Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

Boost Converter Circuit (Step-up) using PSpice

Boost Converter Circuit (Step-up)

  • Als Erste(r) kommentieren

  • Gehören Sie zu den Ersten, denen das gefällt!

Boost Converter Circuit (Step-up) using PSpice

  1. 1. Boost Converter Circuit (Step-up) Verification and Optimization using PSpice VIN=5V, VOUT=9V, IOUT=50mA, and Vripple(P-P)=30mV L1 150u 1 2 CLP 100p Q1 Q2SC3526 Rf 1000k Rsr 180k Cs 4.7uF IC = 0 0 0 U1 NJM2377 FOSC = 150K -IN FB GND OUT V+ CS CT REF RL 180 OUT Rt 24k Ct 470p IC = 0 0 CIN 220uF V+ 0 Rsf 160k R1 9.1k R2 150k Rs {ESR} 0 D1 DRB055L-40 PARAMETERS: ESR = 103m V2 5Vdc COUT 220u All Rights Reserved Copyright (C) Bee Technologies Inc. 株式会社ビー・テクノロジー http://www.bee-tech.com/
  2. 2. All Rights Reserved Copyright (C) Bee Technologies Inc. Content 1.Circuit Design Verification: Design Condition: VIN=5V, VOUT=9V, IOUT=50mA, and Vripple(P-P)=30mV 2.Output Stage Optimization: COUT 220uF 2.1 ESR Characteristics Comparison 2.2 Ripple Voltage Comparison 3 Output Stage Optimization: D1 3.1 Characteristics Comparison 3.2 Diode Performance Comparison 4.Schottky Diode Reverse Characteristics RB055L-40 Standard vs. Professional Model 4.1 Comparison Result Voltage, Current, and Power of D1 in Boost Converter Circuit 5 Power Switch: Q1 5.1 Power Switch: Q1 PC, IB, VC, and IC Simulation Result 5.2 Power Switch: Q1 Power Stage Device Stress Analysis
  3. 3. Time 118.0ms 118.4ms 118.8ms 119.2ms 119.6ms 120.0ms -I(RL) 0A 50mA 100mA V(OUT) 9.045V 9.065V 9.075V 9.085V 9.095V SEL>> V(V+) V(OUT) 0V 2.5V 5.0V 7.5V 10.0V 1.Circuit Design Verification Design Condition: VIN=5V, VOUT=9V, IOUT=50mA, and Vripple(P-P)=30mV VIN=5V VOUT=9V Vripple(P-P)=30mV IOUT=50mA
  4. 4. 2.Output Stage Optimization: COUT 220uF RJJ-35V221MG5-T20 from ELNA vs. LXZ25VB220MH12 from Nippon Chemi-Con Corporation L1 150u 1 2 CLP 100p Q1 Q2SC3526 Rf 1000k Rsr 180k Cs 4.7uF IC = 0 0 0 U1 NJM2377 FOSC = 150K -IN FB GND OUT V+ CS CT REF RL 180 OUT Rt 24k Ct 470p IC = 0 0 CIN 220uF V+ 0 Rsf 160k R1 9.1k R2 150k Rs {ESR} 0 D1 DRB055L-40 PARAMETERS: ESR = 103m V2 5Vdc COUT 220u ESR
  5. 5. 2.1 ESR Characteristics Comparison RJJ-35V221MG5-T20 from ELNA vs. LXZ25VB220MH12 from Nippon Chemi-Con Corporation Part number ESR() (Condition: frequency=150kHz) RJJ-35V221MG5-T20 195m LXZ25VB220MH12 809m ELNA RJJ-35V221MG5-T20 Nippon Chemi-Con Corporation LXZ25VB220MH12
  6. 6. Time 100ms 101ms 102ms 103ms 104ms 105ms V(OUT) 8.90V 8.95V 9.00V 9.05V 9.10V 9.15V 9.20V 2.2 Ripple Voltage Comparison RJJ-35V221MG5-T20 from ELNA vs. LXZ25VB220MH12 from Nippon Chemi-Con Corporation VIN=5V Vout ripple for ESR 809m  150mV Vout ripple for ESR 195m  50mV Total job time (using Solver 1) = 1437.91 sec. (24min.)
  7. 7. 3.Output Stage Optimization: D1 ROHM’s Schottky Diode: RB051L-40 vs. RB055L-40 L1 150u 1 2 CLP 100p Q1 Q2SC3526 Rf 1000k Rsr 180k Cs 4.7uF IC = 0 0 0 U1 NJM2377 FOSC = 150K -IN FB GND OUT V+ CS CT REF RL 180 OUT Rt 24k Ct 470p IC = 0 0 CIN 220uF V+ 0 Rsf 160k R1 9.1k R2 150k Rs {ESR} 0 D1 DRB055L-40 PARAMETERS: ESR = 103m V2 5Vdc COUT 220u Replace Model
  8. 8. 3.1 Characteristics Comparison ROHM’s Schottky Diode: RB051L-40 vs. RB055L-40 Part number VF (V) (Condition: IF=100mA) Ct (pF) (Condition: VR=9V) VR (Max.) RB051L-40 0.232 213.800 40V RB055L-40 0.320 69.910 40V VF-IF characteristics Ct-VR characteristics
  9. 9. 3.2 Diode Performance Comparison ROHM’s Schottky Diode: RB051L-40 vs. RB055L-40 76% PD(rms) Decrease I(AK) V(KA) PD(rms) The waveforms of DRB051L-40 The waveforms of DRB055L-40
  10. 10. 4.Schottky Diode Reverse Characteristics RB055L-40 Standard vs. Professional Model 0.1 1 10 100 0 10 20 30 40 REVERSE CURRENT:IR(uA) REVERSE VOLTAGE:VR(V) VR-IR CHARACTERISTICS Datasheet Standard Professional Reverse characteristics
  11. 11. 4.1 Comparison Result Voltage, Current, and Power of D1 in Boost Converter Circuit Professional Model Time 119.980ms 119.985ms 119.990ms 119.995ms rms(V(U2:A,U2:K)*I(U2:A)) 20mW 30mW 35mW 40mW SEL>> (119.990m,28.917m) I(U2:A) -100mA 0A 100mA V(U2:A,U2:K) -10V -5V 0V Time 119.980ms 119.985ms 119.990ms 119.995ms rms(V(D1:A,D1:c)*I(D1)) 20mW 30mW 40mW SEL>> (119.990m,29.955m) I(D1) -100mA 0A 100mA V(D1:A,D1:c) -10V -5V 0V Standard Model PD(rms) = 28.917mW PD(rms) = 29.955mW V(AK) I(AK) V(AK) I(AK)
  12. 12. L1 150u 1 2 CLP 100p Rf 1000k Rsr 180k Cs 4.7uF IC = 0 0 0 U1 NJM2377 FOSC = 150K -IN FB GND OUT V+ CS CT REF RL 180 Q1 Q2SD2623 U2RB055L-40 OUT Rt 24k Ct 470p IC = 0 0 CIN 220uF V+ 0 Rsf 160k R1 9.1k R2 150k Rs {ESR} 0 PARAMETERS: ESR = 103m V2 5Vdc COUT 220u 5.Power Switch: Q1 Panasonic’s NPN Transistor: 2SD2623 BJT Power Switch
  13. 13. 5.1 Power Switch: Q1 PC, IB, VC, and IC Simulation Result IB VC IC PC
  14. 14. 5.2 Power Switch: Q1 Power Stage Device Stress Analysis Parameter Start-Up Steady-State Absolute Maximum Ratings VCE (V) 9.322 (46.61% of VCEO) 9.368 (46.84% of VCEO) VCEO=20V IC (A) 0.287 (57.4% of ICmax) 0.093 (18.6% of ICmax) ICmax.=0.5A

×