Fluid purpose & properties (chapter 2)
Hydrolic Fluid purpose & properties (chapter 2)Hydrolic Fluid purpose & properties (chapter 2)
Hydrolic Fluid purpose & properties (chapter 2)
 
Couette flow
Couette flowCouette flow
Couette flow
 
PRESSURE & HEAD (PART-1)
PRESSURE & HEAD (PART-1)PRESSURE & HEAD (PART-1)
PRESSURE & HEAD (PART-1)
 
Eulers equation
Eulers equationEulers equation
Eulers equation
 
Fluid Mechanics - Fluid Properties
Fluid Mechanics - Fluid PropertiesFluid Mechanics - Fluid Properties
Fluid Mechanics - Fluid Properties
 
Impact of jet
Impact of jetImpact of jet
Impact of jet
 
Pump selection and application
Pump selection and applicationPump selection and application
Pump selection and application
 
Fluid Mechanics Chapter 5. Dimensional Analysis and Similitude
Fluid Mechanics Chapter 5. Dimensional Analysis and SimilitudeFluid Mechanics Chapter 5. Dimensional Analysis and Similitude
Fluid Mechanics Chapter 5. Dimensional Analysis and Similitude
 
Applications of fluid mechanics
Applications of fluid mechanicsApplications of fluid mechanics
Applications of fluid mechanics
 
Fluid mechanics
Fluid mechanicsFluid mechanics
Fluid mechanics
 
PPT On Hydraulic Machines - Turbines
PPT On Hydraulic Machines - TurbinesPPT On Hydraulic Machines - Turbines
PPT On Hydraulic Machines - Turbines
 
Dimension less numbers in applied fluid mechanics
Dimension less numbers in applied fluid mechanicsDimension less numbers in applied fluid mechanics
Dimension less numbers in applied fluid mechanics
 
Fluid dynamics 1
Fluid dynamics 1Fluid dynamics 1
Fluid dynamics 1
 
VERTICAL PRESSURE VESSEL DESIGN 5.docx
VERTICAL PRESSURE VESSEL DESIGN 5.docxVERTICAL PRESSURE VESSEL DESIGN 5.docx
VERTICAL PRESSURE VESSEL DESIGN 5.docx
 
Fluid statics
Fluid staticsFluid statics
Fluid statics
 
Chapter 1. introduction to fluid mechanics
Chapter 1. introduction to fluid mechanicsChapter 1. introduction to fluid mechanics
Chapter 1. introduction to fluid mechanics
 
Design of pressure vessel
Design of pressure vesselDesign of pressure vessel
Design of pressure vessel
 
Fluid Mechanics - Fluid Pressure and its measurement
Fluid Mechanics - Fluid Pressure and its measurementFluid Mechanics - Fluid Pressure and its measurement
Fluid Mechanics - Fluid Pressure and its measurement
 
Hydraulics & pneumatics (AU) unit-I
Hydraulics & pneumatics (AU)   unit-IHydraulics & pneumatics (AU)   unit-I
Hydraulics & pneumatics (AU) unit-I
 
Torsion Hollow Shaft
Torsion Hollow ShaftTorsion Hollow Shaft
Torsion Hollow Shaft
 

Viewers also liked

Shear and Bending Moment in Beams
Shear and Bending Moment in BeamsShear and Bending Moment in Beams
Shear and Bending Moment in BeamsAmr Hamed
 
Fluid flow phenomenon, prepared by Makhdoom ibad ullah hashmi
Fluid flow phenomenon, prepared by Makhdoom ibad ullah hashmiFluid flow phenomenon, prepared by Makhdoom ibad ullah hashmi
Fluid flow phenomenon, prepared by Makhdoom ibad ullah hashmiUniversity of Gujrat, Pakistan
 
Reynolds transport theorem
Reynolds transport theoremReynolds transport theorem
Reynolds transport theoremMOHIT MAYOOR
 
Active role of plants in hydrologic processes
Active role of plants in hydrologic processesActive role of plants in hydrologic processes
Active role of plants in hydrologic processesMOHIT MAYOOR
 
Basic Fluid Dynamics - Control Valves
Basic Fluid Dynamics - Control Valves  Basic Fluid Dynamics - Control Valves
Basic Fluid Dynamics - Control Valves Brannon Gant
 
Fluid mechanics in our daily life
Fluid mechanics in our daily lifeFluid mechanics in our daily life
Fluid mechanics in our daily lifeMehediHassanSourav
 
Dimensional analysis
Dimensional analysisDimensional analysis
Dimensional analysisthegabsters
 
Fuid mechanics and applications
Fuid mechanics and applicationsFuid mechanics and applications
Fuid mechanics and applicationsM Aamer Raza
 
Linear differential equation with constant coefficient
Linear differential equation with constant coefficientLinear differential equation with constant coefficient
Linear differential equation with constant coefficientSanjay Singh
 
La alta edad media
La alta edad mediaLa alta edad media
La alta edad mediaguestbb65322
 
Stream flow measurement
Stream flow measurementStream flow measurement
Stream flow measurementMOHIT MAYOOR
 
Chapter four fluid mechanics
Chapter four fluid mechanicsChapter four fluid mechanics
Chapter four fluid mechanicsabrish shewa
 

Viewers also liked (20)

Fluid mechanics
Fluid mechanicsFluid mechanics
Fluid mechanics
 
Applications of Fluid Mechanics
Applications of Fluid MechanicsApplications of Fluid Mechanics
Applications of Fluid Mechanics
 
Shear and Bending Moment in Beams
Shear and Bending Moment in BeamsShear and Bending Moment in Beams
Shear and Bending Moment in Beams
 
Fluid flow phenomenon, prepared by Makhdoom ibad ullah hashmi
Fluid flow phenomenon, prepared by Makhdoom ibad ullah hashmiFluid flow phenomenon, prepared by Makhdoom ibad ullah hashmi
Fluid flow phenomenon, prepared by Makhdoom ibad ullah hashmi
 
Rating curve design,practice and problems
Rating curve design,practice and problemsRating curve design,practice and problems
Rating curve design,practice and problems
 
Reynolds transport theorem
Reynolds transport theoremReynolds transport theorem
Reynolds transport theorem
 
Active role of plants in hydrologic processes
Active role of plants in hydrologic processesActive role of plants in hydrologic processes
Active role of plants in hydrologic processes
 
FLUID MECHANICS
FLUID MECHANICSFLUID MECHANICS
FLUID MECHANICS
 
Basic Fluid Dynamics - Control Valves
Basic Fluid Dynamics - Control Valves  Basic Fluid Dynamics - Control Valves
Basic Fluid Dynamics - Control Valves
 
MOHAN PPT
MOHAN PPTMOHAN PPT
MOHAN PPT
 
Fluid mechanics in our daily life
Fluid mechanics in our daily lifeFluid mechanics in our daily life
Fluid mechanics in our daily life
 
Dimensional analysis
Dimensional analysisDimensional analysis
Dimensional analysis
 
Fluid mechanics
Fluid mechanics Fluid mechanics
Fluid mechanics
 
Fuid mechanics and applications
Fuid mechanics and applicationsFuid mechanics and applications
Fuid mechanics and applications
 
Linear differential equation with constant coefficient
Linear differential equation with constant coefficientLinear differential equation with constant coefficient
Linear differential equation with constant coefficient
 
La alta edad media
La alta edad mediaLa alta edad media
La alta edad media
 
Stream flow
Stream flow Stream flow
Stream flow
 
Buoyancy & Stability
Buoyancy & StabilityBuoyancy & Stability
Buoyancy & Stability
 
Stream flow measurement
Stream flow measurementStream flow measurement
Stream flow measurement
 
Chapter four fluid mechanics
Chapter four fluid mechanicsChapter four fluid mechanics
Chapter four fluid mechanics
 

Similar to Fundamental concepts of fluid mechanics

An alteration to rapid transit: futristics approach
An alteration to rapid transit: futristics approachAn alteration to rapid transit: futristics approach
An alteration to rapid transit: futristics approachtheijes
 
Modeling of soil erosion by water
Modeling of soil erosion by waterModeling of soil erosion by water
Modeling of soil erosion by waterIAEME Publication
 
Zn am 28100_1_getka
Zn am 28100_1_getkaZn am 28100_1_getka
Zn am 28100_1_getkaDai Doan
 
Civil engineering
Civil engineeringCivil engineering
Civil engineeringrccouce
 
Significant Guidance for Design and Construction of Marine and Offshore Struc...
Significant Guidance for Design and Construction of Marine and Offshore Struc...Significant Guidance for Design and Construction of Marine and Offshore Struc...
Significant Guidance for Design and Construction of Marine and Offshore Struc...Professor Kabir Sadeghi
 
Heriott watt report Building Drainage and Vent systems
Heriott watt report Building Drainage and Vent systemsHeriott watt report Building Drainage and Vent systems
Heriott watt report Building Drainage and Vent systemsVitor Nina
 
Applied fluid mechanics flows &amp; applications
Applied fluid mechanics flows &amp; applicationsApplied fluid mechanics flows &amp; applications
Applied fluid mechanics flows &amp; applicationsEddy Ankit Gangani
 
Lesson 1 Fluid Mechanics Workbook.docx
Lesson 1 Fluid Mechanics Workbook.docxLesson 1 Fluid Mechanics Workbook.docx
Lesson 1 Fluid Mechanics Workbook.docxTesfayeHailemariam4
 
IRJET- Wind and Seismic Analysis of Elevated Tank using Staad Pro
IRJET- Wind and Seismic Analysis of Elevated Tank using Staad ProIRJET- Wind and Seismic Analysis of Elevated Tank using Staad Pro
IRJET- Wind and Seismic Analysis of Elevated Tank using Staad ProIRJET Journal
 
Ce(hs)401 model 2 & 3 all
Ce(hs)401  model 2 & 3 allCe(hs)401  model 2 & 3 all
Ce(hs)401 model 2 & 3 allBIKIMALLIK1
 
concept of Hydrology
concept of Hydrologyconcept of Hydrology
concept of HydrologyParimal Jha
 
Jsas 004 07_7_sadeghi
Jsas 004 07_7_sadeghiJsas 004 07_7_sadeghi
Jsas 004 07_7_sadeghiKabir Sadeghi
 

Similar to Fundamental concepts of fluid mechanics (20)

Final ppt (1).pptx
Final ppt (1).pptxFinal ppt (1).pptx
Final ppt (1).pptx
 
Saimenar (1) 1.pdf
Saimenar (1) 1.pdfSaimenar (1) 1.pdf
Saimenar (1) 1.pdf
 
Does world needs civil engineer
Does world needs civil engineerDoes world needs civil engineer
Does world needs civil engineer
 
An alteration to rapid transit: futristics approach
An alteration to rapid transit: futristics approachAn alteration to rapid transit: futristics approach
An alteration to rapid transit: futristics approach
 
B04520508
B04520508B04520508
B04520508
 
Hyd and pneuma intro2
Hyd and pneuma intro2Hyd and pneuma intro2
Hyd and pneuma intro2
 
Modeling of soil erosion by water
Modeling of soil erosion by waterModeling of soil erosion by water
Modeling of soil erosion by water
 
Zn am 28100_1_getka
Zn am 28100_1_getkaZn am 28100_1_getka
Zn am 28100_1_getka
 
Civil engineering
Civil engineeringCivil engineering
Civil engineering
 
Significant Guidance for Design and Construction of Marine and Offshore Struc...
Significant Guidance for Design and Construction of Marine and Offshore Struc...Significant Guidance for Design and Construction of Marine and Offshore Struc...
Significant Guidance for Design and Construction of Marine and Offshore Struc...
 
CPE008 - GROUP 7 - CPE11FB1
CPE008 - GROUP 7 - CPE11FB1CPE008 - GROUP 7 - CPE11FB1
CPE008 - GROUP 7 - CPE11FB1
 
Heriott watt report Building Drainage and Vent systems
Heriott watt report Building Drainage and Vent systemsHeriott watt report Building Drainage and Vent systems
Heriott watt report Building Drainage and Vent systems
 
Applied fluid mechanics flows &amp; applications
Applied fluid mechanics flows &amp; applicationsApplied fluid mechanics flows &amp; applications
Applied fluid mechanics flows &amp; applications
 
Lesson 1 Fluid Mechanics Workbook.docx
Lesson 1 Fluid Mechanics Workbook.docxLesson 1 Fluid Mechanics Workbook.docx
Lesson 1 Fluid Mechanics Workbook.docx
 
Fluid power
Fluid powerFluid power
Fluid power
 
IRJET- Wind and Seismic Analysis of Elevated Tank using Staad Pro
IRJET- Wind and Seismic Analysis of Elevated Tank using Staad ProIRJET- Wind and Seismic Analysis of Elevated Tank using Staad Pro
IRJET- Wind and Seismic Analysis of Elevated Tank using Staad Pro
 
Ce(hs)401 model 2 & 3 all
Ce(hs)401  model 2 & 3 allCe(hs)401  model 2 & 3 all
Ce(hs)401 model 2 & 3 all
 
Hydraulic puller
Hydraulic pullerHydraulic puller
Hydraulic puller
 
concept of Hydrology
concept of Hydrologyconcept of Hydrology
concept of Hydrology
 
Jsas 004 07_7_sadeghi
Jsas 004 07_7_sadeghiJsas 004 07_7_sadeghi
Jsas 004 07_7_sadeghi
 

More from Vishu Sharma

Control of spring mass damper system using Xcos (Scilab)
Control of spring mass damper system using Xcos (Scilab)Control of spring mass damper system using Xcos (Scilab)
Control of spring mass damper system using Xcos (Scilab)Vishu Sharma
 
Introduction to refrigeration systems
Introduction to refrigeration systemsIntroduction to refrigeration systems
Introduction to refrigeration systemsVishu Sharma
 
Composite materials
Composite materialsComposite materials
Composite materialsVishu Sharma
 
Shear Force and Bending Moment Diagrams
Shear Force and Bending Moment DiagramsShear Force and Bending Moment Diagrams
Shear Force and Bending Moment DiagramsVishu Sharma
 
Measuring instruments
Measuring instrumentsMeasuring instruments
Measuring instrumentsVishu Sharma
 
Introduction to Rocket propulsion
Introduction to Rocket propulsionIntroduction to Rocket propulsion
Introduction to Rocket propulsionVishu Sharma
 
Mems (micro electro mechanical systems)
Mems (micro electro mechanical systems)Mems (micro electro mechanical systems)
Mems (micro electro mechanical systems)Vishu Sharma
 
Common machines used in workshop
Common machines used in workshopCommon machines used in workshop
Common machines used in workshopVishu Sharma
 
Steering system ppt
Steering system pptSteering system ppt
Steering system pptVishu Sharma
 
Rocket propulsion report (2)
Rocket propulsion report (2)Rocket propulsion report (2)
Rocket propulsion report (2)Vishu Sharma
 
Report on steering system
Report on steering systemReport on steering system
Report on steering systemVishu Sharma
 

More from Vishu Sharma (13)

Control of spring mass damper system using Xcos (Scilab)
Control of spring mass damper system using Xcos (Scilab)Control of spring mass damper system using Xcos (Scilab)
Control of spring mass damper system using Xcos (Scilab)
 
Introduction to refrigeration systems
Introduction to refrigeration systemsIntroduction to refrigeration systems
Introduction to refrigeration systems
 
Composite materials
Composite materialsComposite materials
Composite materials
 
Shear Force and Bending Moment Diagrams
Shear Force and Bending Moment DiagramsShear Force and Bending Moment Diagrams
Shear Force and Bending Moment Diagrams
 
Welding
WeldingWelding
Welding
 
Biomimicry
BiomimicryBiomimicry
Biomimicry
 
Measuring instruments
Measuring instrumentsMeasuring instruments
Measuring instruments
 
Introduction to Rocket propulsion
Introduction to Rocket propulsionIntroduction to Rocket propulsion
Introduction to Rocket propulsion
 
Mems (micro electro mechanical systems)
Mems (micro electro mechanical systems)Mems (micro electro mechanical systems)
Mems (micro electro mechanical systems)
 
Common machines used in workshop
Common machines used in workshopCommon machines used in workshop
Common machines used in workshop
 
Steering system ppt
Steering system pptSteering system ppt
Steering system ppt
 
Rocket propulsion report (2)
Rocket propulsion report (2)Rocket propulsion report (2)
Rocket propulsion report (2)
 
Report on steering system
Report on steering systemReport on steering system
Report on steering system
 

Recently uploaded

Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptNANDHAKUMARA10
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...SUHANI PANDEY
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdfKamal Acharya
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdfKamal Acharya
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptMsecMca
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...tanu pandey
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdfSuman Jyoti
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...Call Girls in Nagpur High Profile
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfKamal Acharya
 
Unit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfUnit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfRagavanV2
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoordharasingh5698
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Arindam Chakraborty, Ph.D., P.E. (CA, TX)
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTbhaskargani46
 

Recently uploaded (20)

Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
Unit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfUnit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdf
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 

Fundamental concepts of fluid mechanics