SlideShare a Scribd company logo
1 of 24
Download to read offline
Constraining central magnetic
field strength in strange quark
stars
Alexander Isayev
Kharkov Institute of Physics
Technology
XIII Conference "Problems of Contemporary
Nuclear Energetics"
2October 18, 2017
The main focus: nuclear matter in the deconfined state. If nuclear
matter is hot (high temperature) or dense (high baryon density) enough,
quarks will be released from the hadronic bags – the deconfinement
phase transition. The conditions of high temperature are realized in high
energy heavy-ion collisions at RHIC and LHC, and the conditions of high
density of about several times nuclear saturation density are met in
heavy neutron stars.
Strange quark matter: matter consisting of deconfined u, d, s quarks.
At zero temperature and pressure, the energy per baryon in
strange quark matter (SQM) for a certain range of the model QCD-related
parameters can be less than that for the most stable 56Fe nucleus, and,
hence, SQM can be the true ground state of matter.
A. Bodmer, Phys. Rev. D 4, 1601 (1971).
E. Witten, Phys. Rev. D 30, 272 (1984).
E. Farhi and R. L. Jaffe, Phys. Rev. D 30, 2379 (1984).
Introduction
XIII Conference "Problems of Contemporary
Nuclear Energetics"
3October 18, 2017
Astrophysical implications. SQM can be encountered in:
1. Strange quark stars, self-bound by strong interactions
(in contrast to neutron stars bound by gravitational forces).
2. Hybrid stars: SQM is metastable at zero pressure, but it can appear in
the high-density core of a neutron star as a result of the deconfinement
phase transition. In this case, the stability of SQM is provided by the
gravitational pressure from the outer hadronic layers.
3. Small nuggets, called strangelets (can be found in cosmic rays).
Introduction
When a critical size droplet of SQM is formed in the interior of a neutron
star, the conversion of a neutron star to strange quark star or hybrid star
proceeds via the laminar combustion, accompanied by quite a strong
neutrino signal ~ 1051-1052 erg/s. As a result, the neutrino luminosity
has the quasi-plateau, corresponding to the period of laminar
combustion, which can represent a firm signature for the existence of
quark matter inside compact stars.
XIII Conference "Problems of Contemporary
Nuclear Energetics"
4October 18, 2017
Another important aspect: compact stars are endowed with the magnetic
field.
Neutron stars observed in nature are magnetized objects with the
magnetic field strength at the surface in the range 109-1013 G.
R.C. Duncan, and C. Thompson (1992): even more strongly magnetized
objects, called magnetars, can exist in the universe with the field strength of
about 1014-1015 G at the surface. Golden candidates for magnetars: soft
gamma-ray repeaters and anomalous X-ray pulsars. Recently it was
suggested that a magnetized hybrid star, or a magnetized strange quark star
can be a real source of the SGRs or AXPs.
In the core of a magnetar the magnetic field strength may be even larger,
H ~ 1018-1020 G (from a scalar virial theorem).
Introduction
XIII Conference "Problems of Contemporary
Nuclear Energetics"
5October 18, 2017
Introduction
Possible mechanisms to generate such strong magnetic fields:
• turbulent dynamo amplification mechanism in a compact star with fast
rotating core;
• spontaneous ordering of nucleon or quark spins in the dense core of a
compact star
To note: In such ultrastrong magnetic fields, because of the breaking of the
rotational O(3) symmetry by the magnetic field, the total pressure becomes
anisotropic having different values along and perpendicular to the field
direction. The pressure anisotropy should be accounted for in strong
magnetic fields characteristic to the cores of magnetars.
XIII Conference "Problems of Contemporary
Nuclear Energetics"
6October 18, 2017
Introduction
Main objectives:
• to determine the domain in the model parameter space for which
magnetized SQM is absolutely stable, i.e., its energy per baryon is less
than that for the most stable 56Fe nucleus ;
• to study the impact of a strong magnetic field on the thermodynamic
properties of strange quark matter under the conditions relevant to the
the interior of strange quark stars with account of the effects of the
pressure anisotropy;
Related articles:
A.A. Isayev, Phys. Rev. C 91, 015208 (2015)
A.A. Isayev, J. Phys. Conf. Ser. 607, 012013 (2015)
A.A. Isayev, Int. J. Mod. Phys. A 29, 1450173 (2014)
XIII Conference "Problems of Contemporary
Nuclear Energetics"
7October 18, 2017
General Formalism: Magnetized Strange Quark Matter
A theoretical framework to study SQM: the MIT bag model.
In the simplified version of the MIT bag model, quarks are considered as free
fermions moving inside a finite region of space called a ”bag”. The effects of
the confinement are accomplished by endowing the finite region with a
constant energy per unit volume, the bag constant B. The bag constant B can
be also interpreted as the inward pressure - the ”bag pressure”, needed to
confine quarks inside the bag.
The Lagrangian density for a relativistic system of noninteracting quarks (u,d,s)
and leptons (e-) in an external magnetic field reads
Dirac equation for the quark and electron spinors
1 2
1
16
( =0,1,2,3)
, , ,
[ ( ) ] ,
,
i i i i
u d s e
L i q A m F F
F A A A Hx
μ μν
μ μ μν
μν μ ν ν μ μ μ
ψ γ ψ
π
δ μ
= ∂ − − −
= ∂ − ∂ =
∑
0[ ( ) ] , , , ,i i ii q A m i u d s eμ
μ μγ ψ∂ − − = =
XIII Conference "Problems of Contemporary
Nuclear Energetics"
8October 18, 2017
General Formalism: Magnetized Strange Quark Matter
The energy spectrum of free relativistic fermions in an external magnetic field has the
form
2 2 1
2 sgn
2 2
| | , ( )i
z i i i
s
k m q H n qνε ν ν= + + = + −
ν=0,1,2,… enumerates the Landau levels, n is principal quantum number, s=+1
corresponds to a fermion with spin up, s = - 1 to a fermion with spin down.
XIII Conference "Problems of Contemporary
Nuclear Energetics"
9October 18, 2017
General Formalism: Magnetized Strange Quark Matter
The grand thermodynamic potential density for nonmagnetized fermions of ith
species at finite temperature
{ } ( )
3
3
1 1
2
( )/ ( )/
ln lni i i iT T
i i
d k
g T e eε μ ε μ
π
− − − +
⎡ ⎤ ⎡ ⎤Ω = − + + +⎣ ⎦ ⎣ ⎦∫
For magnetized fermions of ith species:
( )
23
3 2 2 2
1 1 0
1
2
2 2 2 2 22
| |
... ... | | ... ...
( ) ( )
z z i
i z
s n s n
dk dk q Hd kd k
q H dkπ
π π π π ππ
∞ ∞ ∞
⊥
=± =±−∞ −∞
→ → =∑∑ ∑∑∫ ∫ ∫ ∫ ∫
{ }2
1 0
1 1
2
, ,( )/ ( )/| |
ln ln
i i
n s i n s iT Ti i
i z
s n
q g H
T dk e e
ε μ ε μ
π
∞
− − − +
=±
⎡ ⎤ ⎡ ⎤Ω = − + + +
⎣ ⎦ ⎣ ⎦∑∑∫
Hence
or
{ }02
0 0
2 1 1
2
( )/ ( )/
,
| |
( ) ln ln
i i
i iT Ti i
i z
q g H
T dk e eν νε μ ε μ
ν
ν
δ
π
∞∞
− − − +
=
⎡ ⎤ ⎡ ⎤Ω = − − + + +
⎣ ⎦ ⎣ ⎦∑ ∫
XIII Conference "Problems of Contemporary
Nuclear Energetics"
10October 18, 2017
General Formalism: Magnetized Strange Quark Matter
2
02
0
2 2 2
2 2
2
4
2
means the integer part of the argument
2
3 for quarks (# o
max
,
, , ,
,
, , ,
max
| |
( ) ln ,
| | , ,
, [...]
| |
,
i i
F iii i
i i F i
i
i
i i i F i i
i i i
i
i
kq g H
k m
m
m m q H k m
m
I I
q H
g
ν
ν
ν ν ν
ν ν
ν ν ν
μ
δ μ
π
ν μ
μ
ν
=
⎧ ⎫+⎪ ⎪
Ω = − − −⎨ ⎬
⎪ ⎪⎩ ⎭
= + = −
⎡ ⎤−
= ⎢ ⎥
⎣ ⎦
=
∑
f colors)
1 for electrons,
⎧
⎨
⎩
The grand thermodynamic potential density for fermions of ith species in the
external magnetic field at zero temperature reads
The number density of fermions of ith species i
i
i T
ρ
μ
⎛ ⎞∂Ω
= −⎜ ⎟
∂⎝ ⎠
max
,0 ,2
0
| |
(2 )
2
i
ii i
i F
q g H
k
ν
ν ν
ν
ρ δ
π =
= −∑
2
02
0
2 2 2
2 2
2
4
2
means the integer part of the argument
2
3 for quarks (# o
max
,
, , ,
,
, , ,
max
| |
( ) ln ,
| | , ,
, [...]
| |
,
i i
F iii i
i i F i
i
i
i i i F i i
i i i
i
i
kq g H
k m
m
m m q H k m
m
I I
q H
g
ν
ν
ν ν ν
ν ν
ν ν ν
μ
δ μ
π
ν μ
μ
ν
=
⎧ ⎫+⎪ ⎪
Ω = − − −⎨ ⎬
⎪ ⎪⎩ ⎭
= + = −
⎡ ⎤−
= ⎢ ⎥
⎣ ⎦
=
∑
f colors)
1 for electrons,
⎧
⎨
⎩
i
i
i T
ρ
μ
⎛ ⎞∂Ω
= −⎜ ⎟
∂⎝ ⎠
XIII Conference "Problems of Contemporary
Nuclear Energetics"
11October 18, 2017
General Formalism: Magnetized Strange Quark Matter
The energy density for fermions of ith species at zero temperature
2
2 2
,
8
,
8 8
i
i
l i t i
i i
H
E E B
H H
p B p HM B
π
π π
= + +
= − Ω − − = − Ω − + −
∑
∑ ∑
In the MIT bag model, the total energy density, longitudinal pl and transverse pt
pressures in quark matter are given by [Phys. Rev. C 82, 065802 (2010)]
M=Σi Mi is the total magnetization, Mi is the partial magnetization
i i i iE μ ρ= Ω +
2
02
0
2
4
max
,
, , ,
,
| |
( ) ln
i i
F iii i
i i F i
i
kq g H
E k m
m
ν
ν
ν ν ν
ν ν
μ
δ μ
π =
⎧ ⎫+⎪ ⎪
= − +⎨ ⎬
⎪ ⎪⎩ ⎭
∑
i
i
iM
H μ
∂Ω⎛ ⎞
= −⎜ ⎟
∂⎝ ⎠
The total pressure in magnetized SQM is anisotropic. There are two sources
of the pressure anisotropy:
• the matter part ~ M
• the field part ~ H2/8π (the Maxwell term)
In strong magnetic fields, for nonferromagnetic medium the field part is dominating
over the matter part and represents the major source of the pressure anisotropy.
XIII Conference "Problems of Contemporary
Nuclear Energetics"
12October 18, 2017
Absolute stability window for magnetized SQM
The absolute stability window: at zero external pressure and temperature
56
( Fe)m m
H
B BMSQM ud
E E
ε
ρ ρ
< <
Zero external pressure conditions in the MIT bag model description of SQM:
2
0,
8
0
l H H i
i
H
t H
H
p B
p H
H
π
⎧
= −Ω = Ω = Ω + +⎪⎪
⎨
∂Ω⎪ = −Ω + =
⎪ ∂⎩
∑
0 ,
i
H i
i
M
H H μ
∂Ω ∂Ω⎛ ⎞
= ⇒ = − ⎜ ⎟
∂ ∂⎝ ⎠
∑
In order to satisfy this equation, the bag pressure should be field dependent.
Otherwise, this equation would mean that the response of the system to an external
magnetic field would considerably exceed the paramagnetic response, that is hard
to expect without spontaneous spin ordering in the system.
0
4
H B
M
Hπ
∂
− − =
∂
1
3
B f
f
ρ ρ= ∑,
XIII Conference "Problems of Contemporary
Nuclear Energetics"
13October 18, 2017
Absolute stability window for magnetized SQM
In order to determine the absolute stability window:
1. To find the respective chemical potentials of all fermion species:
a) Charge neutrality
2 3 0u d s e
ρ ρ ρ ρ −− − − =
b) Chemical equilibrium with respect to weak processes
,
,
e e
e e
d u e u e d
s u e u e s
s u d u
ν ν
ν ν
− −
− −
→ + + + → +
→ + + + → +
+ ↔ +
,d u d se
μ μ μ μ μ−= + =
c) From the stability constraint:
56
( Fe) 930 MeVm
H
B MSQM
E
ε
ρ
= ≈
2. The upper (lower) bound on the bag pressure from the absolute stability window:
2
( )
, , ,
( , , )
( )
8
u l i
i u d s e
i u d e
H
B H
π=
=
= − Ω −∑
1) Upper bound on B:
56 19
( Fe) 930 MeV (for 10 G)m
H
B ud
E
Hε
ρ
= ≈ <2) Lower bound on B:
XIII Conference "Problems of Contemporary
Nuclear Energetics"
14October 18, 2017
Absolute stability window for magnetized SQM
The maximum value of the upper bound Bu: Bmax=Bu(H=0)≈85 MeV/fm3 for ms=90 MeV,
Bmax≈80 MeV/fm3 for ms=120 MeV, Bmax≈75 MeV/fm3 for ms=150 MeV
Bu vanishes at Hmax≈ 3.3·1018 G for ms=90 MeV; at Hmax≈ 3.2·1018 G for ms=120 MeV
at Hmax≈ 3.1·1018 G for ms=150 MeV
Thus, in order magnetized SQM would be absolutely stable, the magnetic field
strength should satisfy the constraint H<Hmax. In fact, Hmax represents the
upper bound on the magnetic field strength which could be reached in a
magnetized strange quark star
mu = md = 5 MeV, and
ms = 90; 120; 150 MeV;
For the lower bound Bl: Bmax=Bl(H=0)≈57 MeV/fm3; Bl vanishes at Hl,0≈ 2.7·1018 G
XIII Conference "Problems of Contemporary
Nuclear Energetics"
15October 18, 2017
Absolute stability window for magnetized SQM
The maximum values of the bounds ρB
u , ρB
l : ρB
u≈5.6ρ0, ρB
l≈4.4ρ0 for ms=90 MeV,
ρB
u≈5.4ρ0, ρB
l≈4.3ρ0 for ms=120 MeV, ρB
u≈5.2ρ0 , ρB
l≈4.1ρ0 for ms=150 MeV
The increase of the current mass ms leads to the decrease of the upper bound on
ρB
u: ρB
u(H=0) ≈ 2.4ρ0 for ms=90 MeV; ρB
u(H=0) ≈ 2.3ρ0 for ms=120 MeV; ρB
u(H=0) ≈
2.2ρ0 for ms=150 MeV
Magnetic fields H>~ 1018 G strongly affect the upper and lower bounds on the
baryon number density from the absolute stability window.
mu = md = 5 MeV, and
ms = 90; 120; 150 MeV;
XIII Conference "Problems of Contemporary
Nuclear Energetics"
16October 18, 2017
Magnetized strange quark stars
For the parameters within the absolute stability window, magnetized strange
quark stars made up entirely of SQM and self-bound by strong interactions
can be formed.
Aim: to study thermodynamic properties of magnetized SQM under conditions
relevant to the interior of strange quark stars with account of the effects of the
pressure anisotropy.
XIII Conference "Problems of Contemporary
Nuclear Energetics"
17October 18, 2017
SQM in inhomogeneous magnetic field
Magnetic field varies from the core to the surface. This variation can be modeled by
the dependence H(μB):
0
0
( ) 1
B B
B
B s cenH H H e
γ
μ μ
β
μ
μ
⎛ ⎞−
− ⎜ ⎟
⎝ ⎠
⎡ ⎤
⎢ ⎥= + −
⎢ ⎥
⎣ ⎦
In numerical calculations: Hs = 1015 G, the exponential parametrization with β=45, γ=3.
μB0 is the baryon chemical potential at the surface of a strange quark star,
Hcen and Hs– central and surface magnetic field strengths
The current quark masses: mu = md = 5 MeV, and ms = 150 MeV.
The bag pressure: B = 74 MeV/fm3 - smaller than the upper bound B ≈ 75 MeV/fm3
from the absolute stability window for these current quark masses.
XIII Conference "Problems of Contemporary
Nuclear Energetics"
18October 18, 2017
SQM in inhomogeneous magnetic field
From the set of four equations one can find the chemical potentials of quarks and
electrons and then the baryon chemical potential at the surface of a strange
quark star:
In order to determine the baryon chemical potential μB0 at the surface of a strange
quark star for this set of parameters:
2 3 0u d s e
ρ ρ ρ ρ −− − − =
1) Charge neutrality
2) Chemical equilibrium with respect to weak processes
,d u d se
μ μ μ μ μ−= + =
3) Further we assume a spherically symmetric radial distribution of the magnetic field
inside a star. Then the longitudinal pressure pL should vanish at the surface of a star:
2
0
8
l i
i
H
p B
π
= − Ω − − =∑
0 0 0 0 927.4 MeVB u d sμ μ μ μ= + + ≈
XIII Conference "Problems of Contemporary
Nuclear Energetics"
19October 18, 2017
Anisotropic pressure of SQM in inhomogeneous H
Transverse (the upper 3 curves) and longitudinal (the lower 3 curves) pressures in
magnetized SQM vs. μB at T=0 and variable central field Hcen. The full dots correspond to
the points where pL'(μB)=0.
States of MSQM with the central magnetic field, characterized by the appearance
pL'(μB)<0, are unstable: instability is developed along the magnetic field
XIII Conference "Problems of Contemporary
Nuclear Energetics"
20October 18, 2017
Energy density of magnetized SQM vs. μB
The energy density E (upper curves except the lower curve) and its matter part
contribution Em=E-H2/8π (the lower curve) vs. μB.
The relative role of the matter Em and magnetic field Ef contributions to E=Em+ Ef:
the matter part dominates over the field part at such μB and H.
XIII Conference "Problems of Contemporary
Nuclear Energetics"
21October 18, 2017
Anisotropic EoS of magnetized SQM
Because of the pressure anisotropy in strongly magnetized SQM, the equation of
state of the system is also highly anisotropic.
XIII Conference "Problems of Contemporary
Nuclear Energetics"
22October 18, 2017
Conclusions
In summary, we have considered the behavior of SQM at zero temperature
under additional constraints of charge neutrality and beta equilibrium within
the framework of the MIT bag model in strong magnetic fields up to 1019 G.
It has been determined the absolute stability window of magnetized SQM in the
planes “H – B” and “H – ρB”, for which at zero external pressure:
1) magnetized SQM has the energy per baryon less than that of the most
stable 56Fe nucleus,
2) the energy per baryon of magnetized two-flavor quark matter is larger than
that of 56Fe nucleus.
It has been clarified that the upper bound on the bag pressure from the
absolute stability window vanishes at H~3· 1018 G. The magnitude of this field,
in fact, plays the role of the upper bound on the magnetic field strength which
can be reached in a strongly magnetized strange quark star.
XIII Conference "Problems of Contemporary
Nuclear Energetics"
23October 18, 2017
Conclusions
For the parameters within the domain of absolute stability, magnetized strange
quark stars made up entirely of SQM and self-bound by strong interactions can
be formed. It has been studied the impact of a strong magnetic field, varying
with the baryon chemical potential, on thermodynamic properties of SQM in the
interior of a magnetized strange quark star:
• It is clarified that the central magnetic field strength is bound from above
by the value at which the derivative pL'(μB) vanishes first somewhere in the
interior of a strange quark star under varying the central field. Above this
upper bound, the instability along the magnetic field is developed in
magnetized SQM.
• The total energy density E, transverse pT and longitudinal pL pressures in
magnetized SQM have been calculated as functions of the baryon chemical
potential. Also, the highly anisotropic EoS has been determined in the
form of pT(E) and pL(E) dependences.
XIII Conference "Problems of Contemporary
Nuclear Energetics"
24October 18, 2017
Thank you for attention

More Related Content

What's hot

Ph 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSPh 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSChandan Singh
 
Analytical Solution Of Schrödinger Equation With Mie–Type Potential Using Fac...
Analytical Solution Of Schrödinger Equation With Mie–Type Potential Using Fac...Analytical Solution Of Schrödinger Equation With Mie–Type Potential Using Fac...
Analytical Solution Of Schrödinger Equation With Mie–Type Potential Using Fac...ijrap
 
SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...
SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...
SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...ijrap
 
Application of Schrodinger Equation to particle in one Dimensional Box: Energ...
Application of Schrodinger Equation to particle in one Dimensional Box: Energ...Application of Schrodinger Equation to particle in one Dimensional Box: Energ...
Application of Schrodinger Equation to particle in one Dimensional Box: Energ...limbraj Ravangave
 
On Application of Unbounded Hilbert Linear Operators in Quantum Mechanics
On Application of Unbounded Hilbert Linear Operators in Quantum MechanicsOn Application of Unbounded Hilbert Linear Operators in Quantum Mechanics
On Application of Unbounded Hilbert Linear Operators in Quantum MechanicsBRNSS Publication Hub
 
Properties of field induced Josephson junction(s)
Properties of field induced Josephson junction(s)Properties of field induced Josephson junction(s)
Properties of field induced Josephson junction(s)Krzysztof Pomorski
 
Eh2 piezoelectric energy harvesting due to harmonic excitations
Eh2   piezoelectric energy harvesting due to harmonic excitationsEh2   piezoelectric energy harvesting due to harmonic excitations
Eh2 piezoelectric energy harvesting due to harmonic excitationsUniversity of Glasgow
 
Exact Exchange in Density Functional Theory
Exact Exchange in Density Functional TheoryExact Exchange in Density Functional Theory
Exact Exchange in Density Functional TheoryABDERRAHMANE REGGAD
 
Vibration damping using smart materials
Vibration damping using smart materialsVibration damping using smart materials
Vibration damping using smart materialsMaged Mostafa
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSZac Darcy
 
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...SEENET-MTP
 

What's hot (19)

Ph 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSPh 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICS
 
Analytical Solution Of Schrödinger Equation With Mie–Type Potential Using Fac...
Analytical Solution Of Schrödinger Equation With Mie–Type Potential Using Fac...Analytical Solution Of Schrödinger Equation With Mie–Type Potential Using Fac...
Analytical Solution Of Schrödinger Equation With Mie–Type Potential Using Fac...
 
M1l5
M1l5M1l5
M1l5
 
UCSD NANO106 - 12 - X-ray diffraction
UCSD NANO106 - 12 - X-ray diffractionUCSD NANO106 - 12 - X-ray diffraction
UCSD NANO106 - 12 - X-ray diffraction
 
NANO266 - Lecture 8 - Properties of Periodic Solids
NANO266 - Lecture 8 - Properties of Periodic SolidsNANO266 - Lecture 8 - Properties of Periodic Solids
NANO266 - Lecture 8 - Properties of Periodic Solids
 
SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...
SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...
SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...
 
UCSD NANO106 - 11 - X-rays and their interaction with matter
UCSD NANO106 - 11 - X-rays and their interaction with matterUCSD NANO106 - 11 - X-rays and their interaction with matter
UCSD NANO106 - 11 - X-rays and their interaction with matter
 
Application of Schrodinger Equation to particle in one Dimensional Box: Energ...
Application of Schrodinger Equation to particle in one Dimensional Box: Energ...Application of Schrodinger Equation to particle in one Dimensional Box: Energ...
Application of Schrodinger Equation to particle in one Dimensional Box: Energ...
 
604 2441-1-pb
604 2441-1-pb604 2441-1-pb
604 2441-1-pb
 
Angular momentum
Angular momentumAngular momentum
Angular momentum
 
On Application of Unbounded Hilbert Linear Operators in Quantum Mechanics
On Application of Unbounded Hilbert Linear Operators in Quantum MechanicsOn Application of Unbounded Hilbert Linear Operators in Quantum Mechanics
On Application of Unbounded Hilbert Linear Operators in Quantum Mechanics
 
Properties of field induced Josephson junction(s)
Properties of field induced Josephson junction(s)Properties of field induced Josephson junction(s)
Properties of field induced Josephson junction(s)
 
Eh2 piezoelectric energy harvesting due to harmonic excitations
Eh2   piezoelectric energy harvesting due to harmonic excitationsEh2   piezoelectric energy harvesting due to harmonic excitations
Eh2 piezoelectric energy harvesting due to harmonic excitations
 
Lecture3
Lecture3Lecture3
Lecture3
 
Exact Exchange in Density Functional Theory
Exact Exchange in Density Functional TheoryExact Exchange in Density Functional Theory
Exact Exchange in Density Functional Theory
 
Vibration damping using smart materials
Vibration damping using smart materialsVibration damping using smart materials
Vibration damping using smart materials
 
M1l3
M1l3M1l3
M1l3
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
 
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
Yurri Sitenko "Boundary effects for magnetized quantum matter in particle and...
 

Similar to Isayev kipt khnu17

UNIT-V-MAGNETISM and SUPERCONDUCTIVITY.pptx
UNIT-V-MAGNETISM and SUPERCONDUCTIVITY.pptxUNIT-V-MAGNETISM and SUPERCONDUCTIVITY.pptx
UNIT-V-MAGNETISM and SUPERCONDUCTIVITY.pptxadityakamble83
 
Multi wavelenth observations and surveys of galaxy clusters
Multi wavelenth observations and surveys of galaxy clustersMulti wavelenth observations and surveys of galaxy clusters
Multi wavelenth observations and surveys of galaxy clustersJoana Santos
 
Electron Acoustic Waves Essay
Electron Acoustic Waves EssayElectron Acoustic Waves Essay
Electron Acoustic Waves EssayAmber Moore
 
Analysis of Pseudogap in Superconductors
Analysis of Pseudogap in SuperconductorsAnalysis of Pseudogap in Superconductors
Analysis of Pseudogap in SuperconductorsIOSR Journals
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...msejjournal
 
SURFACE POLARITONS IN GAAS/ALGAAS/LH HETROJUNCTION STRUCTURE IN A HIGH MAGNET...
SURFACE POLARITONS IN GAAS/ALGAAS/LH HETROJUNCTION STRUCTURE IN A HIGH MAGNET...SURFACE POLARITONS IN GAAS/ALGAAS/LH HETROJUNCTION STRUCTURE IN A HIGH MAGNET...
SURFACE POLARITONS IN GAAS/ALGAAS/LH HETROJUNCTION STRUCTURE IN A HIGH MAGNET...ijrap
 
Nonplanar-Ion-acoustic-Waves-in-a-Relativistically-Degenerate-Quantum-Plasma
Nonplanar-Ion-acoustic-Waves-in-a-Relativistically-Degenerate-Quantum-PlasmaNonplanar-Ion-acoustic-Waves-in-a-Relativistically-Degenerate-Quantum-Plasma
Nonplanar-Ion-acoustic-Waves-in-a-Relativistically-Degenerate-Quantum-PlasmaShiv Arjun
 
Electron wave function of first 3 states
Electron wave function of first 3 statesElectron wave function of first 3 states
Electron wave function of first 3 statesvijayakumar sivaji
 
My_Journal_Paper
My_Journal_PaperMy_Journal_Paper
My_Journal_PaperJess Wang
 
Quick and Dirty Introduction to Mott Insulators
Quick and Dirty Introduction to Mott InsulatorsQuick and Dirty Introduction to Mott Insulators
Quick and Dirty Introduction to Mott InsulatorsABDERRAHMANE REGGAD
 

Similar to Isayev kipt khnu17 (20)

UNIT-V-MAGNETISM and SUPERCONDUCTIVITY.pptx
UNIT-V-MAGNETISM and SUPERCONDUCTIVITY.pptxUNIT-V-MAGNETISM and SUPERCONDUCTIVITY.pptx
UNIT-V-MAGNETISM and SUPERCONDUCTIVITY.pptx
 
Multi wavelenth observations and surveys of galaxy clusters
Multi wavelenth observations and surveys of galaxy clustersMulti wavelenth observations and surveys of galaxy clusters
Multi wavelenth observations and surveys of galaxy clusters
 
final_report
final_reportfinal_report
final_report
 
Electron Acoustic Waves Essay
Electron Acoustic Waves EssayElectron Acoustic Waves Essay
Electron Acoustic Waves Essay
 
Analysis of Pseudogap in Superconductors
Analysis of Pseudogap in SuperconductorsAnalysis of Pseudogap in Superconductors
Analysis of Pseudogap in Superconductors
 
Spr in a thin metal film
Spr in a thin metal filmSpr in a thin metal film
Spr in a thin metal film
 
Starobinsky astana 2017
Starobinsky astana 2017Starobinsky astana 2017
Starobinsky astana 2017
 
thesis
thesisthesis
thesis
 
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
MODIFICATION OF DOPANT CONCENTRATION PROFILE IN A FIELD-EFFECT HETEROTRANSIST...
 
SURFACE POLARITONS IN GAAS/ALGAAS/LH HETROJUNCTION STRUCTURE IN A HIGH MAGNET...
SURFACE POLARITONS IN GAAS/ALGAAS/LH HETROJUNCTION STRUCTURE IN A HIGH MAGNET...SURFACE POLARITONS IN GAAS/ALGAAS/LH HETROJUNCTION STRUCTURE IN A HIGH MAGNET...
SURFACE POLARITONS IN GAAS/ALGAAS/LH HETROJUNCTION STRUCTURE IN A HIGH MAGNET...
 
Nonplanar-Ion-acoustic-Waves-in-a-Relativistically-Degenerate-Quantum-Plasma
Nonplanar-Ion-acoustic-Waves-in-a-Relativistically-Degenerate-Quantum-PlasmaNonplanar-Ion-acoustic-Waves-in-a-Relativistically-Degenerate-Quantum-Plasma
Nonplanar-Ion-acoustic-Waves-in-a-Relativistically-Degenerate-Quantum-Plasma
 
DIAS
DIASDIAS
DIAS
 
Akselrod article 2
Akselrod article 2Akselrod article 2
Akselrod article 2
 
Akselrod article 2
Akselrod article 2Akselrod article 2
Akselrod article 2
 
Electron wave function of first 3 states
Electron wave function of first 3 statesElectron wave function of first 3 states
Electron wave function of first 3 states
 
Quantum mechanics review
Quantum mechanics reviewQuantum mechanics review
Quantum mechanics review
 
Lect02
Lect02Lect02
Lect02
 
My_Journal_Paper
My_Journal_PaperMy_Journal_Paper
My_Journal_Paper
 
Quick and Dirty Introduction to Mott Insulators
Quick and Dirty Introduction to Mott InsulatorsQuick and Dirty Introduction to Mott Insulators
Quick and Dirty Introduction to Mott Insulators
 
Ijetcas14 318
Ijetcas14 318Ijetcas14 318
Ijetcas14 318
 

More from Ukrainian Nuclear Society

Ядерна енергетика та довкілля. Випуск № 3 (15) 2019
Ядерна енергетика та довкілля. Випуск № 3 (15) 2019Ядерна енергетика та довкілля. Випуск № 3 (15) 2019
Ядерна енергетика та довкілля. Випуск № 3 (15) 2019Ukrainian Nuclear Society
 
Звіт про роботу УкрЯТ за період з травня 2017 року по травень 2019 року
Звіт про роботу УкрЯТ за період з травня 2017 року по травень 2019 рокуЗвіт про роботу УкрЯТ за період з травня 2017 року по травень 2019 року
Звіт про роботу УкрЯТ за період з травня 2017 року по травень 2019 рокуUkrainian Nuclear Society
 
Ядерна енергетика та довкілля. Випуск № 2 (14) 2019
Ядерна енергетика та довкілля. Випуск № 2 (14) 2019Ядерна енергетика та довкілля. Випуск № 2 (14) 2019
Ядерна енергетика та довкілля. Випуск № 2 (14) 2019Ukrainian Nuclear Society
 
Інформаційний меседж УкрЯТ під час Міжнародного маршу за клімат в Україні
Інформаційний меседж УкрЯТ під час Міжнародного маршу за клімат в УкраїніІнформаційний меседж УкрЯТ під час Міжнародного маршу за клімат в Україні
Інформаційний меседж УкрЯТ під час Міжнародного маршу за клімат в УкраїніUkrainian Nuclear Society
 
Формування організаційно-правових засад та створення інфраструктури для повод...
Формування організаційно-правових засад та створення інфраструктури для повод...Формування організаційно-правових засад та створення інфраструктури для повод...
Формування організаційно-правових засад та створення інфраструктури для повод...Ukrainian Nuclear Society
 
Поводження з ВЯП АЕС України. Поточний стан та довгострокова стратегія
Поводження з ВЯП АЕС України. Поточний стан та довгострокова стратегіяПоводження з ВЯП АЕС України. Поточний стан та довгострокова стратегія
Поводження з ВЯП АЕС України. Поточний стан та довгострокова стратегіяUkrainian Nuclear Society
 
Проблеми розвитку уранової промисловості
Проблеми розвитку уранової промисловостіПроблеми розвитку уранової промисловості
Проблеми розвитку уранової промисловостіUkrainian Nuclear Society
 
Аналітичні звіти та доробки WNA щодо ядерного паливного циклу
Аналітичні звіти та доробки WNA щодо ядерного паливного циклуАналітичні звіти та доробки WNA щодо ядерного паливного циклу
Аналітичні звіти та доробки WNA щодо ядерного паливного циклуUkrainian Nuclear Society
 
Результати досліджень ÚJV Řež, a. s. щодо стратегії IVMR та можливості її зас...
Результати досліджень ÚJV Řež, a. s. щодо стратегії IVMR та можливості її зас...Результати досліджень ÚJV Řež, a. s. щодо стратегії IVMR та можливості її зас...
Результати досліджень ÚJV Řež, a. s. щодо стратегії IVMR та можливості її зас...Ukrainian Nuclear Society
 
Програма подовження експлуатації енергоблоків ВВЕР: що далі?
Програма подовження експлуатації енергоблоків ВВЕР: що далі?Програма подовження експлуатації енергоблоків ВВЕР: що далі?
Програма подовження експлуатації енергоблоків ВВЕР: що далі?Ukrainian Nuclear Society
 
Перспективний напрямок співробітництва НАЕК "Енергоатом" з компанією Holtec I...
Перспективний напрямок співробітництва НАЕК "Енергоатом" з компанією Holtec I...Перспективний напрямок співробітництва НАЕК "Енергоатом" з компанією Holtec I...
Перспективний напрямок співробітництва НАЕК "Енергоатом" з компанією Holtec I...Ukrainian Nuclear Society
 
Впровадження технологій малих модульних реакторів SMR-160: підготовчі заходи ...
Впровадження технологій малих модульних реакторів SMR-160: підготовчі заходи ...Впровадження технологій малих модульних реакторів SMR-160: підготовчі заходи ...
Впровадження технологій малих модульних реакторів SMR-160: підготовчі заходи ...Ukrainian Nuclear Society
 
Підготовка нормативної бази для впровадження малих модульних реакторів
Підготовка нормативної бази для впровадження малих модульних реакторівПідготовка нормативної бази для впровадження малих модульних реакторів
Підготовка нормативної бази для впровадження малих модульних реакторівUkrainian Nuclear Society
 
Дорфман А. О. - Розрахунок радіонуклідних векторів при характеризації РАВ з АЕС
Дорфман А. О. - Розрахунок радіонуклідних векторів при характеризації РАВ з АЕСДорфман А. О. - Розрахунок радіонуклідних векторів при характеризації РАВ з АЕС
Дорфман А. О. - Розрахунок радіонуклідних векторів при характеризації РАВ з АЕСUkrainian Nuclear Society
 
Донской Д. А. - Анализ безопасности реакторов малой мощности на легкой воде
Донской Д. А. - Анализ безопасности реакторов малой мощности на легкой водеДонской Д. А. - Анализ безопасности реакторов малой мощности на легкой воде
Донской Д. А. - Анализ безопасности реакторов малой мощности на легкой водеUkrainian Nuclear Society
 
Berková E. - Algorithm of unsteady 1d calculation for feed water temperature ...
Berková E. - Algorithm of unsteady 1d calculation for feed water temperature ...Berková E. - Algorithm of unsteady 1d calculation for feed water temperature ...
Berková E. - Algorithm of unsteady 1d calculation for feed water temperature ...Ukrainian Nuclear Society
 
Бочаров М. О. - Модернизация системы САОЗ для более эффективной работы при ав...
Бочаров М. О. - Модернизация системы САОЗ для более эффективной работы при ав...Бочаров М. О. - Модернизация системы САОЗ для более эффективной работы при ав...
Бочаров М. О. - Модернизация системы САОЗ для более эффективной работы при ав...Ukrainian Nuclear Society
 
Аніпченко Д. О. - Оновлення комутаційного обладнання за програмою ретрофіт
Аніпченко Д. О. - Оновлення комутаційного обладнання за програмою ретрофітАніпченко Д. О. - Оновлення комутаційного обладнання за програмою ретрофіт
Аніпченко Д. О. - Оновлення комутаційного обладнання за програмою ретрофітUkrainian Nuclear Society
 

More from Ukrainian Nuclear Society (20)

Zvit pravlinnya ukr_yat_23.11.21
Zvit pravlinnya ukr_yat_23.11.21Zvit pravlinnya ukr_yat_23.11.21
Zvit pravlinnya ukr_yat_23.11.21
 
Zvyt ukrns 2021
Zvyt ukrns 2021Zvyt ukrns 2021
Zvyt ukrns 2021
 
Ядерна енергетика та довкілля. Випуск № 3 (15) 2019
Ядерна енергетика та довкілля. Випуск № 3 (15) 2019Ядерна енергетика та довкілля. Випуск № 3 (15) 2019
Ядерна енергетика та довкілля. Випуск № 3 (15) 2019
 
Звіт про роботу УкрЯТ за період з травня 2017 року по травень 2019 року
Звіт про роботу УкрЯТ за період з травня 2017 року по травень 2019 рокуЗвіт про роботу УкрЯТ за період з травня 2017 року по травень 2019 року
Звіт про роботу УкрЯТ за період з травня 2017 року по травень 2019 року
 
Ядерна енергетика та довкілля. Випуск № 2 (14) 2019
Ядерна енергетика та довкілля. Випуск № 2 (14) 2019Ядерна енергетика та довкілля. Випуск № 2 (14) 2019
Ядерна енергетика та довкілля. Випуск № 2 (14) 2019
 
Інформаційний меседж УкрЯТ під час Міжнародного маршу за клімат в Україні
Інформаційний меседж УкрЯТ під час Міжнародного маршу за клімат в УкраїніІнформаційний меседж УкрЯТ під час Міжнародного маршу за клімат в Україні
Інформаційний меседж УкрЯТ під час Міжнародного маршу за клімат в Україні
 
Формування організаційно-правових засад та створення інфраструктури для повод...
Формування організаційно-правових засад та створення інфраструктури для повод...Формування організаційно-правових засад та створення інфраструктури для повод...
Формування організаційно-правових засад та створення інфраструктури для повод...
 
Поводження з ВЯП АЕС України. Поточний стан та довгострокова стратегія
Поводження з ВЯП АЕС України. Поточний стан та довгострокова стратегіяПоводження з ВЯП АЕС України. Поточний стан та довгострокова стратегія
Поводження з ВЯП АЕС України. Поточний стан та довгострокова стратегія
 
Проблеми розвитку уранової промисловості
Проблеми розвитку уранової промисловостіПроблеми розвитку уранової промисловості
Проблеми розвитку уранової промисловості
 
Аналітичні звіти та доробки WNA щодо ядерного паливного циклу
Аналітичні звіти та доробки WNA щодо ядерного паливного циклуАналітичні звіти та доробки WNA щодо ядерного паливного циклу
Аналітичні звіти та доробки WNA щодо ядерного паливного циклу
 
Результати досліджень ÚJV Řež, a. s. щодо стратегії IVMR та можливості її зас...
Результати досліджень ÚJV Řež, a. s. щодо стратегії IVMR та можливості її зас...Результати досліджень ÚJV Řež, a. s. щодо стратегії IVMR та можливості її зас...
Результати досліджень ÚJV Řež, a. s. щодо стратегії IVMR та можливості її зас...
 
Програма подовження експлуатації енергоблоків ВВЕР: що далі?
Програма подовження експлуатації енергоблоків ВВЕР: що далі?Програма подовження експлуатації енергоблоків ВВЕР: що далі?
Програма подовження експлуатації енергоблоків ВВЕР: що далі?
 
Перспективний напрямок співробітництва НАЕК "Енергоатом" з компанією Holtec I...
Перспективний напрямок співробітництва НАЕК "Енергоатом" з компанією Holtec I...Перспективний напрямок співробітництва НАЕК "Енергоатом" з компанією Holtec I...
Перспективний напрямок співробітництва НАЕК "Енергоатом" з компанією Holtec I...
 
Впровадження технологій малих модульних реакторів SMR-160: підготовчі заходи ...
Впровадження технологій малих модульних реакторів SMR-160: підготовчі заходи ...Впровадження технологій малих модульних реакторів SMR-160: підготовчі заходи ...
Впровадження технологій малих модульних реакторів SMR-160: підготовчі заходи ...
 
Підготовка нормативної бази для впровадження малих модульних реакторів
Підготовка нормативної бази для впровадження малих модульних реакторівПідготовка нормативної бази для впровадження малих модульних реакторів
Підготовка нормативної бази для впровадження малих модульних реакторів
 
Дорфман А. О. - Розрахунок радіонуклідних векторів при характеризації РАВ з АЕС
Дорфман А. О. - Розрахунок радіонуклідних векторів при характеризації РАВ з АЕСДорфман А. О. - Розрахунок радіонуклідних векторів при характеризації РАВ з АЕС
Дорфман А. О. - Розрахунок радіонуклідних векторів при характеризації РАВ з АЕС
 
Донской Д. А. - Анализ безопасности реакторов малой мощности на легкой воде
Донской Д. А. - Анализ безопасности реакторов малой мощности на легкой водеДонской Д. А. - Анализ безопасности реакторов малой мощности на легкой воде
Донской Д. А. - Анализ безопасности реакторов малой мощности на легкой воде
 
Berková E. - Algorithm of unsteady 1d calculation for feed water temperature ...
Berková E. - Algorithm of unsteady 1d calculation for feed water temperature ...Berková E. - Algorithm of unsteady 1d calculation for feed water temperature ...
Berková E. - Algorithm of unsteady 1d calculation for feed water temperature ...
 
Бочаров М. О. - Модернизация системы САОЗ для более эффективной работы при ав...
Бочаров М. О. - Модернизация системы САОЗ для более эффективной работы при ав...Бочаров М. О. - Модернизация системы САОЗ для более эффективной работы при ав...
Бочаров М. О. - Модернизация системы САОЗ для более эффективной работы при ав...
 
Аніпченко Д. О. - Оновлення комутаційного обладнання за програмою ретрофіт
Аніпченко Д. О. - Оновлення комутаційного обладнання за програмою ретрофітАніпченко Д. О. - Оновлення комутаційного обладнання за програмою ретрофіт
Аніпченко Д. О. - Оновлення комутаційного обладнання за програмою ретрофіт
 

Recently uploaded

Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitterShivangiSharma879191
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
computer application and construction management
computer application and construction managementcomputer application and construction management
computer application and construction managementMariconPadriquez1
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleAlluxio, Inc.
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 

Recently uploaded (20)

Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
computer application and construction management
computer application and construction managementcomputer application and construction management
computer application and construction management
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at Scale
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 

Isayev kipt khnu17

  • 1. Constraining central magnetic field strength in strange quark stars Alexander Isayev Kharkov Institute of Physics Technology
  • 2. XIII Conference "Problems of Contemporary Nuclear Energetics" 2October 18, 2017 The main focus: nuclear matter in the deconfined state. If nuclear matter is hot (high temperature) or dense (high baryon density) enough, quarks will be released from the hadronic bags – the deconfinement phase transition. The conditions of high temperature are realized in high energy heavy-ion collisions at RHIC and LHC, and the conditions of high density of about several times nuclear saturation density are met in heavy neutron stars. Strange quark matter: matter consisting of deconfined u, d, s quarks. At zero temperature and pressure, the energy per baryon in strange quark matter (SQM) for a certain range of the model QCD-related parameters can be less than that for the most stable 56Fe nucleus, and, hence, SQM can be the true ground state of matter. A. Bodmer, Phys. Rev. D 4, 1601 (1971). E. Witten, Phys. Rev. D 30, 272 (1984). E. Farhi and R. L. Jaffe, Phys. Rev. D 30, 2379 (1984). Introduction
  • 3. XIII Conference "Problems of Contemporary Nuclear Energetics" 3October 18, 2017 Astrophysical implications. SQM can be encountered in: 1. Strange quark stars, self-bound by strong interactions (in contrast to neutron stars bound by gravitational forces). 2. Hybrid stars: SQM is metastable at zero pressure, but it can appear in the high-density core of a neutron star as a result of the deconfinement phase transition. In this case, the stability of SQM is provided by the gravitational pressure from the outer hadronic layers. 3. Small nuggets, called strangelets (can be found in cosmic rays). Introduction When a critical size droplet of SQM is formed in the interior of a neutron star, the conversion of a neutron star to strange quark star or hybrid star proceeds via the laminar combustion, accompanied by quite a strong neutrino signal ~ 1051-1052 erg/s. As a result, the neutrino luminosity has the quasi-plateau, corresponding to the period of laminar combustion, which can represent a firm signature for the existence of quark matter inside compact stars.
  • 4. XIII Conference "Problems of Contemporary Nuclear Energetics" 4October 18, 2017 Another important aspect: compact stars are endowed with the magnetic field. Neutron stars observed in nature are magnetized objects with the magnetic field strength at the surface in the range 109-1013 G. R.C. Duncan, and C. Thompson (1992): even more strongly magnetized objects, called magnetars, can exist in the universe with the field strength of about 1014-1015 G at the surface. Golden candidates for magnetars: soft gamma-ray repeaters and anomalous X-ray pulsars. Recently it was suggested that a magnetized hybrid star, or a magnetized strange quark star can be a real source of the SGRs or AXPs. In the core of a magnetar the magnetic field strength may be even larger, H ~ 1018-1020 G (from a scalar virial theorem). Introduction
  • 5. XIII Conference "Problems of Contemporary Nuclear Energetics" 5October 18, 2017 Introduction Possible mechanisms to generate such strong magnetic fields: • turbulent dynamo amplification mechanism in a compact star with fast rotating core; • spontaneous ordering of nucleon or quark spins in the dense core of a compact star To note: In such ultrastrong magnetic fields, because of the breaking of the rotational O(3) symmetry by the magnetic field, the total pressure becomes anisotropic having different values along and perpendicular to the field direction. The pressure anisotropy should be accounted for in strong magnetic fields characteristic to the cores of magnetars.
  • 6. XIII Conference "Problems of Contemporary Nuclear Energetics" 6October 18, 2017 Introduction Main objectives: • to determine the domain in the model parameter space for which magnetized SQM is absolutely stable, i.e., its energy per baryon is less than that for the most stable 56Fe nucleus ; • to study the impact of a strong magnetic field on the thermodynamic properties of strange quark matter under the conditions relevant to the the interior of strange quark stars with account of the effects of the pressure anisotropy; Related articles: A.A. Isayev, Phys. Rev. C 91, 015208 (2015) A.A. Isayev, J. Phys. Conf. Ser. 607, 012013 (2015) A.A. Isayev, Int. J. Mod. Phys. A 29, 1450173 (2014)
  • 7. XIII Conference "Problems of Contemporary Nuclear Energetics" 7October 18, 2017 General Formalism: Magnetized Strange Quark Matter A theoretical framework to study SQM: the MIT bag model. In the simplified version of the MIT bag model, quarks are considered as free fermions moving inside a finite region of space called a ”bag”. The effects of the confinement are accomplished by endowing the finite region with a constant energy per unit volume, the bag constant B. The bag constant B can be also interpreted as the inward pressure - the ”bag pressure”, needed to confine quarks inside the bag. The Lagrangian density for a relativistic system of noninteracting quarks (u,d,s) and leptons (e-) in an external magnetic field reads Dirac equation for the quark and electron spinors 1 2 1 16 ( =0,1,2,3) , , , [ ( ) ] , , i i i i u d s e L i q A m F F F A A A Hx μ μν μ μ μν μν μ ν ν μ μ μ ψ γ ψ π δ μ = ∂ − − − = ∂ − ∂ = ∑ 0[ ( ) ] , , , ,i i ii q A m i u d s eμ μ μγ ψ∂ − − = =
  • 8. XIII Conference "Problems of Contemporary Nuclear Energetics" 8October 18, 2017 General Formalism: Magnetized Strange Quark Matter The energy spectrum of free relativistic fermions in an external magnetic field has the form 2 2 1 2 sgn 2 2 | | , ( )i z i i i s k m q H n qνε ν ν= + + = + − ν=0,1,2,… enumerates the Landau levels, n is principal quantum number, s=+1 corresponds to a fermion with spin up, s = - 1 to a fermion with spin down.
  • 9. XIII Conference "Problems of Contemporary Nuclear Energetics" 9October 18, 2017 General Formalism: Magnetized Strange Quark Matter The grand thermodynamic potential density for nonmagnetized fermions of ith species at finite temperature { } ( ) 3 3 1 1 2 ( )/ ( )/ ln lni i i iT T i i d k g T e eε μ ε μ π − − − + ⎡ ⎤ ⎡ ⎤Ω = − + + +⎣ ⎦ ⎣ ⎦∫ For magnetized fermions of ith species: ( ) 23 3 2 2 2 1 1 0 1 2 2 2 2 2 22 | | ... ... | | ... ... ( ) ( ) z z i i z s n s n dk dk q Hd kd k q H dkπ π π π π ππ ∞ ∞ ∞ ⊥ =± =±−∞ −∞ → → =∑∑ ∑∑∫ ∫ ∫ ∫ ∫ { }2 1 0 1 1 2 , ,( )/ ( )/| | ln ln i i n s i n s iT Ti i i z s n q g H T dk e e ε μ ε μ π ∞ − − − + =± ⎡ ⎤ ⎡ ⎤Ω = − + + + ⎣ ⎦ ⎣ ⎦∑∑∫ Hence or { }02 0 0 2 1 1 2 ( )/ ( )/ , | | ( ) ln ln i i i iT Ti i i z q g H T dk e eν νε μ ε μ ν ν δ π ∞∞ − − − + = ⎡ ⎤ ⎡ ⎤Ω = − − + + + ⎣ ⎦ ⎣ ⎦∑ ∫
  • 10. XIII Conference "Problems of Contemporary Nuclear Energetics" 10October 18, 2017 General Formalism: Magnetized Strange Quark Matter 2 02 0 2 2 2 2 2 2 4 2 means the integer part of the argument 2 3 for quarks (# o max , , , , , , , , max | | ( ) ln , | | , , , [...] | | , i i F iii i i i F i i i i i i F i i i i i i i kq g H k m m m m q H k m m I I q H g ν ν ν ν ν ν ν ν ν ν μ δ μ π ν μ μ ν = ⎧ ⎫+⎪ ⎪ Ω = − − −⎨ ⎬ ⎪ ⎪⎩ ⎭ = + = − ⎡ ⎤− = ⎢ ⎥ ⎣ ⎦ = ∑ f colors) 1 for electrons, ⎧ ⎨ ⎩ The grand thermodynamic potential density for fermions of ith species in the external magnetic field at zero temperature reads The number density of fermions of ith species i i i T ρ μ ⎛ ⎞∂Ω = −⎜ ⎟ ∂⎝ ⎠ max ,0 ,2 0 | | (2 ) 2 i ii i i F q g H k ν ν ν ν ρ δ π = = −∑ 2 02 0 2 2 2 2 2 2 4 2 means the integer part of the argument 2 3 for quarks (# o max , , , , , , , , max | | ( ) ln , | | , , , [...] | | , i i F iii i i i F i i i i i i F i i i i i i i kq g H k m m m m q H k m m I I q H g ν ν ν ν ν ν ν ν ν ν μ δ μ π ν μ μ ν = ⎧ ⎫+⎪ ⎪ Ω = − − −⎨ ⎬ ⎪ ⎪⎩ ⎭ = + = − ⎡ ⎤− = ⎢ ⎥ ⎣ ⎦ = ∑ f colors) 1 for electrons, ⎧ ⎨ ⎩ i i i T ρ μ ⎛ ⎞∂Ω = −⎜ ⎟ ∂⎝ ⎠
  • 11. XIII Conference "Problems of Contemporary Nuclear Energetics" 11October 18, 2017 General Formalism: Magnetized Strange Quark Matter The energy density for fermions of ith species at zero temperature 2 2 2 , 8 , 8 8 i i l i t i i i H E E B H H p B p HM B π π π = + + = − Ω − − = − Ω − + − ∑ ∑ ∑ In the MIT bag model, the total energy density, longitudinal pl and transverse pt pressures in quark matter are given by [Phys. Rev. C 82, 065802 (2010)] M=Σi Mi is the total magnetization, Mi is the partial magnetization i i i iE μ ρ= Ω + 2 02 0 2 4 max , , , , , | | ( ) ln i i F iii i i i F i i kq g H E k m m ν ν ν ν ν ν ν μ δ μ π = ⎧ ⎫+⎪ ⎪ = − +⎨ ⎬ ⎪ ⎪⎩ ⎭ ∑ i i iM H μ ∂Ω⎛ ⎞ = −⎜ ⎟ ∂⎝ ⎠ The total pressure in magnetized SQM is anisotropic. There are two sources of the pressure anisotropy: • the matter part ~ M • the field part ~ H2/8π (the Maxwell term) In strong magnetic fields, for nonferromagnetic medium the field part is dominating over the matter part and represents the major source of the pressure anisotropy.
  • 12. XIII Conference "Problems of Contemporary Nuclear Energetics" 12October 18, 2017 Absolute stability window for magnetized SQM The absolute stability window: at zero external pressure and temperature 56 ( Fe)m m H B BMSQM ud E E ε ρ ρ < < Zero external pressure conditions in the MIT bag model description of SQM: 2 0, 8 0 l H H i i H t H H p B p H H π ⎧ = −Ω = Ω = Ω + +⎪⎪ ⎨ ∂Ω⎪ = −Ω + = ⎪ ∂⎩ ∑ 0 , i H i i M H H μ ∂Ω ∂Ω⎛ ⎞ = ⇒ = − ⎜ ⎟ ∂ ∂⎝ ⎠ ∑ In order to satisfy this equation, the bag pressure should be field dependent. Otherwise, this equation would mean that the response of the system to an external magnetic field would considerably exceed the paramagnetic response, that is hard to expect without spontaneous spin ordering in the system. 0 4 H B M Hπ ∂ − − = ∂ 1 3 B f f ρ ρ= ∑,
  • 13. XIII Conference "Problems of Contemporary Nuclear Energetics" 13October 18, 2017 Absolute stability window for magnetized SQM In order to determine the absolute stability window: 1. To find the respective chemical potentials of all fermion species: a) Charge neutrality 2 3 0u d s e ρ ρ ρ ρ −− − − = b) Chemical equilibrium with respect to weak processes , , e e e e d u e u e d s u e u e s s u d u ν ν ν ν − − − − → + + + → + → + + + → + + ↔ + ,d u d se μ μ μ μ μ−= + = c) From the stability constraint: 56 ( Fe) 930 MeVm H B MSQM E ε ρ = ≈ 2. The upper (lower) bound on the bag pressure from the absolute stability window: 2 ( ) , , , ( , , ) ( ) 8 u l i i u d s e i u d e H B H π= = = − Ω −∑ 1) Upper bound on B: 56 19 ( Fe) 930 MeV (for 10 G)m H B ud E Hε ρ = ≈ <2) Lower bound on B:
  • 14. XIII Conference "Problems of Contemporary Nuclear Energetics" 14October 18, 2017 Absolute stability window for magnetized SQM The maximum value of the upper bound Bu: Bmax=Bu(H=0)≈85 MeV/fm3 for ms=90 MeV, Bmax≈80 MeV/fm3 for ms=120 MeV, Bmax≈75 MeV/fm3 for ms=150 MeV Bu vanishes at Hmax≈ 3.3·1018 G for ms=90 MeV; at Hmax≈ 3.2·1018 G for ms=120 MeV at Hmax≈ 3.1·1018 G for ms=150 MeV Thus, in order magnetized SQM would be absolutely stable, the magnetic field strength should satisfy the constraint H<Hmax. In fact, Hmax represents the upper bound on the magnetic field strength which could be reached in a magnetized strange quark star mu = md = 5 MeV, and ms = 90; 120; 150 MeV; For the lower bound Bl: Bmax=Bl(H=0)≈57 MeV/fm3; Bl vanishes at Hl,0≈ 2.7·1018 G
  • 15. XIII Conference "Problems of Contemporary Nuclear Energetics" 15October 18, 2017 Absolute stability window for magnetized SQM The maximum values of the bounds ρB u , ρB l : ρB u≈5.6ρ0, ρB l≈4.4ρ0 for ms=90 MeV, ρB u≈5.4ρ0, ρB l≈4.3ρ0 for ms=120 MeV, ρB u≈5.2ρ0 , ρB l≈4.1ρ0 for ms=150 MeV The increase of the current mass ms leads to the decrease of the upper bound on ρB u: ρB u(H=0) ≈ 2.4ρ0 for ms=90 MeV; ρB u(H=0) ≈ 2.3ρ0 for ms=120 MeV; ρB u(H=0) ≈ 2.2ρ0 for ms=150 MeV Magnetic fields H>~ 1018 G strongly affect the upper and lower bounds on the baryon number density from the absolute stability window. mu = md = 5 MeV, and ms = 90; 120; 150 MeV;
  • 16. XIII Conference "Problems of Contemporary Nuclear Energetics" 16October 18, 2017 Magnetized strange quark stars For the parameters within the absolute stability window, magnetized strange quark stars made up entirely of SQM and self-bound by strong interactions can be formed. Aim: to study thermodynamic properties of magnetized SQM under conditions relevant to the interior of strange quark stars with account of the effects of the pressure anisotropy.
  • 17. XIII Conference "Problems of Contemporary Nuclear Energetics" 17October 18, 2017 SQM in inhomogeneous magnetic field Magnetic field varies from the core to the surface. This variation can be modeled by the dependence H(μB): 0 0 ( ) 1 B B B B s cenH H H e γ μ μ β μ μ ⎛ ⎞− − ⎜ ⎟ ⎝ ⎠ ⎡ ⎤ ⎢ ⎥= + − ⎢ ⎥ ⎣ ⎦ In numerical calculations: Hs = 1015 G, the exponential parametrization with β=45, γ=3. μB0 is the baryon chemical potential at the surface of a strange quark star, Hcen and Hs– central and surface magnetic field strengths The current quark masses: mu = md = 5 MeV, and ms = 150 MeV. The bag pressure: B = 74 MeV/fm3 - smaller than the upper bound B ≈ 75 MeV/fm3 from the absolute stability window for these current quark masses.
  • 18. XIII Conference "Problems of Contemporary Nuclear Energetics" 18October 18, 2017 SQM in inhomogeneous magnetic field From the set of four equations one can find the chemical potentials of quarks and electrons and then the baryon chemical potential at the surface of a strange quark star: In order to determine the baryon chemical potential μB0 at the surface of a strange quark star for this set of parameters: 2 3 0u d s e ρ ρ ρ ρ −− − − = 1) Charge neutrality 2) Chemical equilibrium with respect to weak processes ,d u d se μ μ μ μ μ−= + = 3) Further we assume a spherically symmetric radial distribution of the magnetic field inside a star. Then the longitudinal pressure pL should vanish at the surface of a star: 2 0 8 l i i H p B π = − Ω − − =∑ 0 0 0 0 927.4 MeVB u d sμ μ μ μ= + + ≈
  • 19. XIII Conference "Problems of Contemporary Nuclear Energetics" 19October 18, 2017 Anisotropic pressure of SQM in inhomogeneous H Transverse (the upper 3 curves) and longitudinal (the lower 3 curves) pressures in magnetized SQM vs. μB at T=0 and variable central field Hcen. The full dots correspond to the points where pL'(μB)=0. States of MSQM with the central magnetic field, characterized by the appearance pL'(μB)<0, are unstable: instability is developed along the magnetic field
  • 20. XIII Conference "Problems of Contemporary Nuclear Energetics" 20October 18, 2017 Energy density of magnetized SQM vs. μB The energy density E (upper curves except the lower curve) and its matter part contribution Em=E-H2/8π (the lower curve) vs. μB. The relative role of the matter Em and magnetic field Ef contributions to E=Em+ Ef: the matter part dominates over the field part at such μB and H.
  • 21. XIII Conference "Problems of Contemporary Nuclear Energetics" 21October 18, 2017 Anisotropic EoS of magnetized SQM Because of the pressure anisotropy in strongly magnetized SQM, the equation of state of the system is also highly anisotropic.
  • 22. XIII Conference "Problems of Contemporary Nuclear Energetics" 22October 18, 2017 Conclusions In summary, we have considered the behavior of SQM at zero temperature under additional constraints of charge neutrality and beta equilibrium within the framework of the MIT bag model in strong magnetic fields up to 1019 G. It has been determined the absolute stability window of magnetized SQM in the planes “H – B” and “H – ρB”, for which at zero external pressure: 1) magnetized SQM has the energy per baryon less than that of the most stable 56Fe nucleus, 2) the energy per baryon of magnetized two-flavor quark matter is larger than that of 56Fe nucleus. It has been clarified that the upper bound on the bag pressure from the absolute stability window vanishes at H~3· 1018 G. The magnitude of this field, in fact, plays the role of the upper bound on the magnetic field strength which can be reached in a strongly magnetized strange quark star.
  • 23. XIII Conference "Problems of Contemporary Nuclear Energetics" 23October 18, 2017 Conclusions For the parameters within the domain of absolute stability, magnetized strange quark stars made up entirely of SQM and self-bound by strong interactions can be formed. It has been studied the impact of a strong magnetic field, varying with the baryon chemical potential, on thermodynamic properties of SQM in the interior of a magnetized strange quark star: • It is clarified that the central magnetic field strength is bound from above by the value at which the derivative pL'(μB) vanishes first somewhere in the interior of a strange quark star under varying the central field. Above this upper bound, the instability along the magnetic field is developed in magnetized SQM. • The total energy density E, transverse pT and longitudinal pL pressures in magnetized SQM have been calculated as functions of the baryon chemical potential. Also, the highly anisotropic EoS has been determined in the form of pT(E) and pL(E) dependences.
  • 24. XIII Conference "Problems of Contemporary Nuclear Energetics" 24October 18, 2017 Thank you for attention