SlideShare a Scribd company logo
1 of 19
Download to read offline
PSpice Model




 D.C. Motor
 Simplified SPICE Model



               All Rights Reserved Copyright (C) Bee Technologies Corporation 2012   1
Contents
 1. Benefit of the Model
 2. Model Feature
 3. Parameter Settings
 4. D.C. Motor Specification (Example)
 5. Motor Start Up Simulation at Normal Load
 6. Motor Start Up Simulation at Half of Normal Load
 7. Lj of the Motor Model (1/2)
 8. Application Example
 9. Winding Characteristic Parameters: Lm
 10.Winding Characteristic Parameters: Rm

 Simulation Index



                 All Rights Reserved Copyright (C) Bee Technologies Corporation 2012   2
1. Benefit of the Model

• The model enables circuit designer to use D.C. Motor as load in
  their design which include: Back EMF, Torque(Nm) and Speed
  (rpm) characteristics.

• The model can be easily adjusted to your own D.C. Motor
  specifications by editing a few parameters that are provided in the
  spec-sheet.




                  All Rights Reserved Copyright (C) Bee Technologies Corporation 2012   3
2. Model Feature

               1                    H1
                                             TRQ
                                         +
                                         -         1
                                    H
                             RM                         L1
                             {Rm}                       100m
                                             0

                             LM
                                                   2                    E_EMF
                             {Lm}
                                                   N4                                  EMF
                                                                        IN+     OUT+
                                                       OUT+ IN+         IN-     OUT-
                             H2                                                              Rdmy
                                                       OUT- IN-         EVALUE
                         +
                         -                             GRB
               2              H                        GVALUE
                                                   0                   0


                   Concept of Equivalent circuit of the D.C. Motor model


•   This D.C. Motor Simplified SPICE Model is for users who require the model
    of D.C. Motor as a part of their system.
•   Perform electrical (voltage and current) and mechanical (speed and torque)
    characteristics at current load (Ampere) conditions.


                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2012             4
3. Parameter Settings
                                                         Model Parameters:

                                                           If there is no measurement data, the default value will be
                                                           used:
                  U1                                                 Rm: motor winding resistance []
                  SMPL_DC_MOTOR                                      Lm: motor winding inductance [H]
                  Rm = 0.1
            +     Lm = 100u
            -     V_norm = 7.2
                  mNm = 19.6                               Data is given by D.C. motor spec-sheet:
                  kRPM_norm = 14.4
                  I_norm = 6.1                                       V_norm: normal voltage [V]
                                                                     mNm: normal load [mNm]
                  IL = 6.1                                           kRPM_norm: speed at normal load [kr/min]
                                                                     I_norm: current at normal load [A]
D.C. Motor model and Parameters with Default Value


                                                           Load Condition:

                                                                     IL: load current [A]


                                 All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                5
4. D.C. Motor Specification (Example)



      U1
      SMPL_DC_MOTOR
      Rm = 0.1
  +   Lm = 100u
  -   V_norm = 7.2
      mNm = 19.6
      kRPM_norm = 14.4
      I_norm = 6.1

      IL = 6.1   D.C. Motor Specification
                  Parameters are input




                     All Rights Reserved Copyright (C) Bee Technologies Corporation 2012   6
5. Motor Start Up Simulation at Normal Load (1/3)
Simulation Circuit and Setting
    PARAMETERS:                    Input the Supply No
    VOUT = 10.25                    Load Voltage* and
                                    Series Resistance
    Rs = 0.5                                                       VIM
                                                                                                      Simplified D.C. Motor with
                                                                                       VM                RS-540SH Spec.

                           RS
                           {Rs}                                Current Sensing
                                                                                                      U1
              V1                                                                                      SMPL_DC_MOTOR
              T2 = 0.01m                                                                              Rm = 0.1
              V2 = {VOUT}                                                                     +       Lm = 100u
                                                                                              -       V_norm = 7.2
                                                                                                      mNm = 19.6
                                                                                                      kRPM_norm = 14.4
                                                                                                      I_norm = 6.1

                                                                                                      IL = 6.1
                                                    0                                          0
*No Load Voltage is adjusted until the D.C. motor voltage (VM) equals to the normal voltage (7.2V).      Load Condition IL=I_norm
*Analysis directives:
.TRAN 0 400m 0 0.1m
.PROBE V(*) I(*) W(alias(*)) D(alias(*)) NOISE(alias(*))

                                All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                                7
5. Motor Start Up Simulation at Normal Load (2/3)




                                                                       Select “All” for the
                                                                     Voltages and Currents
                                                                    Data Collection Options.




              All Rights Reserved Copyright (C) Bee Technologies Corporation 2012              8
5. Motor Start Up Simulation at Normal Load (3/3)
 80V


 40V
                                                                                                   Torque Load= 19.6mNm
  0V
            V(X_U1.TRQ)
 20A
                                                                                            D.C. Motor Speed = 14.4krpm
 10A


  0A
            I(X_U1.V_kRPM)
 10V
                                                                                                D.C. Motor Voltage = 7.2V
  5V

SEL>>
   0V
            V(VM)
 20A


 10A                                                                                             D.C. Motor Current = 6.1A

  0A
       0s            40ms    80ms      120ms        160ms        200ms        240ms        280ms      320ms    360ms   400ms
            I(VIM)
                                                                  Time




                                All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                          9
6. Motor Start Up Simulation at Half of Normal Load (1/2)

Simulation Circuit and Setting
     PARAMETERS:                    Input the Supply No
     VOUT = 10.25                    Load Voltage* and
                                     Series Resistance
     Rs = 0.5                                                       VIM
                                                                                                       Simplified D.C. Motor with
                                                                                        VM                RS-540SH Spec.

                            RS
                            {Rs}                                Current Sensing
                                                                                                       U1
               V1                                                                                      SMPL_DC_MOTOR
               T2 = 0.01m                                                                              Rm = 0.1
               V2 = {VOUT}                                                                     +       Lm = 100u
                                                                                               -       V_norm = 7.2
                                                                                                       mNm = 19.6
                                                                                                       kRPM_norm = 14.4
                                                                                                       I_norm = 6.1

                                                                                                       IL = 3.05
                                                     0                                          0
 *No Load Voltage is adjusted until the D.C. motor voltage (VM) equals to the normal voltage (7.2V).      Load Condition IL=I_norm
*Analysis directives:
.TRAN 0 400m 0 0.1m
.PROBE V(*) I(*) W(alias(*)) D(alias(*)) NOISE(alias(*))

                                 All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                                10
6. Motor Start Up Simulation at Half of Normal Load (2/2)

 80V


 40V

                                                                                                      Torque Load= 9.8mNm
  0V
            V(X_U1.TRQ)
 20A

                                                                                          D.C. Motor Speed = 18.4krpm
 10A

SEL>>
   0A
            I(X_U1.V_kRPM)
 10V

                                                                                            D.C. Motor Voltage = 8.725V
  5V


  0V
            V(VM)
 20A


 10A
                                                                                              D.C. Motor Current = 3.05A
  0A
       0s            40ms    80ms      120ms        160ms        200ms        240ms        280ms         320ms   360ms   400ms
            I(VIM)
                                                                  Time




                                All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                          11
7. Lj of the Motor Model (1/2)
 Simulation Circuit and Setting
PARAMETERS:         Global parameter
VOUT = 10.25         Lj is assigned
Rs = 0.5                                                                     Double click to edit
Lj = 100m
                                       VIM                                   properties of the DC
                                                 VM                             Motor model
               RS
               {Rs}                                       U1
      V1                                                  SMPL_DC_MOTOR
      T2 = 0.01m                                          Rm = 0.1
      V2 = {VOUT}                                     +   Lm = 100u
                                                      -   V_norm = 7.2
                                                          mNm = 19.6
                                                          kRPM_norm = 14.4
                                                          I_norm = 6.1

 *Analysis directives:                                    IL = 6.1                           Input the Lj value or input
                       0                              0
 .TRAN 0 400m 0 0.1m                                                                        “{Lj}” for parametric sweep
 .STEP PARAM Lj LIST 100m, 200m




                                        All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                12
7. Lj of the Motor Model (2/2)
                                                                                               The Motor Start-up Waveform is
 80V                                                                                             changed by the Lj values.
               Lj=200m
 40V
                                                                                                              Torque Load= 19.6mNm
           Lj=100m
   0V
             V(X_U1.TRQ)
 20A
             Lj=100m
                                                                                                              D.C. Motor Speed = 14.4krpm
 10A



   0A
                       Lj=200m
             I(X_U1.V_kRPM)
 10V
           Lj=100m                                                                                            D.C. Motor Voltage = 7.2V
   5V


                     Lj=200m
   0V
             V(VM)
 20A
                                 Lj=200m
 10A                                                                                                          D.C. Motor Current = 6.1A
SEL>>       Lj=100m
   0A
      0s              40ms       80ms          120ms         160ms        200ms        240ms        280ms          320ms      360ms       400ms
             I(VIM)
                                                                          Time




                                        All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                                13
8. Application Example (1/3)
Simulation Circuit and Setting

            VDD             VCC                                                                     VCC
                                                                                                           Simplified D.C. Motor with
                                                                                                          RS-380PH Spec at No load.
                     Vdd          Vcc
                     15V          15V
                                                                                                          U2
                                                                                                          SMPL_DC_MOTOR
                                                                                                          Rm = 0.576
                0             0                                                           D2          +   Lm = 165u
                                                                                          D4001       -   V_norm = 7.2
                                                                                                          mNm = 9.8
                                                                                                          kRPM_norm = 14.2
                                                                                                          I_norm = 2.9
                                             U1
                                                                                                          IL = 0.6
                       R1               NC                   VCC VDD
                       1u
                                         A                   NC                    RG                                No load IL=0.6
                                                                                   120                        D3
   V1 = 0       V1                      K                    VO                                               DGT10J321_s
   V2 = 1.8                                                                                     U3
   TD = 0                               NC                   GND                          GT10J321
   TR = 10n
   TF = 10n
   PW = 199.99u                              TLP350
   PER = 400u

                0                  0                               0                                  0




                              All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                               14
8. Application Example (2/3)


 Measurement                                             Simulation
                                        14A        20V
                                    1         2

                                        12A        10V


                                        10A         0V
                                                                                     Motor Voltage (10V/Div)
                                         8A       -10V


                                         6A       -20V
                                                                                      Motor Current (2A/Div)
                                         4A       -30V


                                         2A       -40V


                                         0A       -50V

                                                    >>
                                        -2A       -60V
                                                    -100ms 0s 100ms       300ms      500ms     700ms    900ms
                                                       1    I(U2:1) 2     V(U2:1,U2:2)
                                                                                Time




               All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                              15
8. Application Example (3/3)


 Measurement                                          Simulation
                              14A        50V        20V
                          1         2          3

                              12A        40V        10V


                              10A        30V         0V

  IGBT: VGE                                               IGBT: VGE (10V/Div)
                               8A        20V       -10V


                               6A        10V       -20V


                               4A         0V       -30V
  IGBT: VCE                                               IGBT: VCE (10V/Div)
                               2A       -10V       -40V


                               0A       -20V       -50V
  IGBT: IC                     >>                          IGBT: IC (2A/Div)
                              -2A       -30V       -60V
                                                    898.0ms   898.4ms      898.8ms    899.2ms    899.6ms
                                                        1   I(U3:C) 2        V(U3:C) 3      V(U3:G)
                                                                                  Time




               All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                         16
9. Winding Characteristic Parameters: Lm

                      Winding Characteristic:2 Lm
                                    1
                                      14A       50V
                                                               3
                                                                    20V
      U2
      SMPL_DC_MOTOR
                                               12A      40V         10V
      Rm = 0.576
  +   Lm = 165u
  -   V_norm = 7.2    Motor Spec.
                                               10A      30V          0V
      mNm = 9.8
      kRPM_norm = 14.2                                                         Lm=100u
                                                8A      20V        -10V
      I_norm = 2.9
                                                                                            Lm=165u
      IL = 0.6                                  6A      10V        -20V
                      Load Condition

                                                4A       0V        -30V


                                                                            Lm=100u
   The Motor Current Waveform is                2A     -10V        -40V

     changed by the Lm values.                                                          Lm=165u
                                                0A     -20V        -50V


                                                                   >>
                                               -2A     -30V      -60V
                                                                  898.0ms 898.4ms       898.8ms 899.2ms   899.6ms
                                           1         I(U3:C)   2      V(U3:C) 3           V(U3:G)
                                                                                              Time




                      All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                           17
10. Winding Characteristic Parameters: Rm

                       Winding Characteristic: Rm
      U2
      SMPL_DC_MOTOR
      Rm = 0.576
  +   Lm = 165u
  -   V_norm = 7.2    Motor Spec.                                                Rm=0.1
      mNm = 9.8
      kRPM_norm = 14.2
      I_norm = 2.9

      IL = 0.6
                        Load Condition
                                                                                  Rm=0.576




                 The Motor Start-up is Current
                  changed by the Rm values.




                        All Rights Reserved Copyright (C) Bee Technologies Corporation 2012   18
Simulation Index

Simulations                                                                                    Folder name

1. Motor Start Up Simulation at Normal Load...................                                 Normal
2. Motor Start Up Simulation at Haft of Normal Load........ Half
3. Lj of the Motor Model....................................................                   Lj




                         All Rights Reserved Copyright (C) Bee Technologies Corporation 2012                 19

More Related Content

What's hot

Choppers and cycloconverters
Choppers and cycloconvertersChoppers and cycloconverters
Choppers and cycloconvertersSHIMI S L
 
opamp application, Bistable, astable and monostable multivibrator, IC-555 timer
opamp application, Bistable, astable and monostable multivibrator, IC-555 timeropamp application, Bistable, astable and monostable multivibrator, IC-555 timer
opamp application, Bistable, astable and monostable multivibrator, IC-555 timerAsif Iqbal
 
Negative amplifiers and its types Positive feedback and Negative feedback
Negative amplifiers and its types Positive feedback  and Negative feedbackNegative amplifiers and its types Positive feedback  and Negative feedback
Negative amplifiers and its types Positive feedback and Negative feedbackimtiazalijoono
 
Two Port Network Parameters
Two Port Network ParametersTwo Port Network Parameters
Two Port Network Parametersmmlodro
 
UNIT-III-DIGITAL SYSTEM DESIGN
UNIT-III-DIGITAL SYSTEM DESIGNUNIT-III-DIGITAL SYSTEM DESIGN
UNIT-III-DIGITAL SYSTEM DESIGNDr.YNM
 
Gate ee 2006 with solutions
Gate ee 2006 with solutionsGate ee 2006 with solutions
Gate ee 2006 with solutionskhemraj298
 
VHDL-PRESENTATION.ppt
VHDL-PRESENTATION.pptVHDL-PRESENTATION.ppt
VHDL-PRESENTATION.pptDr.YNM
 
Operational amplifier UA741
Operational amplifier UA741Operational amplifier UA741
Operational amplifier UA741unni krishnan
 
Lic lab manual
Lic lab manualLic lab manual
Lic lab manualAJAL A J
 
DSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformDSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformAmr E. Mohamed
 
OP-AMP Configurations: Inverting and Non-Inverting
OP-AMP Configurations: Inverting and Non-InvertingOP-AMP Configurations: Inverting and Non-Inverting
OP-AMP Configurations: Inverting and Non-InvertingAtharva Chavan
 
Chapter-4 FET (1).ppt
Chapter-4 FET (1).pptChapter-4 FET (1).ppt
Chapter-4 FET (1).pptJeelBhanderi4
 
Design and realization of fir filter using chebyshev window
Design and realization of fir filter using chebyshev windowDesign and realization of fir filter using chebyshev window
Design and realization of fir filter using chebyshev windowSubhadeep Chakraborty
 

What's hot (20)

Power amplifiers
Power amplifiersPower amplifiers
Power amplifiers
 
PLDs
PLDsPLDs
PLDs
 
Choppers and cycloconverters
Choppers and cycloconvertersChoppers and cycloconverters
Choppers and cycloconverters
 
opamp application, Bistable, astable and monostable multivibrator, IC-555 timer
opamp application, Bistable, astable and monostable multivibrator, IC-555 timeropamp application, Bistable, astable and monostable multivibrator, IC-555 timer
opamp application, Bistable, astable and monostable multivibrator, IC-555 timer
 
Negative amplifiers and its types Positive feedback and Negative feedback
Negative amplifiers and its types Positive feedback  and Negative feedbackNegative amplifiers and its types Positive feedback  and Negative feedback
Negative amplifiers and its types Positive feedback and Negative feedback
 
Two Port Network Parameters
Two Port Network ParametersTwo Port Network Parameters
Two Port Network Parameters
 
Ee321s3.1
Ee321s3.1Ee321s3.1
Ee321s3.1
 
4 bit add sub
4 bit add sub4 bit add sub
4 bit add sub
 
UNIT-III-DIGITAL SYSTEM DESIGN
UNIT-III-DIGITAL SYSTEM DESIGNUNIT-III-DIGITAL SYSTEM DESIGN
UNIT-III-DIGITAL SYSTEM DESIGN
 
Gate ee 2006 with solutions
Gate ee 2006 with solutionsGate ee 2006 with solutions
Gate ee 2006 with solutions
 
VHDL-PRESENTATION.ppt
VHDL-PRESENTATION.pptVHDL-PRESENTATION.ppt
VHDL-PRESENTATION.ppt
 
Operational amplifier UA741
Operational amplifier UA741Operational amplifier UA741
Operational amplifier UA741
 
Lic lab manual
Lic lab manualLic lab manual
Lic lab manual
 
DSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformDSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-Transform
 
Pass Transistor Logic
Pass Transistor LogicPass Transistor Logic
Pass Transistor Logic
 
OP-AMP Configurations: Inverting and Non-Inverting
OP-AMP Configurations: Inverting and Non-InvertingOP-AMP Configurations: Inverting and Non-Inverting
OP-AMP Configurations: Inverting and Non-Inverting
 
Z transfrm ppt
Z transfrm pptZ transfrm ppt
Z transfrm ppt
 
Z Transform
Z TransformZ Transform
Z Transform
 
Chapter-4 FET (1).ppt
Chapter-4 FET (1).pptChapter-4 FET (1).ppt
Chapter-4 FET (1).ppt
 
Design and realization of fir filter using chebyshev window
Design and realization of fir filter using chebyshev windowDesign and realization of fir filter using chebyshev window
Design and realization of fir filter using chebyshev window
 

Similar to Simple Model of DC Motor using PSpice

Simple Model of DC Motor using LTspice
Simple Model of DC Motor using LTspiceSimple Model of DC Motor using LTspice
Simple Model of DC Motor using LTspiceTsuyoshi Horigome
 
DCモーターのシンプルモデルの解説書(PSpice)
DCモーターのシンプルモデルの解説書(PSpice)DCモーターのシンプルモデルの解説書(PSpice)
DCモーターのシンプルモデルの解説書(PSpice)spicepark
 
Concept Kit:PWM Boost Converter Transients Model
Concept Kit:PWM Boost Converter Transients ModelConcept Kit:PWM Boost Converter Transients Model
Concept Kit:PWM Boost Converter Transients ModelTsuyoshi Horigome
 
Concept Kit:PWM Buck Converter Average Model (NJM2309)
Concept Kit:PWM Buck Converter Average Model (NJM2309)Concept Kit:PWM Buck Converter Average Model (NJM2309)
Concept Kit:PWM Buck Converter Average Model (NJM2309)Tsuyoshi Horigome
 
Spiceを活用したモーター駆動制御シミュレーションセミナー資料
Spiceを活用したモーター駆動制御シミュレーションセミナー資料Spiceを活用したモーター駆動制御シミュレーションセミナー資料
Spiceを活用したモーター駆動制御シミュレーションセミナー資料spicepark
 
3相ACモーターのスパイスモデルの概要
3相ACモーターのスパイスモデルの概要3相ACモーターのスパイスモデルの概要
3相ACモーターのスパイスモデルの概要Tsuyoshi Horigome
 
SPICE MODEL of RF-270RH-0.5V in SPICE PARK
SPICE MODEL of RF-270RH-0.5V in SPICE PARKSPICE MODEL of RF-270RH-0.5V in SPICE PARK
SPICE MODEL of RF-270RH-0.5V in SPICE PARKTsuyoshi Horigome
 
Concept Kit:PWM Buck Converter Transients Model
Concept Kit:PWM Buck Converter Transients ModelConcept Kit:PWM Buck Converter Transients Model
Concept Kit:PWM Buck Converter Transients ModelTsuyoshi Horigome
 
Concept Kit:PWM Buck Converter Average Model
Concept Kit:PWM Buck Converter Average ModelConcept Kit:PWM Buck Converter Average Model
Concept Kit:PWM Buck Converter Average ModelTsuyoshi Horigome
 
ACモーターのスパイスモデルについて
ACモーターのスパイスモデルについてACモーターのスパイスモデルについて
ACモーターのスパイスモデルについてTsuyoshi Horigome
 
SPICE MODEL of RF-500TB-1.5V in SPICE PARK
SPICE MODEL of RF-500TB-1.5V in SPICE PARKSPICE MODEL of RF-500TB-1.5V in SPICE PARK
SPICE MODEL of RF-500TB-1.5V in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of RF-270RH-1.5V in SPICE PARK
SPICE MODEL of RF-270RH-1.5V in SPICE PARKSPICE MODEL of RF-270RH-1.5V in SPICE PARK
SPICE MODEL of RF-270RH-1.5V in SPICE PARKTsuyoshi Horigome
 
Simple Model of Transformer using LTspice
Simple Model of Transformer using LTspiceSimple Model of Transformer using LTspice
Simple Model of Transformer using LTspiceTsuyoshi Horigome
 
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)Tsuyoshi Horigome
 
SPICE MODEL of RF-500TB-0.5V in SPICE PARK
SPICE MODEL of RF-500TB-0.5V in SPICE PARKSPICE MODEL of RF-500TB-0.5V in SPICE PARK
SPICE MODEL of RF-500TB-0.5V in SPICE PARKTsuyoshi Horigome
 
IRJET- Modified Perturb and Observe MPPT Algorithm for Drift Avoidance using ...
IRJET- Modified Perturb and Observe MPPT Algorithm for Drift Avoidance using ...IRJET- Modified Perturb and Observe MPPT Algorithm for Drift Avoidance using ...
IRJET- Modified Perturb and Observe MPPT Algorithm for Drift Avoidance using ...IRJET Journal
 
Piggott turbine design_code_dakar_presentation
Piggott turbine design_code_dakar_presentationPiggott turbine design_code_dakar_presentation
Piggott turbine design_code_dakar_presentationHanan E. Levy
 

Similar to Simple Model of DC Motor using PSpice (20)

Simple Model of DC Motor using LTspice
Simple Model of DC Motor using LTspiceSimple Model of DC Motor using LTspice
Simple Model of DC Motor using LTspice
 
DCモーターのシンプルモデルの解説書(PSpice)
DCモーターのシンプルモデルの解説書(PSpice)DCモーターのシンプルモデルの解説書(PSpice)
DCモーターのシンプルモデルの解説書(PSpice)
 
Concept Kit:PWM Boost Converter Transients Model
Concept Kit:PWM Boost Converter Transients ModelConcept Kit:PWM Boost Converter Transients Model
Concept Kit:PWM Boost Converter Transients Model
 
Concept Kit:PWM Buck Converter Average Model (NJM2309)
Concept Kit:PWM Buck Converter Average Model (NJM2309)Concept Kit:PWM Buck Converter Average Model (NJM2309)
Concept Kit:PWM Buck Converter Average Model (NJM2309)
 
Spiceを活用したモーター駆動制御シミュレーションセミナー資料
Spiceを活用したモーター駆動制御シミュレーションセミナー資料Spiceを活用したモーター駆動制御シミュレーションセミナー資料
Spiceを活用したモーター駆動制御シミュレーションセミナー資料
 
3相ACモーターのスパイスモデルの概要
3相ACモーターのスパイスモデルの概要3相ACモーターのスパイスモデルの概要
3相ACモーターのスパイスモデルの概要
 
SPICE MODEL of RF-270RH-0.5V in SPICE PARK
SPICE MODEL of RF-270RH-0.5V in SPICE PARKSPICE MODEL of RF-270RH-0.5V in SPICE PARK
SPICE MODEL of RF-270RH-0.5V in SPICE PARK
 
Concept Kit:PWM Buck Converter Transients Model
Concept Kit:PWM Buck Converter Transients ModelConcept Kit:PWM Buck Converter Transients Model
Concept Kit:PWM Buck Converter Transients Model
 
Concept Kit:PWM Buck Converter Average Model
Concept Kit:PWM Buck Converter Average ModelConcept Kit:PWM Buck Converter Average Model
Concept Kit:PWM Buck Converter Average Model
 
5630731
56307315630731
5630731
 
ACモーターのスパイスモデルについて
ACモーターのスパイスモデルについてACモーターのスパイスモデルについて
ACモーターのスパイスモデルについて
 
SPICE MODEL of RF-500TB-1.5V in SPICE PARK
SPICE MODEL of RF-500TB-1.5V in SPICE PARKSPICE MODEL of RF-500TB-1.5V in SPICE PARK
SPICE MODEL of RF-500TB-1.5V in SPICE PARK
 
SPICE MODEL of RF-270RH-1.5V in SPICE PARK
SPICE MODEL of RF-270RH-1.5V in SPICE PARKSPICE MODEL of RF-270RH-1.5V in SPICE PARK
SPICE MODEL of RF-270RH-1.5V in SPICE PARK
 
Simple Model of Transformer using LTspice
Simple Model of Transformer using LTspiceSimple Model of Transformer using LTspice
Simple Model of Transformer using LTspice
 
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
Concept Kit 3-Phase AC Motor Drive Simulation (PSpice Version)
 
SPICE MODEL of RF-500TB-0.5V in SPICE PARK
SPICE MODEL of RF-500TB-0.5V in SPICE PARKSPICE MODEL of RF-500TB-0.5V in SPICE PARK
SPICE MODEL of RF-500TB-0.5V in SPICE PARK
 
POWER SYSTEM LOADS
POWER SYSTEM LOADSPOWER SYSTEM LOADS
POWER SYSTEM LOADS
 
POWER SYSTEM LOADS
POWER SYSTEM LOADSPOWER SYSTEM LOADS
POWER SYSTEM LOADS
 
IRJET- Modified Perturb and Observe MPPT Algorithm for Drift Avoidance using ...
IRJET- Modified Perturb and Observe MPPT Algorithm for Drift Avoidance using ...IRJET- Modified Perturb and Observe MPPT Algorithm for Drift Avoidance using ...
IRJET- Modified Perturb and Observe MPPT Algorithm for Drift Avoidance using ...
 
Piggott turbine design_code_dakar_presentation
Piggott turbine design_code_dakar_presentationPiggott turbine design_code_dakar_presentation
Piggott turbine design_code_dakar_presentation
 

More from Tsuyoshi Horigome

FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)Tsuyoshi Horigome
 
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )Tsuyoshi Horigome
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Tsuyoshi Horigome
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )Tsuyoshi Horigome
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Tsuyoshi Horigome
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )Tsuyoshi Horigome
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Tsuyoshi Horigome
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Tsuyoshi Horigome
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspiceTsuyoshi Horigome
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is ErrorTsuyoshi Horigome
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintTsuyoshi Horigome
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsTsuyoshi Horigome
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hiresTsuyoshi Horigome
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Tsuyoshi Horigome
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Tsuyoshi Horigome
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)Tsuyoshi Horigome
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモTsuyoshi Horigome
 

More from Tsuyoshi Horigome (20)

FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
 
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモ
 

Recently uploaded

Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingEdi Saputra
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxRustici Software
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MIND CTI
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Angeliki Cooney
 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024The Digital Insurer
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontologyjohnbeverley2021
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDropbox
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...apidays
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsNanddeep Nachan
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfOrbitshub
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businesspanagenda
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobeapidays
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...apidays
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyKhushali Kathiriya
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAndrey Devyatkin
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdfSandro Moreira
 

Recently uploaded (20)

Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering Developers
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontology
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 

Simple Model of DC Motor using PSpice

  • 1. PSpice Model D.C. Motor Simplified SPICE Model All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 1
  • 2. Contents 1. Benefit of the Model 2. Model Feature 3. Parameter Settings 4. D.C. Motor Specification (Example) 5. Motor Start Up Simulation at Normal Load 6. Motor Start Up Simulation at Half of Normal Load 7. Lj of the Motor Model (1/2) 8. Application Example 9. Winding Characteristic Parameters: Lm 10.Winding Characteristic Parameters: Rm Simulation Index All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 2
  • 3. 1. Benefit of the Model • The model enables circuit designer to use D.C. Motor as load in their design which include: Back EMF, Torque(Nm) and Speed (rpm) characteristics. • The model can be easily adjusted to your own D.C. Motor specifications by editing a few parameters that are provided in the spec-sheet. All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 3
  • 4. 2. Model Feature 1 H1 TRQ + - 1 H RM L1 {Rm} 100m 0 LM 2 E_EMF {Lm} N4 EMF IN+ OUT+ OUT+ IN+ IN- OUT- H2 Rdmy OUT- IN- EVALUE + - GRB 2 H GVALUE 0 0 Concept of Equivalent circuit of the D.C. Motor model • This D.C. Motor Simplified SPICE Model is for users who require the model of D.C. Motor as a part of their system. • Perform electrical (voltage and current) and mechanical (speed and torque) characteristics at current load (Ampere) conditions. All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 4
  • 5. 3. Parameter Settings Model Parameters: If there is no measurement data, the default value will be used: U1 Rm: motor winding resistance [] SMPL_DC_MOTOR Lm: motor winding inductance [H] Rm = 0.1 + Lm = 100u - V_norm = 7.2 mNm = 19.6 Data is given by D.C. motor spec-sheet: kRPM_norm = 14.4 I_norm = 6.1 V_norm: normal voltage [V] mNm: normal load [mNm] IL = 6.1 kRPM_norm: speed at normal load [kr/min] I_norm: current at normal load [A] D.C. Motor model and Parameters with Default Value Load Condition: IL: load current [A] All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 5
  • 6. 4. D.C. Motor Specification (Example) U1 SMPL_DC_MOTOR Rm = 0.1 + Lm = 100u - V_norm = 7.2 mNm = 19.6 kRPM_norm = 14.4 I_norm = 6.1 IL = 6.1 D.C. Motor Specification Parameters are input All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 6
  • 7. 5. Motor Start Up Simulation at Normal Load (1/3) Simulation Circuit and Setting PARAMETERS: Input the Supply No VOUT = 10.25 Load Voltage* and Series Resistance Rs = 0.5 VIM Simplified D.C. Motor with VM RS-540SH Spec. RS {Rs} Current Sensing U1 V1 SMPL_DC_MOTOR T2 = 0.01m Rm = 0.1 V2 = {VOUT} + Lm = 100u - V_norm = 7.2 mNm = 19.6 kRPM_norm = 14.4 I_norm = 6.1 IL = 6.1 0 0 *No Load Voltage is adjusted until the D.C. motor voltage (VM) equals to the normal voltage (7.2V). Load Condition IL=I_norm *Analysis directives: .TRAN 0 400m 0 0.1m .PROBE V(*) I(*) W(alias(*)) D(alias(*)) NOISE(alias(*)) All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 7
  • 8. 5. Motor Start Up Simulation at Normal Load (2/3) Select “All” for the Voltages and Currents Data Collection Options. All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 8
  • 9. 5. Motor Start Up Simulation at Normal Load (3/3) 80V 40V Torque Load= 19.6mNm 0V V(X_U1.TRQ) 20A D.C. Motor Speed = 14.4krpm 10A 0A I(X_U1.V_kRPM) 10V D.C. Motor Voltage = 7.2V 5V SEL>> 0V V(VM) 20A 10A D.C. Motor Current = 6.1A 0A 0s 40ms 80ms 120ms 160ms 200ms 240ms 280ms 320ms 360ms 400ms I(VIM) Time All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 9
  • 10. 6. Motor Start Up Simulation at Half of Normal Load (1/2) Simulation Circuit and Setting PARAMETERS: Input the Supply No VOUT = 10.25 Load Voltage* and Series Resistance Rs = 0.5 VIM Simplified D.C. Motor with VM RS-540SH Spec. RS {Rs} Current Sensing U1 V1 SMPL_DC_MOTOR T2 = 0.01m Rm = 0.1 V2 = {VOUT} + Lm = 100u - V_norm = 7.2 mNm = 19.6 kRPM_norm = 14.4 I_norm = 6.1 IL = 3.05 0 0 *No Load Voltage is adjusted until the D.C. motor voltage (VM) equals to the normal voltage (7.2V). Load Condition IL=I_norm *Analysis directives: .TRAN 0 400m 0 0.1m .PROBE V(*) I(*) W(alias(*)) D(alias(*)) NOISE(alias(*)) All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 10
  • 11. 6. Motor Start Up Simulation at Half of Normal Load (2/2) 80V 40V Torque Load= 9.8mNm 0V V(X_U1.TRQ) 20A D.C. Motor Speed = 18.4krpm 10A SEL>> 0A I(X_U1.V_kRPM) 10V D.C. Motor Voltage = 8.725V 5V 0V V(VM) 20A 10A D.C. Motor Current = 3.05A 0A 0s 40ms 80ms 120ms 160ms 200ms 240ms 280ms 320ms 360ms 400ms I(VIM) Time All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 11
  • 12. 7. Lj of the Motor Model (1/2) Simulation Circuit and Setting PARAMETERS: Global parameter VOUT = 10.25 Lj is assigned Rs = 0.5 Double click to edit Lj = 100m VIM properties of the DC VM Motor model RS {Rs} U1 V1 SMPL_DC_MOTOR T2 = 0.01m Rm = 0.1 V2 = {VOUT} + Lm = 100u - V_norm = 7.2 mNm = 19.6 kRPM_norm = 14.4 I_norm = 6.1 *Analysis directives: IL = 6.1 Input the Lj value or input 0 0 .TRAN 0 400m 0 0.1m “{Lj}” for parametric sweep .STEP PARAM Lj LIST 100m, 200m All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 12
  • 13. 7. Lj of the Motor Model (2/2) The Motor Start-up Waveform is 80V changed by the Lj values. Lj=200m 40V Torque Load= 19.6mNm Lj=100m 0V V(X_U1.TRQ) 20A Lj=100m D.C. Motor Speed = 14.4krpm 10A 0A Lj=200m I(X_U1.V_kRPM) 10V Lj=100m D.C. Motor Voltage = 7.2V 5V Lj=200m 0V V(VM) 20A Lj=200m 10A D.C. Motor Current = 6.1A SEL>> Lj=100m 0A 0s 40ms 80ms 120ms 160ms 200ms 240ms 280ms 320ms 360ms 400ms I(VIM) Time All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 13
  • 14. 8. Application Example (1/3) Simulation Circuit and Setting VDD VCC VCC Simplified D.C. Motor with RS-380PH Spec at No load. Vdd Vcc 15V 15V U2 SMPL_DC_MOTOR Rm = 0.576 0 0 D2 + Lm = 165u D4001 - V_norm = 7.2 mNm = 9.8 kRPM_norm = 14.2 I_norm = 2.9 U1 IL = 0.6 R1 NC VCC VDD 1u A NC RG No load IL=0.6 120 D3 V1 = 0 V1 K VO DGT10J321_s V2 = 1.8 U3 TD = 0 NC GND GT10J321 TR = 10n TF = 10n PW = 199.99u TLP350 PER = 400u 0 0 0 0 All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 14
  • 15. 8. Application Example (2/3) Measurement Simulation 14A 20V 1 2 12A 10V 10A 0V Motor Voltage (10V/Div) 8A -10V 6A -20V Motor Current (2A/Div) 4A -30V 2A -40V 0A -50V >> -2A -60V -100ms 0s 100ms 300ms 500ms 700ms 900ms 1 I(U2:1) 2 V(U2:1,U2:2) Time All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 15
  • 16. 8. Application Example (3/3) Measurement Simulation 14A 50V 20V 1 2 3 12A 40V 10V 10A 30V 0V IGBT: VGE IGBT: VGE (10V/Div) 8A 20V -10V 6A 10V -20V 4A 0V -30V IGBT: VCE IGBT: VCE (10V/Div) 2A -10V -40V 0A -20V -50V IGBT: IC >> IGBT: IC (2A/Div) -2A -30V -60V 898.0ms 898.4ms 898.8ms 899.2ms 899.6ms 1 I(U3:C) 2 V(U3:C) 3 V(U3:G) Time All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 16
  • 17. 9. Winding Characteristic Parameters: Lm Winding Characteristic:2 Lm 1 14A 50V 3 20V U2 SMPL_DC_MOTOR 12A 40V 10V Rm = 0.576 + Lm = 165u - V_norm = 7.2 Motor Spec. 10A 30V 0V mNm = 9.8 kRPM_norm = 14.2 Lm=100u 8A 20V -10V I_norm = 2.9 Lm=165u IL = 0.6 6A 10V -20V Load Condition 4A 0V -30V Lm=100u The Motor Current Waveform is 2A -10V -40V changed by the Lm values. Lm=165u 0A -20V -50V >> -2A -30V -60V 898.0ms 898.4ms 898.8ms 899.2ms 899.6ms 1 I(U3:C) 2 V(U3:C) 3 V(U3:G) Time All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 17
  • 18. 10. Winding Characteristic Parameters: Rm Winding Characteristic: Rm U2 SMPL_DC_MOTOR Rm = 0.576 + Lm = 165u - V_norm = 7.2 Motor Spec. Rm=0.1 mNm = 9.8 kRPM_norm = 14.2 I_norm = 2.9 IL = 0.6 Load Condition Rm=0.576 The Motor Start-up is Current changed by the Rm values. All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 18
  • 19. Simulation Index Simulations Folder name 1. Motor Start Up Simulation at Normal Load................... Normal 2. Motor Start Up Simulation at Haft of Normal Load........ Half 3. Lj of the Motor Model.................................................... Lj All Rights Reserved Copyright (C) Bee Technologies Corporation 2012 19