SlideShare a Scribd company logo
1 of 31
擬似共振電源回路シミュレーション
Quasi-Resonant Switching Power Supply using
FA5541
1
PSpiceシミュレーション事例
Contents
1. Quasi-Resonant Switching Power Supply 19V/5A
1.1 Output voltage
1.2 Output current
1.3 Output ripple voltage
1.4 Step-load response
2. Basic operation of switching power supply using FA5541
3. Start-up sequence simulation
4. Bridge diode peak current at start-up
5. Transformer
6. RCD Clamping network
7. Power MOSFET switching device
8. Schottky barrier diode D21 and D22 waveforms
9. Photocoupler
2
1.Quasi-Resonant Switching Power Supply 19V/5A
D1
DERA38-06
D2
DERA22-02
REF
K
A
SR1
TA76432F
D21
YG865C15R1
23
C10
0.01uF
D22
YG865C15RLs
{Nsp*Nsp*Lp}
1
2
L1
4.7uH
1 2 VO_19V
C_T1
2200pF
0
100V/50Hz
C1
220uF
IC = 139
K K1
COUPLING = 0.98
K_Linear
L1 = Ls
L2 = Lp
L3 = Lsub
Lsub
{Nsubp*Nsubp*Lp}
1
2
PC1
TLP281
IC1
FA5541
SSIC = 0
ZCD
FB
IS
GND OUT
VCC
NC
VH
R12
4.7
R8
4.7k
R14
100
RSL1
150m
C11
4700pF
C13
22pF
R3
13k
R4
15k
C8
2200pF
C9
0.01uFR5
10k
R6
10k
R7
2k
R1
7.5k
R15
200k
ESR7
50m
FB
IS
R13
100k
0
C3
33uF
IC = 10.199
FB
PARAMETERS:
Np = 57
Ns = 10
Lp = 360uH
Nsub = 8
Nsp = {Ns/Np}
Nsubp = {Nsub/Np}
IC=0/1
ZCD
Cd
220pF
19V / 0 to 5A
Lp
{Lp}
1
2
Rp_T1
0.150
C2
2200pF
R2
56k
Rsns
0.22
R10
10
R11
100
0
DBR1
D3SB80
D3
D1NL20U_S
C14
4700pF
D4
D1NL20U_S
M1
2SK3681-01S
LESL7
12nH
1
2
C7
1000uF
V1
FREQ = 50Hz
VAMPL = 141.42
C12
1000pF
RL
3.84
C4
3300uF
ESR4
40m
LESL4
15nH
1
2
C5
3300uF
ESR5
40m
LESL5
15nH
1
2
C6
3300uF
ESR6
40m
LESL6
15nH
1
2
3
1.1 Output voltage
• Simulation result confirming that the output voltage would be 19 Volt at 5-A load. The result
also shows that the circuit need 60ms to reach steady state.
Time
0s 20ms 40ms 60ms 80ms 100ms 120ms
V(VO_19V)
0A
5A
10A
15A
20A
4
1.2 Output current
• Simulation result confirming that the output current would be 5 Amp. The result also shows
that the circuit need 60ms to reach steady state.
Time
0s 20ms 40ms 60ms 80ms 100ms 120ms
I(RL)
0A
2.0A
4.0A
6.0A
5
• Simulation results shows the output ripple voltage at maximum current load (approximately
17.5mVP-P).
Time
107.56ms 107.58ms 107.60ms 107.62ms 107.64ms 107.66ms 107.68ms 107.70ms 107.72ms 107.74ms
V(VO_19V)
18.66V
18.67V
18.68V
18.69V
18.70V
1.3 Output ripple voltage
6
1.4 Step-load response
• Simulation results shows waveform of the output voltage responding to stepping current
3/5A.
Time
16ms 18ms 20ms 22ms 24ms 25ms
V(VO_19V)
19.0V
18.5V
19.5V
SEL>>
I(IL)
0A
4.0A
8.0A
7
2.Basic operation of switching power supply using FA5541
• Power supply using FA5541 is switching using self-excited oscillation.
• When IC turns the MOSFET ON ,drain current Id (primary current of T1) begins to rise from
zero.
• V(IS pin) is voltage-converted from the Id current.
REF
K
A
0
0
0
OUT
ZCD
IS
FB
RZCD
CZCD
RS
0
M1
Cd
D1T1
0
0
+
Vds
-
ON
Id
+
V(RS) = Id*RS
-
OFF
8
2.Basic operation of switching power supply using FA5541
Time
3.580ms 3.584ms 3.588ms 3.592ms 3.596ms 3.600ms 3.604ms 3.608ms 3.612ms
-I(Lp)
0A
6A
V(M1:1,M1:3)
0V
0.6KV
V(IC1:OUT)
-1V
19V
SEL>>
• When Id reaches the reference level, FA5541 will turn M1 OFF
Id
Vds
VG
Id begins rising
M1 turns ON
Id reaches
reference level
M1 turns OFF
VDS and winding voltage
have step change
9
REF
K
A
0
0
0
OUT
ZCD
IS
FB
RZCD
CZCD
RS
0
M1
Cd
D1T1
0
0
• When M1 turns OFF ,and the winding voltage of the transformers has step change and IF(D1)
is provided from the transformer into secondary side.
+
Vds
-
OFF
IF(D1)
ON
2.Basic operation of switching power supply using FA5541
10
2.Basic operation of switching power supply using FA5541
Time
16.0us 20.0us 24.0us 28.0us 32.0us 36.0us 40.0us 44.0us12.8us
V(IC1:ZCD)
0V
4.0V
V(Lsub:1)
0V
-30V
30V
SEL>>
-I(Ls)
0A
40A
• When IF(D1) gets zero, Vds drops rapidly due to resonance of transformers inductance and Cd.
At the same time Vsub also drops rapidly.
• When V(ZCD) < Vth(of valley detection) ,FA5541 turns M1 ON again
IF(D1)
Id begins rising
IF(D1) is provided from
the transformer into
secondary side
V(ZCD) < Vth,
M1 turns ON
IF(D1) gets zero
VSUB
V(ZCD)
Vsub drops
rapidly
Vth
11
3.Start-up sequence simulation
D1
DERA38-06
D2
DERA22-02
REF
K
A
SR1
TA76432F
C4
9900uF
D21
YG865C15R
C10
0.01uF
D22
YG865C15R
3300uFx3
Ls
{Nsp*Nsp*Lp}
1
2
RL
3.84
L1
4.7uH
1 2 VO_19V
C_T1
2200pF
0
100V/50Hz
K K1
COUPLING = 1
K_Linear
L1 = Ls
L2 = Lp
L3 = Lsub
Lsub
{Nsubp*Nsubp*Lp}
1
2
PC1
TLP281
IC1
FA5541
SSIC = 0
ZCD
FB
IS
GND OUT
VCC
NC
VH
R12
4.7
R8
4.7k
R14
100
C11
4700pF
C13
22pF
R3
13k
R4
15k
C8
2200pF
C9
0.01uFR5
10k
R6
10k
R7
2k
R1
7.5k
R15
200kFB
IS
R13
100k
0
FB
PARAMETERS:
Np = 57
Ns = 10
Lp = 360uH
Nsub = 8
Nsp = {Ns/Np}
Nsubp = {Nsub/Np}
ZCD
Cd
220pF
19V / 0 to 5A
Lp
{Lp}
1
2C2
2200pF
R2
56k
V1
FREQ = 50
VAMPL = 141.42
Rsns
0.22
R10
10
R11
100
0
DBR1
D3SB80
D3
D1NL20U_S
C14
4700pF
D4
D1NL20U_S
M1
2SK3681-01S
C7
1000u
C1
220uF
C3
33u
C12
1000pF
 No parasitic elements and no initial condition is set
CVCC
Auxiliary
winding
12
3.Start-up sequence simulation
Time
0s 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms 100ms
V(IC1:OUT)
0V
4V
8V
12V
16V
SEL>>
V(IC1:VCC) 10.2 12.4
0V
4V
8V
12V
16V
VSTOFF
VCCON ,VSTRST1
VCC pin stop charging current
Auxiliary supply takes over
FA5541 turn onFA5541 turn off
t1 t2 t3
Total start-up time
VCC
OUT
13
3.Start-up sequence simulation
FA5541 under voltage lockout (UVLO) characteristics (VCC pin)
 ON threshold voltage: VCCON = 10.2V
 Startup circuit shutdown: VSTOFF = 12.4V
 Startup circuit reset voltage: VSTRST1 = 10.2V
t1,t2: VCC < VSTOFF ,startup circuit turns on ,VCC pin charges capacitor CVCC (C2).
t2: VCC reaches VCCON ,FA5541 is turned on
t3: after VCC reaches VSTOFF ,startup circuit turns off , VCC decreases until Auxiliary supply takes over.
D2
DERA22-02
Lsub
{Nsubp*Nsubp*Lp}
1
2
IC1
FA5541
SSIC = 0
ZCD
FB
IS
GND OUT
VCC
NC
VH
R12
4.7
0
C2
33u
I(VCC)
I(Aux)
14
3.Start-up sequence simulation
Time
0s 100ms
V(IC1:OUT)
0V
4V
8V
12V
16V
V(IC1:VCC)
0V
4V
8V
12V
16V
SEL>>
• the simulation result shows the tradeoff between Total start-up time and Design margin,
which is the difference of V(VCC) and VSTRST1 when the auxiliary winding takes over from the
IC startup circuit.
• 33uF-CVCC is selected for higher Design margin although total start-up time is high.
CVCC=33uF
CVCC=22uF
Design margin (CVCC=22uF)
VSTRST1
Design margin (CVCC=33uF)
VCC (CVCC=22uF)
Total start-up time (CVCC=33uF)
15
4.Bridge diode peak current at start-up
D1
DERA38-06
D2
DERA22-02
REF
K
A
SR1
TA76432F
C4
9900uF
D21
YG865C15R
C10
0.01uF
D22
YG865C15R
3300uFx3
Ls
{Nsp*Nsp*Lp}
1
2
RL
3.84
L1
4.7uH
1 2 VO_19V
C_T1
2200pF
0
100V/50Hz
K K1
COUPLING = 1
K_Linear
L1 = Ls
L2 = Lp
L3 = Lsub
V1
FREQ = 50
VAMPL = 141.42
Lsub
{Nsubp*Nsubp*Lp}
1
2
PC1
TLP281
IC1
FA5541
SSIC = 0
ZCD
FB
IS
GND OUT
VCC
NC
VH
R12
4.7
R8
4.7k
R14
100
C11
4700pF
C13
22pF
R3
13k
R4
15k
C8
2200pF
C9
0.01uFR5
10k
R6
10k
R7
2k
R1
7.5k
R15
200kFB
IS
R13
100k
0
FB
PARAMETERS:
Np = 57
Ns = 10
Lp = 360uH
Nsub = 8
Nsp = {Ns/Np}
Nsubp = {Nsub/Np}
ZCD
Cd
220pF
19V / 0 to 5A
Lp
{Lp}
1
2C3
2200pF
R2
56k
Rsns
0.22
R10
10
R11
100
0
DBR1
D3SB80
D3
D1NL20U_S
C14
4700pF
D4
D1NL20U_S
M1
2SK3681-01S
C7
1000u
C1
220uF
C2
{Cv cc}
C12
1000pF PARAMETERS:
CVCC = 33u
 No parasitic elements and no initial condition is set
16
4.Bridge diode peak current at start-up
Time
0s 40ms 80ms 120ms
I(DBR1:2)
-12A
-8A
-4A
0A
4A
8A
12A
• Simulation result of the current through bridge rectifier diode DBR1 when the power supply is
plug to the wall outlet. the peak current is approximately 9.8 which is less than Absolute
maximum value IFSM from the datasheet.
I
17
5.Transformer
D1
DERA38-06
D2
DERA22-02
REF
K
A
SR1
TA76432F
C4
9900uF
D21
YG865C15R
C10
0.01uF
D22
YG865C15R
3300uFx3
Ls
{Nsp*Nsp*Lp}
1
2
RL
3.84
L1
4.7uH
1 2 VO_19V
C_T1
2200pF
0
100V/50Hz
K K1
COUPLING = 1
K_Linear
L1 = Ls
L2 = Lp
L3 = Lsub
V1
FREQ = 50
VAMPL = 141.42
Lsub
{Nsubp*Nsubp*Lp}
1
2
PC1
TLP281
IC1
FA5541
SSIC = 1
ZCD
FB
IS
GND OUT
VCC
NC
VH
R12
4.7
R8
4.7k
R14
100
C11
4700pF
C13
22pF
R3
13k
R4
15k
C8
2200pF
C9
0.01uFR5
10k
R6
10k
R7
2k
R1
7.5k
R15
200k
IS
FB
R13
100k
0
FB
PARAMETERS:
Np = 57
Ns = 10
Lp = 360uH
Nsub = 8
Nsp = {Ns/Np}
Nsubp = {Nsub/Np}
ZCD
Cd
220pF
19V / 0 to 5A
Lp
{Lp}
1
2C3
2200pF
R2
56k
Rsns
0.22
R10
10
R11
100
0
DBR1
D3SB80
D3
D1NL20U_S
C14
4700pF
D4
D1NL20U_S
M1
2SK3681-01S
C7
1000u
IC = 18.7
C1
220uF
IC = 139
C2
33u
IC = 10.199
C12
1000pF
IC = 4.2
V+
V-
V+
V-
V+
V-
 No parasitic elements
18
Time
0s 100us 200us 300us 400us 500us
V(Lsub:1,Lsub:2)
0V
-20V
20V
SEL>>
V(Ls:1,Ls:2)
0V
-40V
40V
V(Lp:2,Lp:1)
0V
-200V
200V
VP(t)
-VS(t)
-VSUB(t)
5.Transformer
19
5.Transformer
• Lleak = LP(1-k2)
• LS/LP = N2
N : winding ratio of the transformer
VS = VP*(NS/NP)
VSUB = VP*(NSUB/NP)
• Transformer is modeled by using SPICE primitive k ,the transformer spec is Lp=360uH and
Np:Ns:Nsub=57:10:8
20
6.Transformer leakage inductance
IL
5Adc
D1
DERA38-06
D2
DERA22-02
REF
K
A
SR1
TA76432F
D21
YG865C15R1
23
C10
0.01uF
D22
YG865C15RLs
{Nsp*Nsp*Lp}
1
2
L1
4.7uH
1 2 VO_19V
C_T1
2200pF
0
100V/50Hz
C1
220uF
IC = 139
K K1
COUPLING = {k}
K_Linear
L1 = Ls
L2 = Lp
L3 = Lsub
Lsub
{Nsubp*Nsubp*Lp}
1
2
PC1
TLP281
IC1
FA5541
SSIC = 1
ZCD
FB
IS
GND OUT
VCC
NC
VH
R12
4.7
R8
4.7k
R14
100
RSL1
150m
C11
4700pF
C13
22pF
R3
13k
R4
15k
C8
2200pF
C9
0.01uFR5
10k
R6
10k
R7
2k
R1
7.5k
R15
200k
ESR7
50m
IS
FB
R13
100k
0
FB
C3
33uF
IC = 10.199
PARAMETERS:
Np = 57
Ns = 10
Lp = 360uH
Nsub = 8
Nsp = {Ns/Np}
Nsubp = {Nsub/Np}
ZCD
IC=0/1
Cd
220pF
19V / 0 to 5A
Lp
{Lp}
1
2
Rp_T1
0.150
C2
{Cclp}
R2
56k
Rsns
0.22
R10
10
R11
100
0
DBR1
D3SB80
D3
D1NL20U_S
C14
4700pF
D4
D1NL20U_S
M1
2SK3681-01S
LESL7
12nH
1
2
C7
1000uF
IC = 18.8
C12
1000pF
IC = 4.2
C4
3300uF
IC = 19.60
ESR4
40m
LESL4
15nH
1
2
C5
3300uF
ESR5
40m
LESL5
15nH
1
2
C6
3300uF
ESR6
40m
LESL6
15nH
1
2
V1
FREQ = 50Hz
VAMPL = 141.42
PARAMETERS:
k = 0.98
Cclp = 2200pF
Parametric sweep
“k”
21
6.Transformer leakage inductance
• Transformer model using SPICE primitive k ,leakage inductance: Lleak = LP(1-k2)
• LP=360uH ,leakage inductance is14.256uH for k=0.98 and 7.164uH for k=0.99
• Check the VDS overshoot voltage versus the transformer leakage inductance.
Time
20us 40us 60us 80us 100us10us 110us
V(M1:1)
0V
200V
400V
600V
Time
15.0us 20.0us 25.0us 30.0us 35.0us 40.0us12.8us 44.8us
V(M1:1)
0V
200V
400V
600V
SEL>>
Design margin (Lleak=14.256uH)
M1: VDSS=600V
Design margin (Lleak=7.164uH)
M1: VDS(t) (Zoom)
22
7.RCD Clamping network
IL
5Adc
D1
DERA38-06
D2
DERA22-02
REF
K
A
SR1
TA76432F
D21
YG865C15R1
23
C10
0.01uF
D22
YG865C15RLs
{Nsp*Nsp*Lp}
1
2
L1
4.7uH
1 2 VO_19V
C_T1
2200pF
0
100V/50Hz
C1
220uF
IC = 139
K K1
COUPLING = {k}
K_Linear
L1 = Ls
L2 = Lp
L3 = Lsub
Lsub
{Nsubp*Nsubp*Lp}
1
2
PC1
TLP281
IC1
FA5541
SSIC = 1
ZCD
FB
IS
GND OUT
VCC
NC
VH
R12
4.7
R8
4.7k
R14
100
RSL1
150m
C11
4700pF
C13
22pF
R3
13k
R4
15k
C8
2200pF
C9
0.01uFR5
10k
R6
10k
R7
2k
R1
7.5k
R15
200k
ESR7
50m
IS
FB
R13
100k
0
FB
C3
33uF
IC = 10.199
PARAMETERS:
Np = 57
Ns = 10
Lp = 360uH
Nsub = 8
Nsp = {Ns/Np}
Nsubp = {Nsub/Np}
ZCD
IC=0/1
Cd
220pF
19V / 0 to 5A
Lp
{Lp}
1
2
Rp_T1
0.150
C2
{Cclp}
R2
56k
Rsns
0.22
R10
10
R11
100
0
DBR1
D3SB80
D3
D1NL20U_S
C14
4700pF
D4
D1NL20U_S
M1
2SK3681-01S
LESL7
12nH
1
2
C7
1000uF
IC = 18.8
C12
1000pF
IC = 4.2
C4
3300uF
IC = 19.60
ESR4
40m
LESL4
15nH
1
2
C5
3300uF
ESR5
40m
LESL5
15nH
1
2
C6
3300uF
ESR6
40m
LESL6
15nH
1
2
V1
FREQ = 50Hz
VAMPL = 141.42
PARAMETERS:
k = 0.98
Cclp = 2200pF
Parametric sweep
“Cclp”
23
7.RCD Clamping network
Time
0s 20us 40us 60us 80us 100us
V(M1:1)
0V
200V
400V
600V
Time
20.0us 25.0us 30.0us 35.0us 40.0us 45.0us15.5us
V(M1:1)
0V
200V
400V
600V
SEL>>
• Compare VDS overshoot of the circuit with CCLP(C2) = 220pF and 2200pF ,larger CCLP value get
better design margin for MOSFET VDS
• CCLP=2200uF is selected for the better M1: VDS design margin.
M1: VDS(t)
Design margin (CCLP=C2=2200pF)
M1: VDSS=600V
Design margin (CCLP=C2=220pF) M1: VDS(t) (Zoom)
24
8.Power MOSFET switching device
D1
DERA38-06
D2
DERA22-02
REF
K
A
SR1
TA76432F
D21
YG865C15R1
23
C10
0.01uF
D22
YG865C15RLs
{Nsp*Nsp*Lp}
1
2
L1
4.7uH
1 2 VO_19V
C_T1
2200pF
0
100V/50Hz
C1
220uF
IC = 139
K K1
COUPLING = 0.98
K_Linear
L1 = Ls
L2 = Lp
L3 = Lsub
Lsub
{Nsubp*Nsubp*Lp}
1
2
PC1
TLP281
IC1
FA5541
SSIC = 1
ZCD
FB
IS
GND OUT
VCC
NC
VH
R12
4.7
R8
4.7k
R14
100
RSL1
150m
C11
4700pF
C13
22pF
R3
13k
R4
15k
C8
2200pF
C9
0.01uFR5
10k
R6
10k
R7
2k
R1
7.5k
R15
200k
ESR7
50m
IS
FB
R13
100k
0
C3
33uF
IC = 10.199
FB
PARAMETERS:
Np = 57
Ns = 10
Lp = 360uH
Nsub = 8
Nsp = {Ns/Np}
Nsubp = {Nsub/Np}
IC=0/1
ZCD
Cd
220pF
19V / 0 to 5A
Lp
{Lp}
1
2
Rp_T1
0.150
C2
2200pF
R2
56k
Rsns
0.22
R10
10
R11
100
0
DBR1
D3SB80
D3
D1NL20U_S
C14
4700pF
D4
D1NL20U_S
M1
2SK3681-01S
LESL7
12nH
1
2
C7
1000uF
IC = 18.8
C12
1000pF
IC = 4.2
IL
5Adc
C4
3300uF
IC = 19.61
ESR4
40m
LESL4
15nH
1
2
C5
3300uF
ESR5
40m
LESL5
15nH
1
2
C6
3300uF
ESR6
40m
LESL6
15nH
1
2
V1
FREQ = 50Hz
VAMPL = 141.42
25
8.Power MOSFET switching device
Time
0s 20ms 40ms 60ms 80ms 100ms 120ms
1 V(M1:1) 2 I(M1:1)
0V
250V
500V
1
0A
25A
-15A
2
>>
Time
119.90ms 119.92ms 119.94ms 119.96ms 119.98ms 120.00ms
1 V(M1:1) 2 I(M1:1)
-200V
0V
200V
400V
600V
1
-2.0A
0A
2.0A
4.0A
6.0A
2
SEL>>SEL>>
• Simulation results shows the peak value of M1: VDS and ID .
10usec. / Div.
VDS(t) ID(t)
VDS(t)
ID(t)
20msec. / Div.
Peak
value
Peak
value
26
8.Power MOSFET switching device
Time
19.57ms 19.58ms 19.59ms 19.60ms 19.61ms 19.62ms 19.63ms 19.64ms 19.65ms 19.66ms
1 V(M1:1) 2 I(M1:1) 3 V(M1:2)
-600V
-400V
-200V
0V
200V
400V
600V
1
-6.0A
-2.0A
0A
2.0A
4.0A
6.0A
2
SEL>>
0V
50V
3
SEL>>
1 W(M1) 2 AVG(W(M1))
-0.5KW
0W
0.5KW
1.0KW
1.5KW
1
0W
2.5W
5.0W
7.5W
10.0W
2
>>
• Simulation results shows the peak value of MOSFET VDS and ID . Calculated switching power
loss and average power loss are also shown
10usec. / Div.
M1 Power Loss
M1 Power Lossavg
VDS(t) ID(t)
Peak
value
VGS(t)
27
9.Schottky barrier diode D21 and D22 waveforms
Time
0s 20ms 40ms 60ms 80ms 100ms 120ms
1 -I(Ls) 2 V(D22:2,D22:3)
20A
40A
-5A
1
SEL>> 0V
40V
80V
2
SEL>>
Time
119.92ms 119.93ms 119.94ms 119.95ms 119.96ms 119.97ms 119.98ms 119.99ms
1 -I(Ls) 2 V(D22:2,D22:3)
50A
-10A
1
>>
0V
50V
2
• Simulation results shows the peak value of SBD: VKA and IF .
10usec. / Div.
IF(t)
VKA(t)
IF(t)
VKA(t)
20msec. / Div.
Peak
value
Peak
valuePeak
value
28
9.Schottky barrier diode D21 and D22 waveforms
Time
19.57ms 19.58ms 19.59ms 19.60ms 19.61ms 19.62ms 19.63ms 19.64ms 19.65ms 19.66ms
-I(LS) V(D22:2,D22:3)
-50
-25
0
25
50
SEL>>
1 W(D21)+ W(D22) 2 AVG(W(D21)+ W(D22))
-40W
0W
40W
1
-5.0W
0W
5.0W
2
>>
• Simulation results shows the peak value of SBD VKA and IF . Calculated power loss and average
power loss are also shown
10usec. / Div.
SBD Power Loss
SBD Power Lossavg
VKA(t)IF(t)
Peak
valuePeak
value
29
10.Photocoupler
V
I
V-
V+
D1
DERA38-06
D2
DERA22-02
REF
K
A
SR1
TA76432F
D21
YG865C15R1
23
C10
0.01uF
D22
YG865C15RLs
{Nsp*Nsp*Lp}
1
2
L1
4.7uH
1 2 VO_19V
C_T1
2200pF
0
100V/50Hz
C1
220uF
IC = 139
K K1
COUPLING = 1
K_Linear
L1 = Ls
L2 = Lp
L3 = Lsub
Lsub
{Nsubp*Nsubp*Lp}
1
2
PC1
TLP281
IC1
FA5541
SSIC = 1
ZCD
FB
IS
GND OUT
VCC
NC
VH
R12
4.7
R8
4.7k
R14
100
RSL1
150m
C11
4700pF
C13
22pF
R3
13k
R4
15k
C8
2200pF
C9
0.01uFR5
10k
R6
10k
R7
2k
R1
7.5k
R15
200k
ESR7
50m
IS
FB
R13
100k
0
C3
33uF
IC = 10.199
FB
PARAMETERS:
Np = 57
Ns = 10
Lp = 360uH
Nsub = 8
Nsp = {Ns/Np}
Nsubp = {Nsub/Np}
IC=0/1
ZCD
Cd
220pF
19V / 0 to 5A
Lp
{Lp}
1
2
Rp_T1
0.150
C2
2200pF
R2
56k
Rsns
0.22
R10
10
R11
100
0
DBR1
D3SB80
D3
D1NL20U_S
C14
4700pF
D4
D1NL20U_S
M1
2SK3681-01S
C7
1000uF
IC = 18.9
C12
1000pF
IC = 4.2
IL
5Adc
C4
9900uF
IC = 19.665
ESR4
13.3m
3300uFx3
V1
FREQ = 50Hz
VAMPL = 141.42
 No parasitic elements: Lleak and ESL ,to aid simulation convergence
30
10.Photocoupler
Time
0s 2ms 4ms 6ms 8ms 10ms 12ms 14ms 16ms 18ms 20ms
V(VO_19V)
18V
19V
20V
V(PC1:A,PC1:K)
0V
1.0V
SEL>>
Time
2ms 4ms 6ms 8ms 10ms 12ms 14ms 16ms 18ms 20ms
1 I(PC1:C) 2 V(FB)
-12uA
380uA
1
>>
0V
2.5V
5.0V
2
• When power supply output reaches spec voltage (19V) ,a shunt regulator draws current
through resistor (R6) and VAK of photocoupler increases.
• When VAK turns on photocoupler, collector current Ic increases. This causes FB pin voltage to
decreases before power supply output voltage go to the stable state.
2msec. / Div.
IC (photocoupler)
V(FB pin)
VAK (photocoupler)
2msec. / Div.
VO_19V(t)
VAK turns on the
photocoupler
VO stable at 19V
31

More Related Content

What's hot

Original Driver Mosfet IRS21814STRPBF IRS21814S 21814 SOP-14 New Internationa...
Original Driver Mosfet IRS21814STRPBF IRS21814S 21814 SOP-14 New Internationa...Original Driver Mosfet IRS21814STRPBF IRS21814S 21814 SOP-14 New Internationa...
Original Driver Mosfet IRS21814STRPBF IRS21814S 21814 SOP-14 New Internationa...AUTHELECTRONIC
 
Ee2 chapter15 multivibrator
Ee2 chapter15 multivibratorEe2 chapter15 multivibrator
Ee2 chapter15 multivibratorCK Yang
 
Constant Current Switching Regulator for LEDs with ON/OFF Function: NCP3066
Constant Current Switching Regulator for LEDs with ON/OFF Function: NCP3066Constant Current Switching Regulator for LEDs with ON/OFF Function: NCP3066
Constant Current Switching Regulator for LEDs with ON/OFF Function: NCP3066Premier Farnell
 
FL7701 APEC Demo Performance_SMappus 01192012
FL7701 APEC Demo Performance_SMappus 01192012FL7701 APEC Demo Performance_SMappus 01192012
FL7701 APEC Demo Performance_SMappus 01192012Steve Mappus
 
Original Opto TLP620GB TLP620 P620 620 DIP-4 New ToshibaOriginal Opto TLP620G...
Original Opto TLP620GB TLP620 P620 620 DIP-4 New ToshibaOriginal Opto TLP620G...Original Opto TLP620GB TLP620 P620 620 DIP-4 New ToshibaOriginal Opto TLP620G...
Original Opto TLP620GB TLP620 P620 620 DIP-4 New ToshibaOriginal Opto TLP620G...authelectroniccom
 
Lm 311 datasheet
Lm 311 datasheetLm 311 datasheet
Lm 311 datasheetAndy Medina
 
Lm7805
Lm7805Lm7805
Lm7805tyhfre
 
Original Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 New
Original Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 NewOriginal Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 New
Original Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 NewAUTHELECTRONIC
 
Ic 555 timer as astable
Ic 555 timer as astableIc 555 timer as astable
Ic 555 timer as astableDominicHendry
 
LED Streetlight APEC Demo Performance_SMappus 03062013 AC 12 Mar 2013
LED Streetlight APEC Demo Performance_SMappus 03062013 AC 12 Mar 2013LED Streetlight APEC Demo Performance_SMappus 03062013 AC 12 Mar 2013
LED Streetlight APEC Demo Performance_SMappus 03062013 AC 12 Mar 2013Steve Mappus
 
Non-Dimmable Lower Power LED Solutions
Non-Dimmable Lower Power LED SolutionsNon-Dimmable Lower Power LED Solutions
Non-Dimmable Lower Power LED SolutionsON Semiconductor
 

What's hot (20)

000744
000744000744
000744
 
Lm358
Lm358Lm358
Lm358
 
Original Driver Mosfet IRS21814STRPBF IRS21814S 21814 SOP-14 New Internationa...
Original Driver Mosfet IRS21814STRPBF IRS21814S 21814 SOP-14 New Internationa...Original Driver Mosfet IRS21814STRPBF IRS21814S 21814 SOP-14 New Internationa...
Original Driver Mosfet IRS21814STRPBF IRS21814S 21814 SOP-14 New Internationa...
 
555 Timer IC
555 Timer IC555 Timer IC
555 Timer IC
 
Ee2 chapter15 multivibrator
Ee2 chapter15 multivibratorEe2 chapter15 multivibrator
Ee2 chapter15 multivibrator
 
Constant Current Switching Regulator for LEDs with ON/OFF Function: NCP3066
Constant Current Switching Regulator for LEDs with ON/OFF Function: NCP3066Constant Current Switching Regulator for LEDs with ON/OFF Function: NCP3066
Constant Current Switching Regulator for LEDs with ON/OFF Function: NCP3066
 
FL7701 APEC Demo Performance_SMappus 01192012
FL7701 APEC Demo Performance_SMappus 01192012FL7701 APEC Demo Performance_SMappus 01192012
FL7701 APEC Demo Performance_SMappus 01192012
 
Lm555
Lm555Lm555
Lm555
 
Ic 555 timer 0
Ic 555 timer 0Ic 555 timer 0
Ic 555 timer 0
 
L298 h
L298 hL298 h
L298 h
 
Original Opto TLP620GB TLP620 P620 620 DIP-4 New ToshibaOriginal Opto TLP620G...
Original Opto TLP620GB TLP620 P620 620 DIP-4 New ToshibaOriginal Opto TLP620G...Original Opto TLP620GB TLP620 P620 620 DIP-4 New ToshibaOriginal Opto TLP620G...
Original Opto TLP620GB TLP620 P620 620 DIP-4 New ToshibaOriginal Opto TLP620G...
 
Timer 555
Timer 555Timer 555
Timer 555
 
Lm 311 datasheet
Lm 311 datasheetLm 311 datasheet
Lm 311 datasheet
 
Figue555
Figue555Figue555
Figue555
 
Lm7805
Lm7805Lm7805
Lm7805
 
Original Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 New
Original Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 NewOriginal Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 New
Original Transistor NPN MJE13003 KSE13003 E13003 13003 1.5A 400V TO-126 New
 
Uc3845
Uc3845Uc3845
Uc3845
 
Ic 555 timer as astable
Ic 555 timer as astableIc 555 timer as astable
Ic 555 timer as astable
 
LED Streetlight APEC Demo Performance_SMappus 03062013 AC 12 Mar 2013
LED Streetlight APEC Demo Performance_SMappus 03062013 AC 12 Mar 2013LED Streetlight APEC Demo Performance_SMappus 03062013 AC 12 Mar 2013
LED Streetlight APEC Demo Performance_SMappus 03062013 AC 12 Mar 2013
 
Non-Dimmable Lower Power LED Solutions
Non-Dimmable Lower Power LED SolutionsNon-Dimmable Lower Power LED Solutions
Non-Dimmable Lower Power LED Solutions
 

Similar to PSpiceによる擬似共振電源回路シミュレーション事例

シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541
シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541
シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541マルツエレック株式会社 marutsuelec
 
Original Gate Driver IC TD62083APG 62083APG 62083 DIP-18 New Toshiba
Original Gate Driver IC TD62083APG  62083APG 62083 DIP-18 New ToshibaOriginal Gate Driver IC TD62083APG  62083APG 62083 DIP-18 New Toshiba
Original Gate Driver IC TD62083APG 62083APG 62083 DIP-18 New ToshibaAUTHELECTRONIC
 
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書spicepark
 
Str x6759 regulador de voltaje
Str x6759 regulador de voltajeStr x6759 regulador de voltaje
Str x6759 regulador de voltajeVictor Leon Jaime
 
IL4116 -Datasheet - VISHAY
IL4116 -Datasheet - VISHAYIL4116 -Datasheet - VISHAY
IL4116 -Datasheet - VISHAYMarioFarias18
 
ppt of automatic room light controller and BI directional counter
ppt of automatic room light controller and BI directional counterppt of automatic room light controller and BI directional counter
ppt of automatic room light controller and BI directional counterMannavapremkumar
 
Design of Buck Converter
Design of Buck ConverterDesign of Buck Converter
Design of Buck ConverterAkhil Syamalan
 
Lm 324 datasheet
Lm 324 datasheetLm 324 datasheet
Lm 324 datasheetAndy Medina
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitTsuyoshi Horigome
 
LDR1825PT-R - datasheet - st-microelectronics
LDR1825PT-R - datasheet - st-microelectronicsLDR1825PT-R - datasheet - st-microelectronics
LDR1825PT-R - datasheet - st-microelectronicsMarioFarias18
 
Uc3842 b d fuente 24vdc stacotec
Uc3842 b d  fuente 24vdc stacotecUc3842 b d  fuente 24vdc stacotec
Uc3842 b d fuente 24vdc stacotectavobecker
 
L6561 Power Factor Corrector
L6561 Power Factor CorrectorL6561 Power Factor Corrector
L6561 Power Factor CorrectorPremier Farnell
 

Similar to PSpiceによる擬似共振電源回路シミュレーション事例 (20)

シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541
シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541
シミュレーション事例:擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541
 
38 hc43ym
38 hc43ym38 hc43ym
38 hc43ym
 
Original Gate Driver IC TD62083APG 62083APG 62083 DIP-18 New Toshiba
Original Gate Driver IC TD62083APG  62083APG 62083 DIP-18 New ToshibaOriginal Gate Driver IC TD62083APG  62083APG 62083 DIP-18 New Toshiba
Original Gate Driver IC TD62083APG 62083APG 62083 DIP-18 New Toshiba
 
Tlv3491 556299
Tlv3491 556299Tlv3491 556299
Tlv3491 556299
 
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
 
Datasheet
DatasheetDatasheet
Datasheet
 
Str x6759 regulador de voltaje
Str x6759 regulador de voltajeStr x6759 regulador de voltaje
Str x6759 regulador de voltaje
 
Lm555
Lm555Lm555
Lm555
 
Lm555
Lm555Lm555
Lm555
 
Tl 2844 b
Tl 2844 bTl 2844 b
Tl 2844 b
 
IL4116 -Datasheet - VISHAY
IL4116 -Datasheet - VISHAYIL4116 -Datasheet - VISHAY
IL4116 -Datasheet - VISHAY
 
ppt of automatic room light controller and BI directional counter
ppt of automatic room light controller and BI directional counterppt of automatic room light controller and BI directional counter
ppt of automatic room light controller and BI directional counter
 
L298_H_Bridge.pdf
L298_H_Bridge.pdfL298_H_Bridge.pdf
L298_H_Bridge.pdf
 
Ncp1032 d
Ncp1032 dNcp1032 d
Ncp1032 d
 
Design of Buck Converter
Design of Buck ConverterDesign of Buck Converter
Design of Buck Converter
 
Lm 324 datasheet
Lm 324 datasheetLm 324 datasheet
Lm 324 datasheet
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC Circuit
 
LDR1825PT-R - datasheet - st-microelectronics
LDR1825PT-R - datasheet - st-microelectronicsLDR1825PT-R - datasheet - st-microelectronics
LDR1825PT-R - datasheet - st-microelectronics
 
Uc3842 b d fuente 24vdc stacotec
Uc3842 b d  fuente 24vdc stacotecUc3842 b d  fuente 24vdc stacotec
Uc3842 b d fuente 24vdc stacotec
 
L6561 Power Factor Corrector
L6561 Power Factor CorrectorL6561 Power Factor Corrector
L6561 Power Factor Corrector
 

More from Tsuyoshi Horigome

Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )Tsuyoshi Horigome
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Tsuyoshi Horigome
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )Tsuyoshi Horigome
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Tsuyoshi Horigome
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )Tsuyoshi Horigome
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Tsuyoshi Horigome
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Tsuyoshi Horigome
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspiceTsuyoshi Horigome
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is ErrorTsuyoshi Horigome
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintTsuyoshi Horigome
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsTsuyoshi Horigome
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hiresTsuyoshi Horigome
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Tsuyoshi Horigome
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Tsuyoshi Horigome
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)Tsuyoshi Horigome
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモTsuyoshi Horigome
 
0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?Tsuyoshi Horigome
 

More from Tsuyoshi Horigome (20)

Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモ
 
0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?
 

Recently uploaded

Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piececharlottematthew16
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clashcharlottematthew16
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024The Digital Insurer
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embeddingZilliz
 
Vector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector DatabasesVector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector DatabasesZilliz
 

Recently uploaded (20)

Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piece
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clash
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embedding
 
Vector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector DatabasesVector Databases 101 - An introduction to the world of Vector Databases
Vector Databases 101 - An introduction to the world of Vector Databases
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 

PSpiceによる擬似共振電源回路シミュレーション事例

  • 1. 擬似共振電源回路シミュレーション Quasi-Resonant Switching Power Supply using FA5541 1 PSpiceシミュレーション事例
  • 2. Contents 1. Quasi-Resonant Switching Power Supply 19V/5A 1.1 Output voltage 1.2 Output current 1.3 Output ripple voltage 1.4 Step-load response 2. Basic operation of switching power supply using FA5541 3. Start-up sequence simulation 4. Bridge diode peak current at start-up 5. Transformer 6. RCD Clamping network 7. Power MOSFET switching device 8. Schottky barrier diode D21 and D22 waveforms 9. Photocoupler 2
  • 3. 1.Quasi-Resonant Switching Power Supply 19V/5A D1 DERA38-06 D2 DERA22-02 REF K A SR1 TA76432F D21 YG865C15R1 23 C10 0.01uF D22 YG865C15RLs {Nsp*Nsp*Lp} 1 2 L1 4.7uH 1 2 VO_19V C_T1 2200pF 0 100V/50Hz C1 220uF IC = 139 K K1 COUPLING = 0.98 K_Linear L1 = Ls L2 = Lp L3 = Lsub Lsub {Nsubp*Nsubp*Lp} 1 2 PC1 TLP281 IC1 FA5541 SSIC = 0 ZCD FB IS GND OUT VCC NC VH R12 4.7 R8 4.7k R14 100 RSL1 150m C11 4700pF C13 22pF R3 13k R4 15k C8 2200pF C9 0.01uFR5 10k R6 10k R7 2k R1 7.5k R15 200k ESR7 50m FB IS R13 100k 0 C3 33uF IC = 10.199 FB PARAMETERS: Np = 57 Ns = 10 Lp = 360uH Nsub = 8 Nsp = {Ns/Np} Nsubp = {Nsub/Np} IC=0/1 ZCD Cd 220pF 19V / 0 to 5A Lp {Lp} 1 2 Rp_T1 0.150 C2 2200pF R2 56k Rsns 0.22 R10 10 R11 100 0 DBR1 D3SB80 D3 D1NL20U_S C14 4700pF D4 D1NL20U_S M1 2SK3681-01S LESL7 12nH 1 2 C7 1000uF V1 FREQ = 50Hz VAMPL = 141.42 C12 1000pF RL 3.84 C4 3300uF ESR4 40m LESL4 15nH 1 2 C5 3300uF ESR5 40m LESL5 15nH 1 2 C6 3300uF ESR6 40m LESL6 15nH 1 2 3
  • 4. 1.1 Output voltage • Simulation result confirming that the output voltage would be 19 Volt at 5-A load. The result also shows that the circuit need 60ms to reach steady state. Time 0s 20ms 40ms 60ms 80ms 100ms 120ms V(VO_19V) 0A 5A 10A 15A 20A 4
  • 5. 1.2 Output current • Simulation result confirming that the output current would be 5 Amp. The result also shows that the circuit need 60ms to reach steady state. Time 0s 20ms 40ms 60ms 80ms 100ms 120ms I(RL) 0A 2.0A 4.0A 6.0A 5
  • 6. • Simulation results shows the output ripple voltage at maximum current load (approximately 17.5mVP-P). Time 107.56ms 107.58ms 107.60ms 107.62ms 107.64ms 107.66ms 107.68ms 107.70ms 107.72ms 107.74ms V(VO_19V) 18.66V 18.67V 18.68V 18.69V 18.70V 1.3 Output ripple voltage 6
  • 7. 1.4 Step-load response • Simulation results shows waveform of the output voltage responding to stepping current 3/5A. Time 16ms 18ms 20ms 22ms 24ms 25ms V(VO_19V) 19.0V 18.5V 19.5V SEL>> I(IL) 0A 4.0A 8.0A 7
  • 8. 2.Basic operation of switching power supply using FA5541 • Power supply using FA5541 is switching using self-excited oscillation. • When IC turns the MOSFET ON ,drain current Id (primary current of T1) begins to rise from zero. • V(IS pin) is voltage-converted from the Id current. REF K A 0 0 0 OUT ZCD IS FB RZCD CZCD RS 0 M1 Cd D1T1 0 0 + Vds - ON Id + V(RS) = Id*RS - OFF 8
  • 9. 2.Basic operation of switching power supply using FA5541 Time 3.580ms 3.584ms 3.588ms 3.592ms 3.596ms 3.600ms 3.604ms 3.608ms 3.612ms -I(Lp) 0A 6A V(M1:1,M1:3) 0V 0.6KV V(IC1:OUT) -1V 19V SEL>> • When Id reaches the reference level, FA5541 will turn M1 OFF Id Vds VG Id begins rising M1 turns ON Id reaches reference level M1 turns OFF VDS and winding voltage have step change 9
  • 10. REF K A 0 0 0 OUT ZCD IS FB RZCD CZCD RS 0 M1 Cd D1T1 0 0 • When M1 turns OFF ,and the winding voltage of the transformers has step change and IF(D1) is provided from the transformer into secondary side. + Vds - OFF IF(D1) ON 2.Basic operation of switching power supply using FA5541 10
  • 11. 2.Basic operation of switching power supply using FA5541 Time 16.0us 20.0us 24.0us 28.0us 32.0us 36.0us 40.0us 44.0us12.8us V(IC1:ZCD) 0V 4.0V V(Lsub:1) 0V -30V 30V SEL>> -I(Ls) 0A 40A • When IF(D1) gets zero, Vds drops rapidly due to resonance of transformers inductance and Cd. At the same time Vsub also drops rapidly. • When V(ZCD) < Vth(of valley detection) ,FA5541 turns M1 ON again IF(D1) Id begins rising IF(D1) is provided from the transformer into secondary side V(ZCD) < Vth, M1 turns ON IF(D1) gets zero VSUB V(ZCD) Vsub drops rapidly Vth 11
  • 12. 3.Start-up sequence simulation D1 DERA38-06 D2 DERA22-02 REF K A SR1 TA76432F C4 9900uF D21 YG865C15R C10 0.01uF D22 YG865C15R 3300uFx3 Ls {Nsp*Nsp*Lp} 1 2 RL 3.84 L1 4.7uH 1 2 VO_19V C_T1 2200pF 0 100V/50Hz K K1 COUPLING = 1 K_Linear L1 = Ls L2 = Lp L3 = Lsub Lsub {Nsubp*Nsubp*Lp} 1 2 PC1 TLP281 IC1 FA5541 SSIC = 0 ZCD FB IS GND OUT VCC NC VH R12 4.7 R8 4.7k R14 100 C11 4700pF C13 22pF R3 13k R4 15k C8 2200pF C9 0.01uFR5 10k R6 10k R7 2k R1 7.5k R15 200kFB IS R13 100k 0 FB PARAMETERS: Np = 57 Ns = 10 Lp = 360uH Nsub = 8 Nsp = {Ns/Np} Nsubp = {Nsub/Np} ZCD Cd 220pF 19V / 0 to 5A Lp {Lp} 1 2C2 2200pF R2 56k V1 FREQ = 50 VAMPL = 141.42 Rsns 0.22 R10 10 R11 100 0 DBR1 D3SB80 D3 D1NL20U_S C14 4700pF D4 D1NL20U_S M1 2SK3681-01S C7 1000u C1 220uF C3 33u C12 1000pF  No parasitic elements and no initial condition is set CVCC Auxiliary winding 12
  • 13. 3.Start-up sequence simulation Time 0s 10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms 100ms V(IC1:OUT) 0V 4V 8V 12V 16V SEL>> V(IC1:VCC) 10.2 12.4 0V 4V 8V 12V 16V VSTOFF VCCON ,VSTRST1 VCC pin stop charging current Auxiliary supply takes over FA5541 turn onFA5541 turn off t1 t2 t3 Total start-up time VCC OUT 13
  • 14. 3.Start-up sequence simulation FA5541 under voltage lockout (UVLO) characteristics (VCC pin)  ON threshold voltage: VCCON = 10.2V  Startup circuit shutdown: VSTOFF = 12.4V  Startup circuit reset voltage: VSTRST1 = 10.2V t1,t2: VCC < VSTOFF ,startup circuit turns on ,VCC pin charges capacitor CVCC (C2). t2: VCC reaches VCCON ,FA5541 is turned on t3: after VCC reaches VSTOFF ,startup circuit turns off , VCC decreases until Auxiliary supply takes over. D2 DERA22-02 Lsub {Nsubp*Nsubp*Lp} 1 2 IC1 FA5541 SSIC = 0 ZCD FB IS GND OUT VCC NC VH R12 4.7 0 C2 33u I(VCC) I(Aux) 14
  • 15. 3.Start-up sequence simulation Time 0s 100ms V(IC1:OUT) 0V 4V 8V 12V 16V V(IC1:VCC) 0V 4V 8V 12V 16V SEL>> • the simulation result shows the tradeoff between Total start-up time and Design margin, which is the difference of V(VCC) and VSTRST1 when the auxiliary winding takes over from the IC startup circuit. • 33uF-CVCC is selected for higher Design margin although total start-up time is high. CVCC=33uF CVCC=22uF Design margin (CVCC=22uF) VSTRST1 Design margin (CVCC=33uF) VCC (CVCC=22uF) Total start-up time (CVCC=33uF) 15
  • 16. 4.Bridge diode peak current at start-up D1 DERA38-06 D2 DERA22-02 REF K A SR1 TA76432F C4 9900uF D21 YG865C15R C10 0.01uF D22 YG865C15R 3300uFx3 Ls {Nsp*Nsp*Lp} 1 2 RL 3.84 L1 4.7uH 1 2 VO_19V C_T1 2200pF 0 100V/50Hz K K1 COUPLING = 1 K_Linear L1 = Ls L2 = Lp L3 = Lsub V1 FREQ = 50 VAMPL = 141.42 Lsub {Nsubp*Nsubp*Lp} 1 2 PC1 TLP281 IC1 FA5541 SSIC = 0 ZCD FB IS GND OUT VCC NC VH R12 4.7 R8 4.7k R14 100 C11 4700pF C13 22pF R3 13k R4 15k C8 2200pF C9 0.01uFR5 10k R6 10k R7 2k R1 7.5k R15 200kFB IS R13 100k 0 FB PARAMETERS: Np = 57 Ns = 10 Lp = 360uH Nsub = 8 Nsp = {Ns/Np} Nsubp = {Nsub/Np} ZCD Cd 220pF 19V / 0 to 5A Lp {Lp} 1 2C3 2200pF R2 56k Rsns 0.22 R10 10 R11 100 0 DBR1 D3SB80 D3 D1NL20U_S C14 4700pF D4 D1NL20U_S M1 2SK3681-01S C7 1000u C1 220uF C2 {Cv cc} C12 1000pF PARAMETERS: CVCC = 33u  No parasitic elements and no initial condition is set 16
  • 17. 4.Bridge diode peak current at start-up Time 0s 40ms 80ms 120ms I(DBR1:2) -12A -8A -4A 0A 4A 8A 12A • Simulation result of the current through bridge rectifier diode DBR1 when the power supply is plug to the wall outlet. the peak current is approximately 9.8 which is less than Absolute maximum value IFSM from the datasheet. I 17
  • 18. 5.Transformer D1 DERA38-06 D2 DERA22-02 REF K A SR1 TA76432F C4 9900uF D21 YG865C15R C10 0.01uF D22 YG865C15R 3300uFx3 Ls {Nsp*Nsp*Lp} 1 2 RL 3.84 L1 4.7uH 1 2 VO_19V C_T1 2200pF 0 100V/50Hz K K1 COUPLING = 1 K_Linear L1 = Ls L2 = Lp L3 = Lsub V1 FREQ = 50 VAMPL = 141.42 Lsub {Nsubp*Nsubp*Lp} 1 2 PC1 TLP281 IC1 FA5541 SSIC = 1 ZCD FB IS GND OUT VCC NC VH R12 4.7 R8 4.7k R14 100 C11 4700pF C13 22pF R3 13k R4 15k C8 2200pF C9 0.01uFR5 10k R6 10k R7 2k R1 7.5k R15 200k IS FB R13 100k 0 FB PARAMETERS: Np = 57 Ns = 10 Lp = 360uH Nsub = 8 Nsp = {Ns/Np} Nsubp = {Nsub/Np} ZCD Cd 220pF 19V / 0 to 5A Lp {Lp} 1 2C3 2200pF R2 56k Rsns 0.22 R10 10 R11 100 0 DBR1 D3SB80 D3 D1NL20U_S C14 4700pF D4 D1NL20U_S M1 2SK3681-01S C7 1000u IC = 18.7 C1 220uF IC = 139 C2 33u IC = 10.199 C12 1000pF IC = 4.2 V+ V- V+ V- V+ V-  No parasitic elements 18
  • 19. Time 0s 100us 200us 300us 400us 500us V(Lsub:1,Lsub:2) 0V -20V 20V SEL>> V(Ls:1,Ls:2) 0V -40V 40V V(Lp:2,Lp:1) 0V -200V 200V VP(t) -VS(t) -VSUB(t) 5.Transformer 19
  • 20. 5.Transformer • Lleak = LP(1-k2) • LS/LP = N2 N : winding ratio of the transformer VS = VP*(NS/NP) VSUB = VP*(NSUB/NP) • Transformer is modeled by using SPICE primitive k ,the transformer spec is Lp=360uH and Np:Ns:Nsub=57:10:8 20
  • 21. 6.Transformer leakage inductance IL 5Adc D1 DERA38-06 D2 DERA22-02 REF K A SR1 TA76432F D21 YG865C15R1 23 C10 0.01uF D22 YG865C15RLs {Nsp*Nsp*Lp} 1 2 L1 4.7uH 1 2 VO_19V C_T1 2200pF 0 100V/50Hz C1 220uF IC = 139 K K1 COUPLING = {k} K_Linear L1 = Ls L2 = Lp L3 = Lsub Lsub {Nsubp*Nsubp*Lp} 1 2 PC1 TLP281 IC1 FA5541 SSIC = 1 ZCD FB IS GND OUT VCC NC VH R12 4.7 R8 4.7k R14 100 RSL1 150m C11 4700pF C13 22pF R3 13k R4 15k C8 2200pF C9 0.01uFR5 10k R6 10k R7 2k R1 7.5k R15 200k ESR7 50m IS FB R13 100k 0 FB C3 33uF IC = 10.199 PARAMETERS: Np = 57 Ns = 10 Lp = 360uH Nsub = 8 Nsp = {Ns/Np} Nsubp = {Nsub/Np} ZCD IC=0/1 Cd 220pF 19V / 0 to 5A Lp {Lp} 1 2 Rp_T1 0.150 C2 {Cclp} R2 56k Rsns 0.22 R10 10 R11 100 0 DBR1 D3SB80 D3 D1NL20U_S C14 4700pF D4 D1NL20U_S M1 2SK3681-01S LESL7 12nH 1 2 C7 1000uF IC = 18.8 C12 1000pF IC = 4.2 C4 3300uF IC = 19.60 ESR4 40m LESL4 15nH 1 2 C5 3300uF ESR5 40m LESL5 15nH 1 2 C6 3300uF ESR6 40m LESL6 15nH 1 2 V1 FREQ = 50Hz VAMPL = 141.42 PARAMETERS: k = 0.98 Cclp = 2200pF Parametric sweep “k” 21
  • 22. 6.Transformer leakage inductance • Transformer model using SPICE primitive k ,leakage inductance: Lleak = LP(1-k2) • LP=360uH ,leakage inductance is14.256uH for k=0.98 and 7.164uH for k=0.99 • Check the VDS overshoot voltage versus the transformer leakage inductance. Time 20us 40us 60us 80us 100us10us 110us V(M1:1) 0V 200V 400V 600V Time 15.0us 20.0us 25.0us 30.0us 35.0us 40.0us12.8us 44.8us V(M1:1) 0V 200V 400V 600V SEL>> Design margin (Lleak=14.256uH) M1: VDSS=600V Design margin (Lleak=7.164uH) M1: VDS(t) (Zoom) 22
  • 23. 7.RCD Clamping network IL 5Adc D1 DERA38-06 D2 DERA22-02 REF K A SR1 TA76432F D21 YG865C15R1 23 C10 0.01uF D22 YG865C15RLs {Nsp*Nsp*Lp} 1 2 L1 4.7uH 1 2 VO_19V C_T1 2200pF 0 100V/50Hz C1 220uF IC = 139 K K1 COUPLING = {k} K_Linear L1 = Ls L2 = Lp L3 = Lsub Lsub {Nsubp*Nsubp*Lp} 1 2 PC1 TLP281 IC1 FA5541 SSIC = 1 ZCD FB IS GND OUT VCC NC VH R12 4.7 R8 4.7k R14 100 RSL1 150m C11 4700pF C13 22pF R3 13k R4 15k C8 2200pF C9 0.01uFR5 10k R6 10k R7 2k R1 7.5k R15 200k ESR7 50m IS FB R13 100k 0 FB C3 33uF IC = 10.199 PARAMETERS: Np = 57 Ns = 10 Lp = 360uH Nsub = 8 Nsp = {Ns/Np} Nsubp = {Nsub/Np} ZCD IC=0/1 Cd 220pF 19V / 0 to 5A Lp {Lp} 1 2 Rp_T1 0.150 C2 {Cclp} R2 56k Rsns 0.22 R10 10 R11 100 0 DBR1 D3SB80 D3 D1NL20U_S C14 4700pF D4 D1NL20U_S M1 2SK3681-01S LESL7 12nH 1 2 C7 1000uF IC = 18.8 C12 1000pF IC = 4.2 C4 3300uF IC = 19.60 ESR4 40m LESL4 15nH 1 2 C5 3300uF ESR5 40m LESL5 15nH 1 2 C6 3300uF ESR6 40m LESL6 15nH 1 2 V1 FREQ = 50Hz VAMPL = 141.42 PARAMETERS: k = 0.98 Cclp = 2200pF Parametric sweep “Cclp” 23
  • 24. 7.RCD Clamping network Time 0s 20us 40us 60us 80us 100us V(M1:1) 0V 200V 400V 600V Time 20.0us 25.0us 30.0us 35.0us 40.0us 45.0us15.5us V(M1:1) 0V 200V 400V 600V SEL>> • Compare VDS overshoot of the circuit with CCLP(C2) = 220pF and 2200pF ,larger CCLP value get better design margin for MOSFET VDS • CCLP=2200uF is selected for the better M1: VDS design margin. M1: VDS(t) Design margin (CCLP=C2=2200pF) M1: VDSS=600V Design margin (CCLP=C2=220pF) M1: VDS(t) (Zoom) 24
  • 25. 8.Power MOSFET switching device D1 DERA38-06 D2 DERA22-02 REF K A SR1 TA76432F D21 YG865C15R1 23 C10 0.01uF D22 YG865C15RLs {Nsp*Nsp*Lp} 1 2 L1 4.7uH 1 2 VO_19V C_T1 2200pF 0 100V/50Hz C1 220uF IC = 139 K K1 COUPLING = 0.98 K_Linear L1 = Ls L2 = Lp L3 = Lsub Lsub {Nsubp*Nsubp*Lp} 1 2 PC1 TLP281 IC1 FA5541 SSIC = 1 ZCD FB IS GND OUT VCC NC VH R12 4.7 R8 4.7k R14 100 RSL1 150m C11 4700pF C13 22pF R3 13k R4 15k C8 2200pF C9 0.01uFR5 10k R6 10k R7 2k R1 7.5k R15 200k ESR7 50m IS FB R13 100k 0 C3 33uF IC = 10.199 FB PARAMETERS: Np = 57 Ns = 10 Lp = 360uH Nsub = 8 Nsp = {Ns/Np} Nsubp = {Nsub/Np} IC=0/1 ZCD Cd 220pF 19V / 0 to 5A Lp {Lp} 1 2 Rp_T1 0.150 C2 2200pF R2 56k Rsns 0.22 R10 10 R11 100 0 DBR1 D3SB80 D3 D1NL20U_S C14 4700pF D4 D1NL20U_S M1 2SK3681-01S LESL7 12nH 1 2 C7 1000uF IC = 18.8 C12 1000pF IC = 4.2 IL 5Adc C4 3300uF IC = 19.61 ESR4 40m LESL4 15nH 1 2 C5 3300uF ESR5 40m LESL5 15nH 1 2 C6 3300uF ESR6 40m LESL6 15nH 1 2 V1 FREQ = 50Hz VAMPL = 141.42 25
  • 26. 8.Power MOSFET switching device Time 0s 20ms 40ms 60ms 80ms 100ms 120ms 1 V(M1:1) 2 I(M1:1) 0V 250V 500V 1 0A 25A -15A 2 >> Time 119.90ms 119.92ms 119.94ms 119.96ms 119.98ms 120.00ms 1 V(M1:1) 2 I(M1:1) -200V 0V 200V 400V 600V 1 -2.0A 0A 2.0A 4.0A 6.0A 2 SEL>>SEL>> • Simulation results shows the peak value of M1: VDS and ID . 10usec. / Div. VDS(t) ID(t) VDS(t) ID(t) 20msec. / Div. Peak value Peak value 26
  • 27. 8.Power MOSFET switching device Time 19.57ms 19.58ms 19.59ms 19.60ms 19.61ms 19.62ms 19.63ms 19.64ms 19.65ms 19.66ms 1 V(M1:1) 2 I(M1:1) 3 V(M1:2) -600V -400V -200V 0V 200V 400V 600V 1 -6.0A -2.0A 0A 2.0A 4.0A 6.0A 2 SEL>> 0V 50V 3 SEL>> 1 W(M1) 2 AVG(W(M1)) -0.5KW 0W 0.5KW 1.0KW 1.5KW 1 0W 2.5W 5.0W 7.5W 10.0W 2 >> • Simulation results shows the peak value of MOSFET VDS and ID . Calculated switching power loss and average power loss are also shown 10usec. / Div. M1 Power Loss M1 Power Lossavg VDS(t) ID(t) Peak value VGS(t) 27
  • 28. 9.Schottky barrier diode D21 and D22 waveforms Time 0s 20ms 40ms 60ms 80ms 100ms 120ms 1 -I(Ls) 2 V(D22:2,D22:3) 20A 40A -5A 1 SEL>> 0V 40V 80V 2 SEL>> Time 119.92ms 119.93ms 119.94ms 119.95ms 119.96ms 119.97ms 119.98ms 119.99ms 1 -I(Ls) 2 V(D22:2,D22:3) 50A -10A 1 >> 0V 50V 2 • Simulation results shows the peak value of SBD: VKA and IF . 10usec. / Div. IF(t) VKA(t) IF(t) VKA(t) 20msec. / Div. Peak value Peak valuePeak value 28
  • 29. 9.Schottky barrier diode D21 and D22 waveforms Time 19.57ms 19.58ms 19.59ms 19.60ms 19.61ms 19.62ms 19.63ms 19.64ms 19.65ms 19.66ms -I(LS) V(D22:2,D22:3) -50 -25 0 25 50 SEL>> 1 W(D21)+ W(D22) 2 AVG(W(D21)+ W(D22)) -40W 0W 40W 1 -5.0W 0W 5.0W 2 >> • Simulation results shows the peak value of SBD VKA and IF . Calculated power loss and average power loss are also shown 10usec. / Div. SBD Power Loss SBD Power Lossavg VKA(t)IF(t) Peak valuePeak value 29
  • 30. 10.Photocoupler V I V- V+ D1 DERA38-06 D2 DERA22-02 REF K A SR1 TA76432F D21 YG865C15R1 23 C10 0.01uF D22 YG865C15RLs {Nsp*Nsp*Lp} 1 2 L1 4.7uH 1 2 VO_19V C_T1 2200pF 0 100V/50Hz C1 220uF IC = 139 K K1 COUPLING = 1 K_Linear L1 = Ls L2 = Lp L3 = Lsub Lsub {Nsubp*Nsubp*Lp} 1 2 PC1 TLP281 IC1 FA5541 SSIC = 1 ZCD FB IS GND OUT VCC NC VH R12 4.7 R8 4.7k R14 100 RSL1 150m C11 4700pF C13 22pF R3 13k R4 15k C8 2200pF C9 0.01uFR5 10k R6 10k R7 2k R1 7.5k R15 200k ESR7 50m IS FB R13 100k 0 C3 33uF IC = 10.199 FB PARAMETERS: Np = 57 Ns = 10 Lp = 360uH Nsub = 8 Nsp = {Ns/Np} Nsubp = {Nsub/Np} IC=0/1 ZCD Cd 220pF 19V / 0 to 5A Lp {Lp} 1 2 Rp_T1 0.150 C2 2200pF R2 56k Rsns 0.22 R10 10 R11 100 0 DBR1 D3SB80 D3 D1NL20U_S C14 4700pF D4 D1NL20U_S M1 2SK3681-01S C7 1000uF IC = 18.9 C12 1000pF IC = 4.2 IL 5Adc C4 9900uF IC = 19.665 ESR4 13.3m 3300uFx3 V1 FREQ = 50Hz VAMPL = 141.42  No parasitic elements: Lleak and ESL ,to aid simulation convergence 30
  • 31. 10.Photocoupler Time 0s 2ms 4ms 6ms 8ms 10ms 12ms 14ms 16ms 18ms 20ms V(VO_19V) 18V 19V 20V V(PC1:A,PC1:K) 0V 1.0V SEL>> Time 2ms 4ms 6ms 8ms 10ms 12ms 14ms 16ms 18ms 20ms 1 I(PC1:C) 2 V(FB) -12uA 380uA 1 >> 0V 2.5V 5.0V 2 • When power supply output reaches spec voltage (19V) ,a shunt regulator draws current through resistor (R6) and VAK of photocoupler increases. • When VAK turns on photocoupler, collector current Ic increases. This causes FB pin voltage to decreases before power supply output voltage go to the stable state. 2msec. / Div. IC (photocoupler) V(FB pin) VAK (photocoupler) 2msec. / Div. VO_19V(t) VAK turns on the photocoupler VO stable at 19V 31