Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

Trigonometri

26.253 Aufrufe

Veröffentlicht am

Veröffentlicht in: Daten & Analysen
  • Als Erste(r) kommentieren

Trigonometri

  1. 1. Antaret e grupit: 1. Valeria Baçi (L) 2. Xhuljana Lakuta 3. Nadia Sazexhiu 4. Benita Merkaj 5. Eneida Ramaj 6. Vjola Xherimeja 7. Sajmir Nuhaj
  2. 2. Detyrat e Grupit: 1. Valeria Baçi (L) dhe Xhuljana Lakuta: Trigonometria ne jeten e perditshme-Video 2. Nadia Sazexhiu dhe Vjola Xherimeja: Funksionet Trigonometrike -Video 3. Benita Merkaj,Eneida Ramaj dhe Sajmir Nuhaj- Pune ne powerpoint: “Ç’jane funksionet trigonometrike?”
  3. 3. Trigonometria është degë e matematikës që merret me shqyrtimin e trekëndëshave duke përdorur funksionet të caktuara matematikore që zakonisht quhen funksione trigonometrike.
  4. 4. Funksionet trigonometrike Funksionet trigonometrike janë funksione të një këndi. Ato janë të rëndësishme për studimin ose zgjidhjen e trekëndëshit dhe modelimin e dukurive periodike. Funksionet trigonometrike përkufizohen si herës i dy brinjëve të trekëndëshit kënddrejtë. Ato gjithashtu përkufizohen edhe si gjatësia e segmenteve të caktuara në rrethin trigonometrik (rrethi njësi).
  5. 5. Sinusi Sinusi është herësi në mes katetit përballë dhe hipotenuzës. Kosinusi Kosiniusi është herësi midis katetit përbri dhe hipotenuzës. Tagenti Tangenti i një këndi është herësi në mes katetit përballë dhe katetit. Kotangenti Kotangenti është herësi në mes katetit ku shtrihet këndi dhe katetës përball këndit.
  6. 6. Ligji i sinusit Ligji i sinusit – Ne nje trekendesh me kende A, B, C dhe gjatesi brinje a, b, c ,raporti i sinusit te kendeve ndaj gjatesise se brinjeve eshte i barabarte. Sin A = Sin B = Sin C a b c A B C c b a h Sin A = h/b; Sin B = h/a h = b Sin A, h = a Sin B b Sin A = a Sin B; Sin A = Sin B a b
  7. 7. Ligji i kosinusit A B CD b a c a -x x h b2 = h2 + x2; h2 = b2 - x2 Cos C = x/b ; x = b Cos C c2 = h2 + (a-x)2; c2 = h2 + a2 –2ax + x2 c2 = (b2 - x2)+ a2 –2a(bCos C) + x2 c2 = b2 + a2 – 2abCos C Ne nje trekendesh,dy brinjet dhe kendi mes tyre formojne teoremen e kosinusit: a2 = b2 + c2 – 2bcCos A b2 = a2 + c2 – 2acCos B c2 = b2 + a2 – 2abCos C
  8. 8. 11 Vlerat e funksioneve trigonometrike. 0 30 45 60 90 Sinus 0 0.5 1/2 3/2 1 Cosinus 1 3/2 1/2 0.5 0 Tangent 0 1/ 3 1 3 Not defined Cotangent Not defined 3 1 1/ 3 0
  9. 9. 12 Identitetet trigonometrike  sin2A + cos2A = 1  1 + tan2A = sec2A  1 + cot2A = cosec2A  sin(A+B) = sinAcosB + cosAsin B  cos(A+B) = cosAcosB – sinAsinB  tan(A+B) = (tanA+tanB)/(1 – tanAtan B)  sin(A-B) = sinAcosB – cosAsinB  cos(A-B)=cosAcosB+sinAsinB  tan(A-B)=(tanA-tanB)(1+tanAtanB)  sin2A =2sinAcosA  cos2A=cos2A - sin2A
  10. 10. Zbatimet e trigonometrise ne jeten e perditshme.  Ka zbatim jashtëzakonisht të madh në inxhinieri, arkitekturë, orientim në hapësirë dhe astronomi. Ndahet në trigonometrinë plane (që merret me trekëndëshat në plan) dhe atë sferike (që merret me trekëndëshat sferikë). Funksionet trigonometrike gjithashtu luajnë rol në analizë dhe përdoren për të paraqitur valët dhe fenomenet e tjera periodike.
  11. 11.  Punoi : Valeria Baçi (L)

×