Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Nächste SlideShare
Ecuaciones
Ecuaciones
Wird geladen in …3
×

Hier ansehen

1 von 11 Anzeige

Weitere Verwandte Inhalte

Diashows für Sie (20)

Ähnlich wie E3 f1 bộ binh (20)

Anzeige

Weitere von Thế Giới Tinh Hoa (20)

E3 f1 bộ binh

  1. 1. CHUYÊN ĐỀ PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH CHỨA CĂN THỨC PHƯƠNG PHÁP SỬ DỤNG ẨN PHỤ ------------------------------------------------------------------------------------------------------------------------------------------- Bài 1. Giải các phương trình và bất phương trình sau trên tập hợp số thực 1, x − 3 + x = 9 29, 3 3 x 2 + x − 3x 2 − x = 2 2, 3 − x + x 2 − 2 x + x − x 2 = 1 30, 4 x 2 + x + 1 = 6 ( 4 x 2 + x ) + 1 3, x + 2 x + 5 < 4 2 x ( 2 + x ) + 3 2 31, x 2 − 4 x = −2 + x 2 + 5 − 4 x 4, x ( x − 4 ) 4 x − x + ( 2 − x ) < 2 2 2 32, ( 3 − x ) + 3x − 22 = x 2 − 3x + 7 2 5, ( x + 1) + ( x + 1) + 3x x + 1 > 0 2 3 33, x ( x + 5 ) > 2 3 x 2 + 5 x + 2 − 2 6, x 3 + x 2 − 1 + x 3 + x 2 + 2 = 3 34, 12 − 4 ( 4 − x )( x + 2 ) ≤ x 2 − 2 x 7, 2 x 2 + 5 x + 2 − 2 2 x 2 + 5 x − 6 = 1 35, x 2 + 7 x + 4 = ( 4 x + 8 ) x 8, 3 x + 21x + 18 + 2 x + 7 x + 7 = 2 2 2 36, x 2 − 7 x + 6 + x 2 − 7 x + 3 = 3 9, 3 x 2 + 6 x + 4 < 2 − 2 x − x 2 37, x 2 + x + 7 + x 2 + x + 2 = 3 x 2 + 3x + 19 10, 4 x − 12 x − 5 4 x − 12 x + 11 + 15 = 0 2 2 38, 2 x 2 + x + 7 − 2 ( 2 x 2 + x + 1) = 3x 2 + ( x + 1) 2 11, x ( 2 x + 3) > 3 − 4 x − 6 x 2 39, 7 (1 + x )( 2 − x ) > 1 + 2 x − 2 x 2 12, 4 + ( x + 1)( 2 + x ) ≤ x 2 + 3 x 3 13, x 2 − 34 x + 48 ≥ 6 ( x − 2 )( x − 32 ) 40, x 2 + 3 − 2 x 2 − 3 x + 2 = x + 6 2 14, 9 x 2 + 3x + 12 = x ( x + 3) − 2 11 28 41, x 2 − 3 x − 5 9 x 2 + x − 2 = − x 4 9 15, 3 x 2 − 2 x + 15 = 7 − 3 x 2 − 2 x + 8 42, 4 x x + 1 + x + x = 5 3 2 16, 3 x + 5 x + 8 − 3 x + 5 x + 1 > 3 2 2 43, x x 2 + 4 + 5 ( x 2 + 2 ) = 20 2 17, 3 x 2 + 2 x = 2 x 2 + x + 1 − x 44, x 1 + x = 2 x 3 + 2 x − 1 18, 2 x + x 2 = 2 ( x 2 + 2 x + 4 ) + 3 1 x 45, 1 + + 2 =3 19, x + x + 2 = x ( x + 2 ) − 2 2 x x +1 x +1 x −1 20, 18 x 2 − 18 x + 5 = 3 3 9 x 2 − 9 x + 2 46, + =2 x −1 x +1 21, 3 3 x 3 − 3x + 2 = 2 x 2 − 6 x + 5 3+ x x +8 ( 22, 3 x − 2 x + 9 = 3 2 − 3x − 2 x + 1 2 2 ) 47, x + x =5 4x +1 1 23, 2 x ( x − 1) − x > x 2 − x + 1 48, + =5 4x x 24, 3 x 2 + 15 x + 2 x 2 + 5 x + 1 = 2 49, x2 − 4 x + 3 = 4x − x2 25, ( x + 5 )( 2 − x ) = 3 x 2 + 3 x 50, 8 + x − 3 + 5 − x − 3 = 5 26, 5 x + 10 x + 1 > 7 − 2 x − x 2 2 51, 1 − x − x + 2 − x − x = 1 27, 2 x + x − 5 x − 6 = 10 x + 15 2 2 1 52, 5 + x + 2 3 − x > 3− x − 2 28, ( x + 1)( x + 4 ) ≤ 5 x + 2 x + 28 2 3 CREATED BY HOÀNG MINH THI TRUNG ĐOÀN 3 – SƯ ĐOÀN 1 – QUÂN ĐOÀN BỘ BINH 1
  2. 2. Bài 2. Giải các phương trình và bất phương trình sau trên tập hợp số thực 1, 4 x + 3 + 2 x + 1 = 6 x + 8 x 2 + 10 x + 3 − 16 1 2, 2 x + 1 + 9 − 2 x + 3 9 + 16 x − 4 x 2 > 13 25, x 2 + 2 x x − = 3x + 1 x 12 − x x − 2 82 3, (12 − x ) + ( x − 2) < 26, x 2 + 3 x 4 − x 2 = 1 + 2 x x−2 12 − x 3 1 3x 27, 1 − x 2 + 2 3 1 − x 2 = 3 4, > −1 3 1− x 2 1 − x2 28, 1 + x − x2 = x + 1 − x 2 7 5x 5, ≤ +2 29, x + 7 + x + 2 x 2 + 7 x = 35 − 2 x 2− x 2 2 − x2 30, 2 x + 3 + 1 + x = 3 x + 2 2 x 2 + 5 x + 3 − 2 ( ) + 32 2 1 6, x + 16 + x = x + 16 + x 22 2 5 1 31, 5 x + > 2x + +4 1− x 8 2 + x 2 x 2x 7, 8 + =2 2+ x 1− x 32, x −1 + x + 3 + 2 ( x − 1)( x + 3) + 2 x = 4 8, 3 2 + x − 6 2 − x + 4 4 − x 2 = 10 − 3 x 33, 3 x − 2 + x − 1 = 4 x − 9 + 2 3x 2 − 5 x + 2 x 9, x + =2 2 34, 1 + x + 8 − x = 3 + (1 + x )( 8 − x ) x −1 2 2x 3 1 1 35, 3 + x + 6 − x = 3 + ( 3 + x )( 6 − x ) 10, 3 + + =2 x +1 2 2x 36, 3 x + 1 + 2 − x + 2 2 + 5 x − 3 x 2 = 9 − 2 x 11, x + 4 + x − 4 = 2 x + 2 x 2 − 16 37, x + 2 − x 2 + x 2 − x 2 = 3 12, 4 x −1 + 4 x = 4 x + 1 38, x + 4 − x = 5 + 4 x − x2 x 35 13, x + > 39, x+ 2 + 6− x = 8− ( x + 2 )( 6 − x ) x −1 2 12 (2 − x) + 3 ( 7 + x ) = 3 + 3 ( 7 + x )( 2 − x ) 3 2 2 40, 14, x + 1 − 12 − x = − x 2 + 11x − 23 8− x 15, 7 + x − 9 − x = − x 2 + 2 x + 63 41, 1 + x + 8 − x − (1 + x ) =3 1+ x 16, 3 − x + x − 1 − 4 4 x − x 2 − 3 + 2 ≥ 0 42, 2 1 − 4 x + 5 x + 1 = (1 − 4 x )(1 + x ) + 5 17, 4 x − x −1 + x + x −1 = 2 2 2 x 2 − 6 x + 15 43, x 2 − 6 x + 18 = 18, 9 ( x + 1) − x 2 = x + 9 − x x 2 − 6 x + 11 20 + x 20 − x x −1 19, − = 6 44, 1 − x + ( x − 1)( x − 2 ) + ( x − 2 ) =3 x x x−2 x−2 + x+2 x+2 20, x2 − 4 − x + 1 = 45, x 2 − 4 + 4 ( x − 2 ) = −3 2 x−2 8x2 21, x + 17 − x 2 + x 17 − x 2 = 9 46, 1 + 2 x − 1 − 2 x = 1 + 1 − 4 x2 22, x + 4 − x 2 = 2 + 3x 4 − x 2 2(2 − x) 2 1 1 47, x − 4− x = 23, 1 − −2 +1 > 3 2 + 4 x − x2 x +1 x 4 24, x + = x − 2 +4 48, ( )( x + 3 − x −1 1 + x2 + 2 x − 3 = 4 ) x x CREATED BY HOÀNG MINH THI TRUNG ĐOÀN 3 – SƯ ĐOÀN 1 – QUÂN ĐOÀN BỘ BINH 2
  3. 3. Bài 3. Giải các phương trình và bất phương trình sau trên tập hợp số thực x +1 1, ( x − 3)( x + 1) + 4 ( x − 3) = −3 x−3 2, 2 1 − x − 1 + x + 3 1 − x 2 = 3 − x x+3 3, 2 x 2 − 9 = ( x + 5 ) x −3 x −1 4, 2 x 2 − 1 = x 2 + 2 x + 5 x +1 2 5, = 1 + 3 + 2x − x2 x +1 + 3 − x 6, x 2 − x = ( 2 − 2 x ) x + 3 7, x 2 − 3 x + 6 = 2 ( 2 − x ) 3 + x 8, 2 x 2 − 7 x + 15 = ( 9 − 4 x ) 3 + x 9, x 2 − 1 = 2 x x 2 + 2 x 10, x 2 + 4 x = ( x + 2 ) x 2 − 2 x + 4 11, x + 1 = x2 + 4 x + 5 12, 3 x = 3x 2 − 14 x + 14 13, 7 x + 7 + 7 x − 6 + 2 49 x 2 + 7 x − 42 < 181 − 14 x 14, ( 3 + x ) ( 4 − x )(12 + x ) + x = 28 2 x 2 − 3x + 5 15, = x2 + 2x −1 5 − 2x ( ) 16, 2 x 2 + 14 − 2 x 2 + 8 x x + 8 x − 14 x ( x + 8 ) + 24 = 0 17, x 2 − x − 2 1 + 16 x = 2 ( )( 18, x + 15 x + 36 x + 5 x + 4 = 520 x ) x+4 19, 2 x 2 − 16 = ( 6 + x ) x−4  1 1 2 3 20,  x −  x 2 + 3x + = x  3 9 9 21, x 4 − 2 x 2 + x = 2 ( x 2 − x ) 22, 5 x 2 − 11x + 7 + ( 4 x − 5 ) x 2 − x + 1 = 0 5x2 − 9 x + 7 23, = x2 + x + 1 5 − 4x 24, 5 x 2 − 11x + 7 = 2 ( 3 − 2 x ) x 2 + x + 2 1 25,5 16 − x 2 − =4 16 − x 2 CREATED BY HOÀNG MINH THI TRUNG ĐOÀN 3 – SƯ ĐOÀN 1 – QUÂN ĐOÀN BỘ BINH 3
  4. 4. Bài 4. Giải các phương trình và bất phương trình sau trên tập hợp số thực x2 + 2 1, ( x + 1) − 3x 2 <1 x 2, ( x + 2 ) = 5 x 3 − 4 x + 8 2 3, x 2 + 5 x − 1 ≤ 6 x 3 − x 4, 7 x ( x 2 + 3) + 6 ≥ ( x + 3) 2 2 ( 2 x 2 + x + 1) 5, ≤ 2 x3 + x 5 6, 2 x 2 + 3 x + 4 − 5 x 3 + 2 x = 0 3 ( 4 x 2 + x + 1) 4x2 + 1 7, < 10 x x 3 ( x + 1) 2 x2 + x + 1 8, = 10 x x x2 + 1 9, 3 ( x + x + 3) = 10 ( 2 + x ) 2 x+2 10 x x − 1 10, 3 ( x 2 − x + 1) ≤ x 11, ( x − 1) + x − x = 0 2 3 4 2 2 12, x 2 + 2 + x 3 x + = 2x x 13, ( x − 1) + 3 x 2 ( x 2 − 2 ) = 3 2 x2 − 2 14, 3x 2 + 4 x − 6 > 7 x x x −1 15, x 2 + ( x + 1) ≤3 x +1 x2 − 3 16, 2 x 2 − 5 x − 3 x ≥6 x 17, 6 x 2 − 3 3 x 2 − 2 x − 1 ≤ 4 x + 4 18, 2 ( 2 x 2 + 8 x + 6 ) = 4 + x ( ) 3 19, x −1 + 1 + 2 x −1 = 2 − x x +1 20, 2 x 2 − 8 x + 3 ( 5 − x ) = 12 x −5 21, 2 x 2 − 3 x + 1 ≥ 4 x − 4 x 2 − 3 x + 1 x 4 − 4 x 2 + 16 4 − x2 x 22, ≤ + +1 x (4 − x ) 2 2 x 4 − x2 CREATED BY HOÀNG MINH THI TRUNG ĐOÀN 3 – SƯ ĐOÀN 1 – QUÂN ĐOÀN BỘ BINH 4
  5. 5. Bài 5. Giải các phương trình và bất phương trình sau trên tập hợp số thực x +1 1, 3 x + 5 < ( 3 x + 6 ) x+2 2, 3 ( x 2 − 3x + 9 ) < 2 x − 3 x − 6 3, 3 ( x 2 + 5 x + 9 ) ≤ 2 ( x + 3) + 5 x x− x 4, ≥1 1 − 2 ( x − x + 1) 2 x −2 1 5, ≥ 6 ( x2 − 2 x + 4) − 2 x 2 3x − 4 x 6, ≤1 5 ( x 2 + 13 x + 16 ) − 12 7, 3 x 2 + 12 x + 3 − x ≤ 1 − x x +1 8, ≤1 2 x + 5x + 1 + 3 x 2 9, ( x +1 )( x +3 ) >3 x 2 − 10 x + 9 10, 7 ( x − 1)( x − 4 ) ≤ x − x − 2 11, x 2 − 6 x + 1 ≥ (1 + x ) x 12, 4 + x 2 = 5 x ( x − 2 ) 2 x+2 13, ≤ 3 x ( x + 1)( x + 4 ) 7 x 1 14, ≥ 4 x + 10 x + 1 x + 2 2 2 9 x2 − 5x + 1 15, . ≥ x 5 3x − 1 4x2 − 2x + 1 16, ≤ x 2x +1 17, 6 ( x 2 − 6 x + 4 ) + x ≤ 2 ( 2 + x ) 18, x 2 + 15 x + 9 ≤ 6 x ( 3 + x ) x3 − 7 x 2 − 8 19, ≥ 2x 3 x −7 20, ( x − 2 ) ≤ ( x 2 + 4 ) x 3 21, 2 + ( x − 2) ( 4 + x2 ) ≤ x + 2 x 22, x 3 + 5 x 2 + ( x 2 − 10 x + 1) x ≤ 1 + 5 x 2 CREATED BY HOÀNG MINH THI TRUNG ĐOÀN 3 – SƯ ĐOÀN 1 – QUÂN ĐOÀN BỘ BINH 5
  6. 6. Bài 6. Giải các phương trình và bất phương trình sau trên tập hợp số thực 1, 6 x 2 − 7 x + 13 ≤ ( 7 − 6 x ) x 2 + 3 2, 15 x 2 − 7 x + 13 + (12 x − 7 ) x 2 + 3 = 0 18 x 2 − 7 x + 19 3, > 5 + 2 x2 7 − 12 x 18 x 2 + 15 x − 6 4, = 3x + 1 − 2 5 − 12 x 5, 8 x 2 − 9 x + 8 + ( 8 x − 5 ) 1 + 3 x = 0 6, ( x + 1) + 2 ( 3 − x ) 2 x + 1 = 6 x − 5 2 2 x2 − 5x + 4 2 ( x + 1) 7, −1 = 2x − 3 2x + 3 +1 8, 2 + x ( 3 x − 5 ) + ( 3 x − 5 ) x 2 − 1 = 0 9, 4 (1 + x ) = ( 2 x + 1) 2 x + 1 10, x + 4 + x 2 − x + 4 = 3 x 2 11, 7 x 2 − 2 x = 1 + 2 x 2 − x + 1 12, 7 x ( 2 x − 1) ≤ 2 x ( 2 x + 1) 3 2 13, x + 4 x2 + x − 7 = x + 7 4 14, 3x 2 − 28 + 8 x 2 + x − 7 = 0 15, 23 x 2 − 32 x = 4 x 3x 2 + 5 x + 2 + 7 16, 2 x 2 + x − 4 = 2 2 x 2 + 3 x + 4 2 x − 1 − 28 x 2 17, 3 x 2 + 1 < 24 x − 1 x 2 2 − x − 6 x2 18, = 1 + 1 + 5x2 5 ( 2 x − 1) 5 13 19, 3x 2 + x + + 2 x 2 x 2 + x + 5 = 0 2 4 2 x2 − 5x + 7 + 2 x2 + 2 x − 3 20, ≤ 9 − 2x x2 + 2x − 3 x 2 + x + 10 3 ( 2 − x ) 21, ≥ −1 4 x 2 − 5 x + 26 5 − 2x 5 x + 17 22, > x+5 − x 16 x + 1 2 − x 2 (1 + x )( x − 4 ) 23, ≤ 11 − 2 x x − 3x + 4 x +3 2 24, 4− x ( = 4 x + 1 −1 ) CREATED BY HOÀNG MINH THI TRUNG ĐOÀN 3 – SƯ ĐOÀN 1 – QUÂN ĐOÀN BỘ BINH 6
  7. 7. Bài 7. Giải các phương trình và bất phương trình sau trên tập hợp số thực 1, 2 ( 2 − x ) + 7 x 3 − 4 x ≤ 16 2 2, 4 x 4 − 8 x 2 + 7 2 x 4 − x 2 > 2 3, 2 x 2 + 7 x + 1 + x + 1 ≤ 3 x 3 x2 + 6x + 1 + x 4, ≥1 5 x −1 4 x2 + x + 1 − 3 x + 3 5, ≤ −1 x−2 3 x2 − 5x + 4 − 5 x + 3 6, ≤1 1− x 4 x + 7 x − 16 7, ≥6 ( x + 1)( x + 4 ) + x − 2 ( x + 1) + 3 ≤ 2 + x 2 8, x2 + 3x + 4 + x 15 + ( 2 x − 1) 2 9, x 2 + 3x + 4 − 2 x ≥4 ( x +1 )( x +2 ) 2 (1 + x ) 2 ( 10, 2 x + 1 )( x +2 ≤ ) x2 + 3x + 1 − x 2 4 x 2 − 3x + 1 − 5 x − 4 11, ≤1 2x − 3 7 4 x 2 − 5 x + 1 − x + 15 12, =2 7−x 13, 6 x 2 + 24 x + 26 ≤ x (1 − x ) 14, 6 x 2 + 24 x + 26 = ( 7 − x ) x  4  15, ( 3 − x ) ≥ 6 +  3 x − + 8  2 x − 1 2  x   4 16, ( x − 6 ) < 16 + 3x −  4 x − 1 + 33 2  x  36  17, 11x 2 + 19 x −  4 x 2 − 9 = 27 x  x  3 1 18, 2 x 2 − 9 x + 3 = 10 ( 3 x − 1)− x x2  1 1 3 19,  2 −  2 x − 1 ≤ ( x − 3) + 2  x 5 2 1  20, 14 x 2 < 3 + 10  − 4 x  1 − 4 x 2 x  x 2 − 3 x − 6 10 x 2 − x − 2 21, < 2 + x − x2 x CREATED BY HOÀNG MINH THI TRUNG ĐOÀN 3 – SƯ ĐOÀN 1 – QUÂN ĐOÀN BỘ BINH 7
  8. 8. Bài 8. Giải các phương trình và bất phương trình sau trên tập hợp số thực 1, x 3 + 12 x ≤ 18 x 2 + 9 ( 3 x − 2 ) 3 x − 2 2, x ( x − 3) + 21x + 9 ( 5 − x ) x − 5 = 0 2 3, 7 x 2 − 6 ≥ 9 x (1 − x 2 ) 1 − x 2 4, x ( 6 − 25 x 2 ) + 9 ( 9 − 4 x 2 ) 9 − 4 x 2 = 0 1 − x 2x −1 5, ≤ 1− 2x 2 x −1 x ( x − 1)( 2 − x ) 6, ≥ 2 2 − 3x 3x − 2  8  7, x 2 +  x − + 36  2 x − 9 + 4 x ≤ 18  x  8, x 3 + ( x 2 − 16 x + 12 ) 4 x − 3 + 8 x 2 = 6 x x −1 9, ( x + 1) + .( x − 2) ≥ 3 2 2 x x 2 + x + 1 3 x + 2 ( x + 1) 2 10, ≥ 2 x 3 x + 4 ( x + 1) x ( 3x2 + 2 x − 4) 11, = ( x − 1)( x + 2 ) 3x 2 + 4 x − 8 12, ( 3x 2 + 12 x + 8 ) (1 + x )( 2 + x ) ≤ x ( 3x 2 + 6 x + 4 ) 13, 7 x 2 + 5 2 x + 7 = x 4 + 1 14, 4 x 3 + 3 x 2 + 4 x + 1 = 2 ( 3 x + 1) 3 x + 1 7  1  15, x 2 + 19 x + 11 ≤ +  5 x + + 18  2 x − 1 x  x  16, x 3 + 13 x 2 − 53x + 39 ≤ ( 5 x 2 − 4 x − 15 ) 2 x − 5  1 17,  8 x − 2 +  1 − 2 x ≥ 4 x 2 − 10 x + 5  x 18, ( x − 3) + ( 2 x − 7 ) x − 3 = 0 2 19, 2 x + 1 + 3 x − 2 = 2 x 2 − x − 2 + 3 1 + x 20, 5 x + 10 x − 2 = 2 + 4 x 2 − 4 + 5 2 + x 21, 12 x − 1 + 13x < 2 + 12 x 2 − 1 + 8 x + 1 22, 10 x − 4 + 8 x 2 − 1 = 5 1 + x + 10 x − 1 12 6  23, 2 x + = 5 +  − 2  x2 + x + 7 x x  x 4 + 2 x3 − x 2 − 2 x + 3 24, = x2 + x + 1 2x + 2x − 3 2 CREATED BY HOÀNG MINH THI TRUNG ĐOÀN 3 – SƯ ĐOÀN 1 – QUÂN ĐOÀN BỘ BINH 8
  9. 9. Bài 9. Giải các phương trình và bất phương trình sau trên tập hợp số thực 1, x + 7 + 2 ( 3 x − 2 )( 3 − 2 x ) = 5 3x − 2 + 5 3 − 2 x 2, 11 − 3 x + 10 1 − x = 5 x + 1 + 4 1 − x 2 3, ( x − 2 )( x − 7 ) = 2 − 2x 5 − 2x 3 − 2x −1 ( ) 4, ( x 2 + 5 x + 12 ) 1 − 1 − 2 x = 4 x 2 + 10 x 2 ( x + 3)( 2 x + 3) 5, 2 − 1 − 2 x ≤ x2 + 8x + 2 x 2 − x + 28 9 − 2x 6, = 3x 1 + 3x − 1 x − 7 x + 55 2 3 7, ≥ ( 9 − 2 x )( 5 − x ) 4 − 1 + 3x 8, 5 x + 17 + 14 x + 1 = 6 x 2 + 4 x + 3 + 7 3 − x x3 + 3x 2 − 4 x + 6 9, = 1+ x 6 − x − 3x 2 10, x 3 + 3 x 2 − x + 6 ≤ ( 3 x 2 + x − 5 ) 2 + x 11, ( 3 x 2 + 2 x − 7 ) 1 + 2 x + x 3 + 6 x 2 − 5 x + 12 > 0 10 12, x 2 + x ≤ ( x − 1) x − 1 + 1 x x3 + 3x 2 − 3x 13, 10 3x − 1 ≥ 3x − 1 x + 25 x − 68 x + 12 3 2 5 ( x − 2) 14, = 5 x + 20 x − 4 2 5x −1 + 3 x 3 + 44 x 2 − 33 x 15, ≤ ( x 2 + 4 x − 3) 4 x − 3 6 2 x 3 + 22 x − 11x 1 16, >6 x− 2x + 2x −1 2 2 x + 5 x − 28 x + 12 3 2 17, 6 ( x − 3) ≤ x2 + x − 2 ( x − 2 +1 ) x 3 + 10 x 2 − 23 x + 2 18, 1 + =6 x−2 x2 + x − 2 19, (13 − 4 x ) 2 x − 3 + ( 4 x − 3) 5 − 2 x = 2 + 8 16 x − 4 x 2 − 15 ( 20, (13 + 4 x ) x − 1 + ( 4 x + 9 ) x + 1 ≤ 6 2 x + 1 + 2 x 2 − 1 ) 21, ( 2 x − 1) x + 1 + ( 2 x + 1) x − 1 = 1 22, ( 4 x − 1) 2 x − 1 + ( 4 x + 1) 2 x + 1 = 4 23, (13x + 1) 1 + x = 2 ( 7 x + 3) x + 1 24, 8 x = 19 + x 3 + 6 x x + 1 CREATED BY HOÀNG MINH THI TRUNG ĐOÀN 3 – SƯ ĐOÀN 1 – QUÂN ĐOÀN BỘ BINH 9
  10. 10. Bài 10. Giải các phương trình và bất phương trình sau trên tập hợp số thực 1, 8 x 3 + 8 = ( 2 x + 3 − 12 x 2 ) 2 x + 3 + 12 x 2 + 18 x 2, ( 3x 2 + 9 x + 5 ) 3 x + 2 + x 3 + 12 x 2 + 18 x = 1 3, x 3 + 12 x 2 + ( 6 x 2 + 8 x − 24 ) x − 3 = 1 + 36 x 4, 9 ( x 2 + 3 x + 6 ) x + 2 = 27 ( x + 1) + x 3 2 x 3 + 12 x 2 + 24 x + 27 5, 2 2 + x ≥ 3x 2 + 4 x + 8 8 x 3 + 6 x ( x + 5 ) + 27 6, 5 x + 5 < 12 x 2 + x + 5 7, x 3 + 3 x 2 + 3 x = ( 3 x + 4 ) x + 7 8, x 3 + 6 x 2 + 12 x + ( 4 x + 2 ) x = 20 9, 7 x 3 + 3 x 2 + (12 x 2 + x ) x = 1 + 3 x 3 9 10, 3x x − 5 x + + x2 = x x  3  26 11, x 2 + 15 ( x + 1) + 2 x  3x + 10 +  ≤  x x 3 3x 12, +1 < 3− x 2 3 − x2 9 − 4x 3 − 2x 13, + ≥2 2 − x2 2 − x2 5x 2 + 3x + 1 14, ≥5 ( x + 1) ( x3 − 1) 6 x2 − 8 15, +1 ≥ x 4 − x (6 − x) 4 5x 16, > +9 2 − x3 x3 − 2 3 2 − x3 12 x 17, + 14 ≤ 1− x 3 3 1 − x3 1  18, x 2 + 12 x + 16  − 1 1 − x ≤ 12 x  19, 16 x 3 < (11x 2 − x + 2 ) ( x − 1)( 2 + x ) 11 1 + x 2 16 20, ≤ ( x + 1) 3 24 x2 + x +1 11 21, (12 x 2 − 25 x + 12 ) 1 + x + 16 (1 − x ) = 0 3 6 x3 − 5 x 22, ≤ 2 x2 −1 3x 2 − 1 CREATED BY HOÀNG MINH THI TRUNG ĐOÀN 3 – SƯ ĐOÀN 1 – QUÂN ĐOÀN BỘ BINH 10
  11. 11. Bài 11. Giải các phương trình và bất phương trình sau trên tập hợp số thực 1, x 2 + 4 x + 9 > 7 x ( x − 3) x 2 − x + 23 2, > 7 x −7 x−2 ( 3, x 2 + 7 x + 6 ≤ 8 x − 1 ( x − 2 ) ) ( 4, ( 3 + x )( 4 + x ) ≤ 4 2 x − 1 ( x − 2 ) ) x2 + 8x 5, ≥ 9 x +1 x −1 1  1 6, x + 14 + = 10 1 −  x x  x 7, ( 4 + x ) + 10 ( 4 − x ) x ≥ 0 2 ( 8, x 2 + 11x < 3 3 x + 1 ( x − 3) ) 2 x 2 + 3x + 2 + x − 2 9, ≤1 2 x −3 2x2 + 7 x + 8 + 2 10, >1 2 x−x 2 x 2 + 10 x + 8 11, ≤1 x−3 x + 2 12, x + 3 ≤ 3 x + 2 ( x 2 + 7 x − 9 ) 13, x 2 + 3x + 2 + x 2 + 3x ≥ 4 2 14, x 2 + 12 x + 2 ≥ 7 x x + x x2 −1 15, x 2 + 15 x − 8 x ≥1 x 1 − 2 x2 16, 1 − 3 x ≤ 2 x 2 + 10 x x 3 − 4 x2 17, 3 > 5 x + 14 x + 4 x 2 x 18, ( 3 x 2 − 3x − 1) 3x − 1 + 2x ≤ 0 x 1 2x 19, 4 x − ≥ x 3x + 1 − 4 x2 20, x + 3 ≥ 6 x − 4 x 2 − 29 x + 36 21, ( x 2 + 2 − 8 x ) x + 2 + 12 x ≤ x 2 + 2 x x2 + 9x + 4 4 22, 2 x+ ≥2 3 x + 2 x + 12 x CREATED BY HOÀNG MINH THI TRUNG ĐOÀN 3 – SƯ ĐOÀN 1 – QUÂN ĐOÀN BỘ BINH 11

×