SlideShare a Scribd company logo
1 of 25
Download to read offline
1D STEADY STATE HEAT
CONDUCTION (2)CONDUCTION (2)
Prabal TalukdarPrabal Talukdar
Associate Professor
Department of Mechanical EngineeringDepartment of Mechanical Engineering
IIT Delhi
E-mail: prabal@mech.iitd.ac.inp
PTalukdar/Mech-IITD
Thermal Contact ResistanceThermal Contact Resistance
PTalukdar/Mech-IITD
Temperature distribution and heat flow lines along two solid plates
pressed against each other for the case of perfect and imperfect contact
Consider heat transfer through two metal rods of cross-sectional area A that
are pressed against each other Heat transfer through the interface of these twoare pressed against each other. Heat transfer through the interface of these two
rods is the sum of the heat transfers through the solid contact spots and the
gaps in the noncontact areas and can be expressed as
Most experimentally determinedMost experimentally determined
values of the thermal contact resistance fall 
between 0.000005 and 0.0005 m2∙°C/W (the 
corresponding range of thermal contact 
gapcontact QQQ
•••
+=
•
where A is the apparent interface area (which is the same as the cross-
sectional area of the rods) and ΔT is the effective temperature
conductance is 2000 to 200,000 W/m2∙°C).erfaceintc TAhQ Δ=
sectional area of the rods) and ΔTinterface is the effective temperature
difference at the interface. The quantity hc, which corresponds to the
convection heat transfer coefficient, is called the thermal contact
conductance and is expressed as
It is related to thermal contact resistance by
erfaceint
c
T
AQ
h
Δ
=
•
(W/m2 oC)
PTalukdar/Mech-IITD
It is related to thermal contact resistance by
AQ
T
h
1
R erfaceint
c
c •
Δ
== (m2 oC/W)
Importance of considerationImportance of consideration
Th th l t t i tThe thermal contact resistance range:
between 0.000005 and 0.0005 m2·°C/W
PTalukdar/Mech-IITD
Two parallel layersTwo parallel layers
⎞⎛ 11TTTT
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
+−=
−
+
−
=+=
•••
21
21
2
21
1
21
21
11
)(
RR
TT
R
TT
R
TT
QQQ
L L
totalR
TT
Q 21 −
=
•
'
11
1
1
Ak
L
R = '
22
2
2
Ak
L
R =
PTalukdar/Mech-IITD
21
111
RRR total
+=
21
21
RR
RR
R total
+
=where
Combined series-parallelCombined series parallel
TT
Q ∞
• −
= 1
totalR
Q =
RR
convconvtotal RR
RR
RR
RRRR ++
+
=++= 3
21
21
312
'
11
1
1
Ak
L
R = '
22
2
2
Ak
L
R = '
33
3
3
Ak
L
R =
1
3
1
hA
R conv =
PTalukdar/Mech-IITD
Series and parallel composite wall and its thermal circuit
RA
RD
T∞1
A
R∞1
RB
RC RE
RF
R∞2
T∞2
T T TT
2C1 R
111
1
R
11
1
RR ∞∞ +
⎟
⎞
⎜
⎛
++
⎟
⎞
⎜
⎛
+=∑
T1 T3 T4T2
FEDBA R
1
R
1
R
1
R
1
R
1
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
++⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
+
TUAQ Δ=
•
(W)
where U is the overall heat transfer coefficient
PTalukdar/Mech-IITD totalR
UA
1
=
Complex multi-dimensional problems as 1-D problems
1 Any plane wall normal to the x-axis is isothermal1. Any plane wall normal to the x-axis is isothermal
2. Any plane parallel to x-axis is adiabatic
PTalukdar/Mech-IITD
Heat conduction in cylinderHeat conduction in cylinder
dT
kAQ cylcond −=
•
L2Adr
Q cyl,cond rL2A π=
kdTdr
Q
22 Tcyl,condr
•
∫=∫
Substituting A = 2πrL and performing the integrations give
kdTdr
A
2
1
2
1 TTrr ==
∫−=∫
)rrln(
TT
Lk2Q
12
21
cyl,cond
−
π=
•
cyl,condQ
•
=constant at steady state
cyl
21
cyl,cond
R
TT
Q
−
=
•
(W)
PTalukdar/Mech-IITD Lk2
)rrln(
R 12
cyl
π
=
ln(outer radius/inner radius)
2π(length)(thermal conductivity)
=
Heat conduction in sphereHeat conduction in sphere
For sphere sph
21
sphere,cond
R
TT
Q
−
=&
krr4
rr
R
21
12
sph
π
−
= =
outer radius - inner radius
4π(outer radius)(inner radius)(thermal conductivity)
PTalukdar/Mech-IITD
Resistance NetworkResistance Network
cylindrical
2,convcond1,convtotal RRRR ++=
( )
( )12 1rrln1
++=
spherical
( ) 2211 h)Lr2(Lk2hLr2 π
+
π
+
π
2,convsph1,convtotal RRRR ++=
( )
12 1rr1
+
−
+
The thermal resistance network for a cylindrical (or
spherical) shell subjected to convection from
( ) 2
2
221
12
1
2
1 h)r4(krr4hr4 π
+
π
+
π
=
PTalukdar/Mech-IITD
spherical) shell subjected to convection from
both the inner and the outer sides.
Multilayered cylinderMultilayered cylinder
2,conv3,cyl2,cyl1,cyl1,convtotal RRRRRR ++++=
PTalukdar/Mech-IITD
( ) ( ) ( )
423
34
2
23
1
12
11 Ah
1
Lk2
rrln
Lk2
rrln
Lk2
rrln
Ah
1
+
π
+
π
+
π
+=
Radial heat conduction through cylindrical systems
t
T
Cg
z
T
.k
z
T
r.k
r
1
r
T
r.k
rr
1
2
∂
∂
ρ=+⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
∂
∂
+⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
φ∂
∂
φ∂
∂
+⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
∂
∂
&
0
dr
dT
r
dr
d
=⎟
⎠
⎞
⎜
⎝
⎛
Integrating the above equation twice T=C ln r + C
⎠⎝
Subject to the boundary conditions, T=T1 at r = r1 and T=T2 at r = r2
Integrating the above equation twice, T=C1ln r + C2
( )
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
−
+
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
−
=
1
2
1221
1
2
12
r
r
ln
rlnTrlnT
rln
r
r
ln
TT
T
PTalukdar/Mech-IITD
⎠⎝⎠⎝ 11 rr
Cd
1
1
1rrr
r
C
.Lr2.k|
dr
dT
kAQ 1
π−=−= =
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
−π−=
1
2
1
121
r
r
lnr
1
).TT.(Lr2.kQ
⎠⎝ 1
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
−π
=
2
21
r
ln
)TT(kL2
⎟
⎠
⎜
⎝ 1r
PTalukdar/Mech-IITD
Critical Radius of InsulationCritical Radius of Insulation
1. Steady state conditions
2. One-dimensional heat flow only in
the radial direction
r2
Insulation
T h
3. Negligible thermal resistance due to
cylinder wall
4 Negligible radiation exchange
r1 Thin wall
T∞ , h
T4. Negligible radiation exchange
between outer surface of insulation
and surroundings
Ts
PTalukdar/Mech-IITD
Critical Radius of InsulationCritical Radius of Insulation
• Practically, it turns out that adding insulation in cylindrical and spherical
exposed walls can initially cause the thermal resistance to decrease, therebyp y , y
increasing the heat transfer rate because the outside area for convection
heat transfer is getting larger. At some critical thickness, rcr, the thermal
resistance increases again and consequently the heat transfer is reduced.
• To find an expression for rcr, consider the thermal circuit below for an
insulated cylindrical wall with thermal conductivity k:
r Insulation
T1 T s T∞Q&
r2
r1
Insulation
Thin wall
T∞ , h hr2
1
2π
( )
k2
rrln 12
π
1 Thin wall
Ts
Rt’
PTalukdar/Mech-IITD
An insulated cylindrical pipe exposed
to convection from the outer surface
and the thermal resistance networkand the thermal resistance network
associated with it.
PTalukdar/Mech-IITD
• To find rcr, set the overall thermal resistance dRt’/dr = 0 and 
solve for r:
( )
rh2
1
k2
rrln
R i
t
π
+
π
=′ ri = inner radius
0
hr2
1
kr2
1
dr
Rd
2
t =
π
−
π
=
′
k k2
• For insulation thickness less that r the heat loss increases
h
k
rr cr ==
h
k2
rcr =Similarly for a sphere
• For insulation thickness less that rcr the heat loss increases 
with increasing r and for insulation thickness greater that 
rcr the heat loss decreases with increasing r
• If k = 0.03 W/(m∙K) and h = 10 W/(m2∙K):
– cylinder mm3m003.0
·K)W/(m10
W/(m·K)03.0
h
k
r
2cr ====
– sphere
)(
mm6
h
k2
rcr ==PTalukdar/Mech-IITD
Values of r1, h and k are constant
To see the condition maximizes or
minimizes the total resistance
11Rd2
At r =k/h
hr
1
kr2
1
dr
Rd
3
2
2
2
2
2
total
2
π
+
π
−=
Total thermal resistance per unit length
At r2=k/h
r
ln 2
⎟⎟
⎞
⎜⎜
⎛ ( )
0
hk2
1
k2
1
k
1
hk
1
dr
Rd
2322
2
total
2
>
π
=⎟
⎠
⎞
⎜
⎝
⎛
−
π
=
Heat transfer per unit length
Always positive, total resistance
at k/h is minimumhr2
1
k2
r
ln
R
2
1
total
π
+
π
⎟⎟
⎠
⎜⎜
⎝=
iTTQ −
= ∞
•
k
r = (m)p g
Optimum thickness is associated with r2
,
totalRL
0
2
=
dr
dRtotal
h
r cylinder,cr = (m)
2dr
0
hr2
1
kr2
1
2
22
=
π
−
π
h
k
r2 =
( )
( ) cm1m01.0
CmW5
CmW05.0
h
k
r
o2
o
min
insulationmax,
max,cr ==≈=
We can insulate hot water pipes and steam lines without
worrying the critical radius of insulation
Insulation of electric wires:
-Radius of electric wires may be smaller than the critical radius
Addition of insulation material increases heat transfer-Addition of insulation material increases heat transfer
Critical radius of insulation for spherical shell: h
k2
r sphere,cr =
Summary
• Table 3 3
Summary
Table 3.3
PTalukdar/Mech-IITD
1D Conduction with Heat
Generation
PTalukdar/Mech-IITD
0
2
+
•
qTd
02
=+
kdx
( ) 2
CxCx
q
xT ++=
•
Boundary conditions:
( ) 21
2
CxCx
k
xT ++−=
y
( ) 1,sTLT =−
L
TT
C ss
2
1,2,
1
−
=
( ) 2,sTLT =
L2
22
1,2,2
2
ss TT
L
k
q
C
+
+=
•
•
PTalukdar/Mech-IITD 22
1
2
)( 1,2,1,2,
2
22
ssss TT
L
xTT
L
x
k
qL
xT
+
+
−
+⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
−=
•
sss TTT ≡= 2,1,
xqL
⎟
⎞
⎜
⎛
•
22
1)( sT
L
x
k
qL
xT +⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
−= 2
1
2
)(
L
•
2
If the surface temperature of the heat generating body is
Put x = 0so T
k
qL
TT +=≡
2
)0(
2
If the surface temperature of the heat generating body is
unknown and the surrounding fluid temperature is T∞
Using energy balance
Find temperature gradient
from the above Eq. at x = L)(| ∞= −=− TTh
d
dT
k sLx •
g gy
We can obtain the surface temperature
q
PTalukdar/Mech-IITD
dx
h
Lq
TTs
•
∞ +=
0
1
=+⎟
⎠
⎞
⎜
⎝
⎛
•
k
q
dr
dT
r
dr
d
r ⎠⎝ kdrdrr
1
2
2
C
k
rq
d
dT
r +−=
•
1
2kdr
21
2
ln
4
)( CrC
k
rq
rT ++−=
•
Boundary conditions:
4k
dT TT )(
s
o
T
r
k
rq
rT +⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
−=
•
2
22
1
4
)(
0| 0 ==r
dr
dT so TrT =)(
rq
TC o
2
•
ork ⎟
⎠
⎜
⎝4
( ) ))(2(2
∞
•
−Π=Π TTLrhLrq soo
PTalukdar/Mech-IITD
01 =C
k
q
TC o
s
4
2 +=
h
rq
TT o
s
2
•
∞ +=

More Related Content

What's hot

W4_Lecture_Transient heat conduction.ppt
W4_Lecture_Transient heat conduction.pptW4_Lecture_Transient heat conduction.ppt
W4_Lecture_Transient heat conduction.ppt
Mike275736
 
Ch2 Heat transfer - conduction
Ch2 Heat transfer - conductionCh2 Heat transfer - conduction
Ch2 Heat transfer - conduction
eky047
 

What's hot (20)

basics of HMT
basics of HMTbasics of HMT
basics of HMT
 
Heat transfer experiment for chemical engineering student
Heat transfer experiment for chemical engineering studentHeat transfer experiment for chemical engineering student
Heat transfer experiment for chemical engineering student
 
Heat exchanger
Heat exchanger Heat exchanger
Heat exchanger
 
Linear heat conduction(Brass 25)
Linear heat conduction(Brass 25)Linear heat conduction(Brass 25)
Linear heat conduction(Brass 25)
 
W4_Lecture_Transient heat conduction.ppt
W4_Lecture_Transient heat conduction.pptW4_Lecture_Transient heat conduction.ppt
W4_Lecture_Transient heat conduction.ppt
 
Heat transfer chapter one and two
Heat transfer chapter one and twoHeat transfer chapter one and two
Heat transfer chapter one and two
 
Chapter 1 introduction of heat transfer
Chapter 1 introduction of heat transferChapter 1 introduction of heat transfer
Chapter 1 introduction of heat transfer
 
Heat exchangers
Heat exchangersHeat exchangers
Heat exchangers
 
Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Gove...
Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Gove...Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Gove...
Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Gove...
 
Heat 4e chap09_lecture
Heat 4e chap09_lectureHeat 4e chap09_lecture
Heat 4e chap09_lecture
 
Ch2 Heat transfer - conduction
Ch2 Heat transfer - conductionCh2 Heat transfer - conduction
Ch2 Heat transfer - conduction
 
Heat transfer by convection
Heat transfer by convectionHeat transfer by convection
Heat transfer by convection
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Heat exchangers
Heat exchangersHeat exchangers
Heat exchangers
 
Heat Exchanger
Heat ExchangerHeat Exchanger
Heat Exchanger
 
NATURAL/FREE CONVECTION
NATURAL/FREE CONVECTIONNATURAL/FREE CONVECTION
NATURAL/FREE CONVECTION
 
Shell and Tube Heat Exchanger
Shell and Tube Heat Exchanger Shell and Tube Heat Exchanger
Shell and Tube Heat Exchanger
 
Be project - PRDS (Pressure Reducing And Desuperheater Station)
Be project - PRDS (Pressure Reducing And Desuperheater Station)Be project - PRDS (Pressure Reducing And Desuperheater Station)
Be project - PRDS (Pressure Reducing And Desuperheater Station)
 
heat exchanger
heat exchangerheat exchanger
heat exchanger
 
SSL4 Steady Heat Conduction
SSL4 Steady Heat ConductionSSL4 Steady Heat Conduction
SSL4 Steady Heat Conduction
 

Viewers also liked

project ppt of critical thickness by emam raza khan
project  ppt of critical thickness by emam raza khanproject  ppt of critical thickness by emam raza khan
project ppt of critical thickness by emam raza khan
EMAM RAZA KHAN
 
Thermodynamics Chapter 3- Heat Transfer
Thermodynamics Chapter 3- Heat TransferThermodynamics Chapter 3- Heat Transfer
Thermodynamics Chapter 3- Heat Transfer
VJTI Production
 
Ex transfert 3_em _2010_11_
Ex transfert 3_em _2010_11_Ex transfert 3_em _2010_11_
Ex transfert 3_em _2010_11_
Amine Chahed
 
Heat Transfer Lesson PowerPoint, Convection, Conduction, Radiation, Labs
Heat Transfer Lesson PowerPoint, Convection, Conduction, Radiation, LabsHeat Transfer Lesson PowerPoint, Convection, Conduction, Radiation, Labs
Heat Transfer Lesson PowerPoint, Convection, Conduction, Radiation, Labs
www.sciencepowerpoint.com
 

Viewers also liked (17)

conduction
conductionconduction
conduction
 
project ppt of critical thickness by emam raza khan
project  ppt of critical thickness by emam raza khanproject  ppt of critical thickness by emam raza khan
project ppt of critical thickness by emam raza khan
 
Fabrication and determination of critical thickness of spherical objects
Fabrication and determination of critical      thickness of spherical objectsFabrication and determination of critical      thickness of spherical objects
Fabrication and determination of critical thickness of spherical objects
 
Rayonnement thermique
Rayonnement thermiqueRayonnement thermique
Rayonnement thermique
 
Heat conduction equation
Heat conduction equationHeat conduction equation
Heat conduction equation
 
(3) heat conduction equation [compatibility mode]
(3) heat conduction equation [compatibility mode](3) heat conduction equation [compatibility mode]
(3) heat conduction equation [compatibility mode]
 
Lec03
Lec03Lec03
Lec03
 
Radiation ppt by iit professor
Radiation ppt by iit professorRadiation ppt by iit professor
Radiation ppt by iit professor
 
Heat transfer
Heat transferHeat transfer
Heat transfer
 
Thermodynamics Chapter 3- Heat Transfer
Thermodynamics Chapter 3- Heat TransferThermodynamics Chapter 3- Heat Transfer
Thermodynamics Chapter 3- Heat Transfer
 
transferencia de calor
transferencia de calortransferencia de calor
transferencia de calor
 
Heat Transfer
Heat TransferHeat Transfer
Heat Transfer
 
Superficie con aletas
Superficie con aletas Superficie con aletas
Superficie con aletas
 
Ex transfert 3_em _2010_11_
Ex transfert 3_em _2010_11_Ex transfert 3_em _2010_11_
Ex transfert 3_em _2010_11_
 
Cours transfert de chaleur 3 EM
Cours transfert de chaleur 3 EMCours transfert de chaleur 3 EM
Cours transfert de chaleur 3 EM
 
11 Heat Transfer
11 Heat Transfer11 Heat Transfer
11 Heat Transfer
 
Heat Transfer Lesson PowerPoint, Convection, Conduction, Radiation, Labs
Heat Transfer Lesson PowerPoint, Convection, Conduction, Radiation, LabsHeat Transfer Lesson PowerPoint, Convection, Conduction, Radiation, Labs
Heat Transfer Lesson PowerPoint, Convection, Conduction, Radiation, Labs
 

Similar to (6 7)-1-d-ss-conduction-part2

heat diffusion equation.ppt
heat diffusion equation.pptheat diffusion equation.ppt
heat diffusion equation.ppt
056JatinGavel
 

Similar to (6 7)-1-d-ss-conduction-part2 (20)

Conducción de calor en estado estacionario
Conducción de calor en estado estacionarioConducción de calor en estado estacionario
Conducción de calor en estado estacionario
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
 
Mel242 6
Mel242 6Mel242 6
Mel242 6
 
bahan ajar kulaih perpindahan panas .ppt
bahan ajar kulaih perpindahan panas .pptbahan ajar kulaih perpindahan panas .ppt
bahan ajar kulaih perpindahan panas .ppt
 
MET 214 Module 2
MET 214 Module 2MET 214 Module 2
MET 214 Module 2
 
Etht grp 10 ,140080125005 006-007-008
Etht grp 10 ,140080125005 006-007-008Etht grp 10 ,140080125005 006-007-008
Etht grp 10 ,140080125005 006-007-008
 
Problem and solution i ph o 31
Problem and solution i ph o 31Problem and solution i ph o 31
Problem and solution i ph o 31
 
03C -Chapter 3 - Sec 3.6.ppt
03C -Chapter 3 - Sec 3.6.ppt03C -Chapter 3 - Sec 3.6.ppt
03C -Chapter 3 - Sec 3.6.ppt
 
Waveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxWaveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptx
 
5th heat transfer class, tuesday, january 28, 2014
5th heat transfer class, tuesday, january 28, 20145th heat transfer class, tuesday, january 28, 2014
5th heat transfer class, tuesday, january 28, 2014
 
mel242-8.ppt
mel242-8.pptmel242-8.ppt
mel242-8.ppt
 
Es 2017 18
Es 2017 18Es 2017 18
Es 2017 18
 
heat diffusion equation.ppt
heat diffusion equation.pptheat diffusion equation.ppt
heat diffusion equation.ppt
 
heat diffusion equation.ppt
heat diffusion equation.pptheat diffusion equation.ppt
heat diffusion equation.ppt
 
Datasheet
DatasheetDatasheet
Datasheet
 
Pe lec-thermal design-1
Pe lec-thermal design-1Pe lec-thermal design-1
Pe lec-thermal design-1
 
THERMAL CONDUCTIVITY OF GASES; MOLECULAR COLLISIONS AND MEAN FREE PATH.pptx
THERMAL CONDUCTIVITY OF GASES; MOLECULAR COLLISIONS AND MEAN FREE PATH.pptxTHERMAL CONDUCTIVITY OF GASES; MOLECULAR COLLISIONS AND MEAN FREE PATH.pptx
THERMAL CONDUCTIVITY OF GASES; MOLECULAR COLLISIONS AND MEAN FREE PATH.pptx
 
Shrinking Core: Non-Isothermal Reaction
Shrinking Core: Non-Isothermal ReactionShrinking Core: Non-Isothermal Reaction
Shrinking Core: Non-Isothermal Reaction
 
Initial and final condition for circuit
Initial and final condition for circuitInitial and final condition for circuit
Initial and final condition for circuit
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 

More from Vinod Kumar Turki (6)

Piping heat loss
Piping heat lossPiping heat loss
Piping heat loss
 
Piping heat loss
Piping heat lossPiping heat loss
Piping heat loss
 
Pipe material for_oxygen
Pipe material for_oxygenPipe material for_oxygen
Pipe material for_oxygen
 
Asme pipe fiting
Asme pipe fitingAsme pipe fiting
Asme pipe fiting
 
Spf catalog
Spf catalogSpf catalog
Spf catalog
 
Expansion joint-catalog
Expansion joint-catalogExpansion joint-catalog
Expansion joint-catalog
 

Recently uploaded

1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
AldoGarca30
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 

Recently uploaded (20)

Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdf
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 

(6 7)-1-d-ss-conduction-part2

  • 1. 1D STEADY STATE HEAT CONDUCTION (2)CONDUCTION (2) Prabal TalukdarPrabal Talukdar Associate Professor Department of Mechanical EngineeringDepartment of Mechanical Engineering IIT Delhi E-mail: prabal@mech.iitd.ac.inp PTalukdar/Mech-IITD
  • 2. Thermal Contact ResistanceThermal Contact Resistance PTalukdar/Mech-IITD Temperature distribution and heat flow lines along two solid plates pressed against each other for the case of perfect and imperfect contact
  • 3. Consider heat transfer through two metal rods of cross-sectional area A that are pressed against each other Heat transfer through the interface of these twoare pressed against each other. Heat transfer through the interface of these two rods is the sum of the heat transfers through the solid contact spots and the gaps in the noncontact areas and can be expressed as Most experimentally determinedMost experimentally determined values of the thermal contact resistance fall  between 0.000005 and 0.0005 m2∙°C/W (the  corresponding range of thermal contact  gapcontact QQQ ••• += • where A is the apparent interface area (which is the same as the cross- sectional area of the rods) and ΔT is the effective temperature conductance is 2000 to 200,000 W/m2∙°C).erfaceintc TAhQ Δ= sectional area of the rods) and ΔTinterface is the effective temperature difference at the interface. The quantity hc, which corresponds to the convection heat transfer coefficient, is called the thermal contact conductance and is expressed as It is related to thermal contact resistance by erfaceint c T AQ h Δ = • (W/m2 oC) PTalukdar/Mech-IITD It is related to thermal contact resistance by AQ T h 1 R erfaceint c c • Δ == (m2 oC/W)
  • 4. Importance of considerationImportance of consideration Th th l t t i tThe thermal contact resistance range: between 0.000005 and 0.0005 m2·°C/W PTalukdar/Mech-IITD
  • 5. Two parallel layersTwo parallel layers ⎞⎛ 11TTTT ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ +−= − + − =+= ••• 21 21 2 21 1 21 21 11 )( RR TT R TT R TT QQQ L L totalR TT Q 21 − = • ' 11 1 1 Ak L R = ' 22 2 2 Ak L R = PTalukdar/Mech-IITD 21 111 RRR total += 21 21 RR RR R total + =where
  • 6. Combined series-parallelCombined series parallel TT Q ∞ • − = 1 totalR Q = RR convconvtotal RR RR RR RRRR ++ + =++= 3 21 21 312 ' 11 1 1 Ak L R = ' 22 2 2 Ak L R = ' 33 3 3 Ak L R = 1 3 1 hA R conv = PTalukdar/Mech-IITD
  • 7. Series and parallel composite wall and its thermal circuit RA RD T∞1 A R∞1 RB RC RE RF R∞2 T∞2 T T TT 2C1 R 111 1 R 11 1 RR ∞∞ + ⎟ ⎞ ⎜ ⎛ ++ ⎟ ⎞ ⎜ ⎛ +=∑ T1 T3 T4T2 FEDBA R 1 R 1 R 1 R 1 R 1 ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ ++⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ + TUAQ Δ= • (W) where U is the overall heat transfer coefficient PTalukdar/Mech-IITD totalR UA 1 =
  • 8. Complex multi-dimensional problems as 1-D problems 1 Any plane wall normal to the x-axis is isothermal1. Any plane wall normal to the x-axis is isothermal 2. Any plane parallel to x-axis is adiabatic PTalukdar/Mech-IITD
  • 9. Heat conduction in cylinderHeat conduction in cylinder dT kAQ cylcond −= • L2Adr Q cyl,cond rL2A π= kdTdr Q 22 Tcyl,condr • ∫=∫ Substituting A = 2πrL and performing the integrations give kdTdr A 2 1 2 1 TTrr == ∫−=∫ )rrln( TT Lk2Q 12 21 cyl,cond − π= • cyl,condQ • =constant at steady state cyl 21 cyl,cond R TT Q − = • (W) PTalukdar/Mech-IITD Lk2 )rrln( R 12 cyl π = ln(outer radius/inner radius) 2π(length)(thermal conductivity) =
  • 10. Heat conduction in sphereHeat conduction in sphere For sphere sph 21 sphere,cond R TT Q − =& krr4 rr R 21 12 sph π − = = outer radius - inner radius 4π(outer radius)(inner radius)(thermal conductivity) PTalukdar/Mech-IITD
  • 11. Resistance NetworkResistance Network cylindrical 2,convcond1,convtotal RRRR ++= ( ) ( )12 1rrln1 ++= spherical ( ) 2211 h)Lr2(Lk2hLr2 π + π + π 2,convsph1,convtotal RRRR ++= ( ) 12 1rr1 + − + The thermal resistance network for a cylindrical (or spherical) shell subjected to convection from ( ) 2 2 221 12 1 2 1 h)r4(krr4hr4 π + π + π = PTalukdar/Mech-IITD spherical) shell subjected to convection from both the inner and the outer sides.
  • 12. Multilayered cylinderMultilayered cylinder 2,conv3,cyl2,cyl1,cyl1,convtotal RRRRRR ++++= PTalukdar/Mech-IITD ( ) ( ) ( ) 423 34 2 23 1 12 11 Ah 1 Lk2 rrln Lk2 rrln Lk2 rrln Ah 1 + π + π + π +=
  • 13. Radial heat conduction through cylindrical systems t T Cg z T .k z T r.k r 1 r T r.k rr 1 2 ∂ ∂ ρ=+⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ ∂ ∂ +⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ φ∂ ∂ φ∂ ∂ +⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ ∂ ∂ & 0 dr dT r dr d =⎟ ⎠ ⎞ ⎜ ⎝ ⎛ Integrating the above equation twice T=C ln r + C ⎠⎝ Subject to the boundary conditions, T=T1 at r = r1 and T=T2 at r = r2 Integrating the above equation twice, T=C1ln r + C2 ( ) ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − + ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − = 1 2 1221 1 2 12 r r ln rlnTrlnT rln r r ln TT T PTalukdar/Mech-IITD ⎠⎝⎠⎝ 11 rr
  • 14. Cd 1 1 1rrr r C .Lr2.k| dr dT kAQ 1 π−=−= = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −π−= 1 2 1 121 r r lnr 1 ).TT.(Lr2.kQ ⎠⎝ 1 ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −π = 2 21 r ln )TT(kL2 ⎟ ⎠ ⎜ ⎝ 1r PTalukdar/Mech-IITD
  • 15. Critical Radius of InsulationCritical Radius of Insulation 1. Steady state conditions 2. One-dimensional heat flow only in the radial direction r2 Insulation T h 3. Negligible thermal resistance due to cylinder wall 4 Negligible radiation exchange r1 Thin wall T∞ , h T4. Negligible radiation exchange between outer surface of insulation and surroundings Ts PTalukdar/Mech-IITD
  • 16. Critical Radius of InsulationCritical Radius of Insulation • Practically, it turns out that adding insulation in cylindrical and spherical exposed walls can initially cause the thermal resistance to decrease, therebyp y , y increasing the heat transfer rate because the outside area for convection heat transfer is getting larger. At some critical thickness, rcr, the thermal resistance increases again and consequently the heat transfer is reduced. • To find an expression for rcr, consider the thermal circuit below for an insulated cylindrical wall with thermal conductivity k: r Insulation T1 T s T∞Q& r2 r1 Insulation Thin wall T∞ , h hr2 1 2π ( ) k2 rrln 12 π 1 Thin wall Ts Rt’ PTalukdar/Mech-IITD
  • 17. An insulated cylindrical pipe exposed to convection from the outer surface and the thermal resistance networkand the thermal resistance network associated with it. PTalukdar/Mech-IITD
  • 18. • To find rcr, set the overall thermal resistance dRt’/dr = 0 and  solve for r: ( ) rh2 1 k2 rrln R i t π + π =′ ri = inner radius 0 hr2 1 kr2 1 dr Rd 2 t = π − π = ′ k k2 • For insulation thickness less that r the heat loss increases h k rr cr == h k2 rcr =Similarly for a sphere • For insulation thickness less that rcr the heat loss increases  with increasing r and for insulation thickness greater that  rcr the heat loss decreases with increasing r • If k = 0.03 W/(m∙K) and h = 10 W/(m2∙K): – cylinder mm3m003.0 ·K)W/(m10 W/(m·K)03.0 h k r 2cr ==== – sphere )( mm6 h k2 rcr ==PTalukdar/Mech-IITD
  • 19. Values of r1, h and k are constant To see the condition maximizes or minimizes the total resistance 11Rd2 At r =k/h hr 1 kr2 1 dr Rd 3 2 2 2 2 2 total 2 π + π −= Total thermal resistance per unit length At r2=k/h r ln 2 ⎟⎟ ⎞ ⎜⎜ ⎛ ( ) 0 hk2 1 k2 1 k 1 hk 1 dr Rd 2322 2 total 2 > π =⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − π = Heat transfer per unit length Always positive, total resistance at k/h is minimumhr2 1 k2 r ln R 2 1 total π + π ⎟⎟ ⎠ ⎜⎜ ⎝= iTTQ − = ∞ • k r = (m)p g Optimum thickness is associated with r2 , totalRL 0 2 = dr dRtotal h r cylinder,cr = (m) 2dr 0 hr2 1 kr2 1 2 22 = π − π h k r2 =
  • 20. ( ) ( ) cm1m01.0 CmW5 CmW05.0 h k r o2 o min insulationmax, max,cr ==≈= We can insulate hot water pipes and steam lines without worrying the critical radius of insulation Insulation of electric wires: -Radius of electric wires may be smaller than the critical radius Addition of insulation material increases heat transfer-Addition of insulation material increases heat transfer Critical radius of insulation for spherical shell: h k2 r sphere,cr =
  • 21. Summary • Table 3 3 Summary Table 3.3 PTalukdar/Mech-IITD
  • 22. 1D Conduction with Heat Generation PTalukdar/Mech-IITD
  • 23. 0 2 + • qTd 02 =+ kdx ( ) 2 CxCx q xT ++= • Boundary conditions: ( ) 21 2 CxCx k xT ++−= y ( ) 1,sTLT =− L TT C ss 2 1,2, 1 − = ( ) 2,sTLT = L2 22 1,2,2 2 ss TT L k q C + += • • PTalukdar/Mech-IITD 22 1 2 )( 1,2,1,2, 2 22 ssss TT L xTT L x k qL xT + + − +⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −= •
  • 24. sss TTT ≡= 2,1, xqL ⎟ ⎞ ⎜ ⎛ • 22 1)( sT L x k qL xT +⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −= 2 1 2 )( L • 2 If the surface temperature of the heat generating body is Put x = 0so T k qL TT +=≡ 2 )0( 2 If the surface temperature of the heat generating body is unknown and the surrounding fluid temperature is T∞ Using energy balance Find temperature gradient from the above Eq. at x = L)(| ∞= −=− TTh d dT k sLx • g gy We can obtain the surface temperature q PTalukdar/Mech-IITD dx h Lq TTs • ∞ +=
  • 25. 0 1 =+⎟ ⎠ ⎞ ⎜ ⎝ ⎛ • k q dr dT r dr d r ⎠⎝ kdrdrr 1 2 2 C k rq d dT r +−= • 1 2kdr 21 2 ln 4 )( CrC k rq rT ++−= • Boundary conditions: 4k dT TT )( s o T r k rq rT +⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −= • 2 22 1 4 )( 0| 0 ==r dr dT so TrT =)( rq TC o 2 • ork ⎟ ⎠ ⎜ ⎝4 ( ) ))(2(2 ∞ • −Π=Π TTLrhLrq soo PTalukdar/Mech-IITD 01 =C k q TC o s 4 2 += h rq TT o s 2 • ∞ +=