SlideShare ist ein Scribd-Unternehmen logo
1 von 73
LOGIC DESIGN
PART A
Unit 1:
PRINCIPLES OF COMBINATIONAL LOGIC-1
Definition of Combinational logic:
It deals with the techniques of combining
basic gates into circuits that perform
some desired function.
 Outputs are functions of (present)
inputs.
 No memory element. (like flipflops)
 Do not have feedback from output
to input.
 Egs. Adder, subtractor, decoder,
encoder, multiplexer.
COMBINATIONAL LOGIC
BASICS OF DIGITAL ELECTRONICS
 Digital Electronics represents information (0, 1) with only
two discrete values.
 Ideally
“no voltage” (e.g., 0v) represents a 0 and
“full source voltage” (e.g., 5v) represents a 1
 Realistically
“low voltage” (e.g., <1v) represents a 0 and
“high voltage” (e.g., >4v) represents a 1
 We achieve these discrete values by using switches.
 We use transistor switches, which operates at high speed,
electronically, and small in size.
GATES
 The most basic digital devices are called
gates.
 Gates got their name from their function
of allowing or blocking (gating) the flow of
digital information.
 A gate has one or more inputs and
produces an output depending on the
input(s).
 A gate is called a combinational circuit.
 Three most important gates are: AND, OR,
GATES
 Simple gates
 AND
 OR
 NOT
 Functionality can be
expressed by a truth table
 A truth table lists output for
each possible input
combination
 Precedence
 NOT > AND > OR
 F = A B + A B
= (A (B)) + ((A) B)
AND, OR, NOT GATES
GATES
 Additional useful gates
 NAND
 NOR
 XOR
 NAND = AND + NOT
 NOR = OR + NOT
 XOR implements
exclusive-OR function
 NAND and NOR gates
require only 2 transistors
 AND and OR need 3
transistors!
Equivalent symbols for NAND & NOR gates
GATES(CONT.)
 Proving NAND gate is universal
BASIC CONCEPTS (CONT.)
 Proving NOR gate is universal
LOGIC CHIPS
LOGIC CHIPS (CONT.)
 Integration levels
 SSI (small scale integration)
 Introduced in late 1960s
 1-10 gates (previous examples)
 MSI (medium scale integration)
 Introduced in late 1960s
 10-100 gates
 LSI (large scale integration)
 Introduced in early 1970s
 100-10,000 gates
 VLSI (very large scale integration)
 Introduced in late 1970s
 More than 10,000 gates
BOOLEAN ALGEBRA
BOOLEAN ALGEBRA
LOGIC FUNCTIONS
 Logical functions can be expressed in
several ways:
 Truth table
 Logical expressions
 Graphical form
 Example:
 Majority function
 Output is one whenever majority of inputs is 1
 We use 3-input majority function
LOGIC FUNCTIONS (CONT.)
3-input majority function
A B C F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
 Logical expression form
after simplification:
F = A B + B C + A C
LOGIC CIRCUIT DESIGN PROCESS
 A simple logic design process involves
 Problem specification
 Truth table derivation
 Derivation of logical expression
 Simplification of logical expression
 Implementation
DERIVING LOGICAL EXPRESSIONS
 Derivation of logical expressions from truth
tables
 Sum-of-products (SOP) form
 Product-of-sums (POS) form
 SOP form
 Write an AND term for each input combination that
produces a 1 output
 Write the variable if its value is 1; complement otherwise
 OR the AND terms to get the final expression
 POS form
 Dual of the SOP form
SUM OF PRODUCT (SOP) FORM
 3-input majority
function
A B C F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
SOP logical expression
F = A B C + A B C +
A B C + A B C
 Four product terms
 Because there are 4
rows with a 1 output



PRODUCT OF SUM (POS) FORM
 3-input majority function
A B C F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1




POS logical expression
F = (A + B + C) (A + B + C)
(A + B + C) (A + B + C)
• Four sum terms
Because there are 4 rows with
a 0 output
DEFINITIONS:
1) Literal:
It is a Boolean variable or its complement.
Eg. A, B ,C, B
2) Product term:
It is a logical AND of literals or is a literal.
Eg. A B C , B C , AB
3) Sum term:
It is a logical OR of literals or is a literal.
Eg. (A + B + C), (A + B )
4) SOP:
It is the logical OR of multiple product terms.
5) POS:
It is the logical AND of multiple Sum terms.
Definitions: 6) Minterm
A minterm is a special case product term which
contains all the input variables (each literal occuring
only once) of the function.
• A function with n variables has 2n minterms
• A three-variable function, such as f(x,y,z), has
23 = 8 minterms.
Minterm Is true when… Shorthand
x’y’z’
x’y’z
x’yz’
x’yz
xy’z’
xy’z
xyz’
xyz
x=0, y=0, z=0
x=0, y=0, z=1
x=0, y=1, z=0
x=0, y=1, z=1
x=1, y=0, z=0
x=1, y=0, z=1
x=1, y=1, z=0
x=1, y=1, z=1
m0
m1
m2
m3
m4
m5
m6
m7
DEFINITIONS: 7) MAXTERM
It is a special case Sum term which contains all the
input variables of the function, occurring only once.
 A function with n variables has 2n minterms
 A three-variable function, such as f(x,y,z), has
23 = 8 minterms.
Maxterm Is false when… Shorthand
x + y + z x=0, y=0, z=0 M0
x + y + z’ x=0, y=0, z=1 M1
x + y’ + z x=0, y=1, z=0 M2
x + y’ + z’ x=0, y=1, z=1 M3
x’ + y + z x=1, y=0, z=0 M4
x’ + y + z’ x=1, y=0, z=1 M5
x’ + y’ + z x=1, y=1, z=0 M6
x’ + y’ + z’ x=1, y=1, z=1 M7
DEFINITIONS:
8) Canonical SOP
• It is a complete set of minterms that defines when an
O/P variable is a logical 1.
• Canonical or Standard SOP form is an SOP form of
expression in which each product term contains all the
literals.
Eg. A B C + A B C + A B C + A B C
9) Canonical POS
It is a POS form in which each Sum term contains all the
literals.
Eg. (A + B + C) (A + B + C)(A + B + C)
CANONICAL SOP FORM & MINTERM NOTATION
Every function can be written as a unique sum of
minterms. You can obtain the canonical SOP form by
picking the rows having O/P =1.



)6,3,2,1,0(
63210
m
mmmmm
CABBCACBACBACBAf
CANONICAL POS FORM & MAXTERM
NOTATION
CONVERSION
Express the following SOP equation in
1) Minterm notation 2) Maxterm notation
abccbabcacbacbaW ),,(
-- Minterm notation







)6,5,2,0(
)7,4,3,1(...
...
...
)2
7431
7431
74317431
7431
MW
MMMMMW
MMMMW
mmmmmmmmW
mmmmW
-- Maxterm notation
 ).7,4,3,1()1 mW
Express the following SOP equation in
1) Minterm notation 2) Maxterm notation










)6,4,1(
)7,5,3,2,0(....
)(....
....
)2
)7,5,3,2,0()1
75320
75320
7532075320
75320
MW
MMMMMMX
MmMMMMMX
mmmmmmmmmmX
mmmmmX
mX
abccbabcacbacbaX
ii
… Minterm notation
… Maxterm notation
Convert to Canonical SOP form
NMLNMLNLMLMN
NNMLNNMMLLML
LMMNMLR
srqpsrqpspqrsrqpsrqpsqrpqrsp
qqppsrssrrqp
srqpR
m








)())((
)()2
))(())((
)1
)14,10,7,6,5,4,2(
Convert to Canonical POS form
))()()((
))((
))(()2
))()((
))()()((
))()()((
))()()((
))((
))(()1
cbacbacbacba
cbaaccba
cbbaX
zyxwzyxwzyxw
zyxwzyxwzyxwzyxw
zyxwzyxwzyxwzyxw
zyxwzyxwzyxwzyxw
zyxxwwzzyyxw
zyxwP









LOGICAL EXPRESSION SIMPLIFICATION
Methods:
 Algebraic manipulation
 Use Boolean laws to simplify the expression
 Difficult to use
 Don’t know if you have the simplified form
 Karnaugh map (K-map) method
 Graphical method
 Easy to use
 Can be used to simplify logical expressions with a few
variables.
 Quine Mc-Cluskey method
 Used for more than 6 variable functions
 Tedious procedure
1) ALGEBRAIC MANIPULATION METHOD
 Majority function example
A B C + A B C + A B C + A B C =
A B C + A B C + A B C + A B C + A B C + A
B C
 We can now simplify this expression as
B C + A C + A B
 A difficult method to use for complex
expressions
Added extra
KARNAUGH MAP METHOD OF SIMPLICATION
Note the order
5 VARIABLE K-MAP
dec A
BCDE
O/P
0 00000
1 00001
2 00010
3 00011
4 00100
5 00101
6 00110
7 00111
8 01000
9 01001
10 01010
11 01011
12 01100
13 01101
14 01110
15 01111
dec A
BCDE
O/P
16 10000
17 10001
18 10010
19 10011
20 10100
21 10101
22 10110
23 10111
24 11000
25 11001
26 11010
27 11011
28 11100
29 11101
30 11110
31 11111
LOGICALLY ADJACENT COLUMNS
DEFINITIONS
 Implicant: Any single minterm(cell) or permitted group
of minterms. Eg.
Implicants are:
 )6,4,2,0(mY
1 0 0 1
1 0 0 1
c
cbcbcaca
cabcbacbacba
,,,,
,,,,
0
1
00 01 11 10
A
BC
DEFINITIONS
 Prime Implicant: A group of minterms which
cannot be combined with any other minterms or
groups.
 P.I is c
 P.Is are:
x z, y
1 0 0 1
1 0 0 1
0
1
00 01 11 10
0 1 1 1
0 0 1 1
0
1
00 01 11 10
A
BC
A
BC
DEFINITIONS
Essential Prime Implicant:
A prime implicant in which one or more minterms are
unique i.e, it contains atleast one minterm that is not
contained in any other prime implicant.
E.P.Is are:
a c & b c
The simplified exprn. must
contain all EPIs & may or may
not contain non-essential PIs.
The aim is to choose the PI’s so that no cell with ‘1’ is left uncovered.
1 0 1 1
0 0 1 0
0
1
00 01 11 10
Unique ‘1’ cells
A
BC
GENERAL RULES FOR USING THE K-
MAP
Combine ones into groups of (1, 2, 4, 8, …)
squares
Form the largest group size.(PIs)
Form the min number of groups.
Two groups should not intersect unless this will
enable a small group to be larger in size.
 For every Minterm in the given expression, put a ‘1’
into the corresponding cell & ‘0’ in the other cells.
 Check for logical adjacency for the minterm cells.
( Cells are said to be logically adjacent if there occurs
change in only 1 bit b/w them)
 Eg. Cells 0 & 4 are adjacent 000 100 Arrow shows
changed bit.
 Group logically adjacent 1-cells to form subcubes
such that their size = 2n cells (2,4,8,16..) and it is as
large as possible.
 Then each group represents a product term with
reduced no. of variables.
PROBLEM 1: SIMPLIFY USING K-MAPS
 )7,6,3,2,1(),,( zyxfD
0 1 1 1
0 0 1 1
0
1
00 01 11 10
x
yz
PI’s : xz, y
EPI’s: xz, y
Minimal form of D = x z + y
PROBLEM 2: SIMPLIFY USING K-MAPS
 )7,5,4,3,2,0(),,( zyxfD
0
1
00 01 11 10
x
yz
1 0 1 1
1 1 1 0
PI’s : y z, x z, x y, x z, x y, yz
EPI’s: none ( because no unique ‘1’ cells)
Minimal form of D = y z + x z + x y OR
D = x z + x y + yz
There are 2 solutions because in each case, all ‘1’ cells
are covered with the chosen set of groups.
PROBLEM 3: SIMPLIFY USING K-MAPS
 )15,13,11,9,5,4,1,0(),,,( dcbafK
PI’s : a c, c d, a d
EPI’s: a c, a d
Non-essential PI: c d
Minimal form of K = a c + a d
1 1 0 0
1 1 0 0
0 1 1 0
0 1 1 0
cd
ab 00 01 11 10
00
01
11
10
Unique ‘1’ cells
PROBLEM 4: SIMPLIFY USING K-MAPS
 )15,13,10,8,7,5,2,0(),,,( dcbafX
PI’s : b d, b d
EPI’s: b d, b d
Minimal form of X = b d + b d = b d
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1
cd
ab 00 01 11 10
00
01
11
10
PROBLEM 5: SIMPLIFY USING K-MAPS
 )14,12,11,9,6,4,3,1(),,,( dcbafX
PI’s : b d, b d
EPI’s: b d, b d
Minimal form of X = b d + b d = b d
0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0
cd
ab 00 01 11 10
00
01
11
10
PROBLEM 6: SIMPLIFY USING K-MAPS
 )13,7,6,5,2(),,,( dcbafX
PI’s : a b d, b c d, a c d, a b c
EPI’s: a b d, a b c
Minimal form of X = a b d + a b c + a c d OR
X= a b d + a b c + b c d
0 0 0 1
0 1 1 1
0 1 0 0
0 0 0 0
cd
ab 00 01 11 10
00
01
11
10
Unique ‘1’ cells
PROBLEM 7: SIMPLIFY USING K-MAPS
 )14,13,12,9,8,6,5,4,2,1,0(),,,( dcbafX
PI’s : c , a d, b d
EPI’s: c , a d, b d
Minimal form of X = c + a d + b d
1 1 0 1
1 1 0 1
1 1 0 1
1 1 0 0
cd
ab 00 01 11 10
00
01
11
10
Unique ‘1’ cells
PROBLEM 8: SIMPLIFY USING K-MAPS
PI’s : cd , a b c, a b c, b d, a d
EPI’s: cd , a b c, a b c
Minimal form of X = cd + a b c + a b c + b d OR
X= cd + a b c + a b c + a d
0 1 1 0
1 1 1 0
0 0 1 0
1 1 1 0
cd
ab 00 01 11 10
00
01
11
10
Unique ‘1’ cells
PROBLEM 9: SIMPLIFY USING K-MAPS
 )15,13,11,10,9,8,7,5,1(),,,( dcbafX
0 1 0 0
0 1 1 0
0 1 1 0
1 1 1 1
cd
ab 00 01 11 10
00
01
11
10
Unique ‘1’ cells
PI’s : cd , a d, a b , b d
EPI’s: cd , b d, a b
Minimal form of X = cd + b d + a b
PROBLEM 10: SIMPLIFY USING K-MAPS
).......(),,,( OPformcanonicalStoconvertzxyzwxywzyxwfT 
 )14,12,10,8,7,6(mT
0 0 0 0
0 0 1 1
1 0 0 1
1 0 0 1
wx 00 01 11 10
00
01
11
10
Unique ‘1’ cells
yz
PI’s : x y z, w z , w x y.
EPI’s: w z , w x y.
Minimal form of T = w z + w x y.
PROBLEM 11: SIMPLIFY USING K-MAPS
 )14,13,12,11,9,6,5,4,3,1(),,,( mzyxwfT
0 1 1 0
1 1 0 1
1 1 0 1
0 1 1 0
wx 00 01 11 10
00
01
11
10
Unique ‘1’ cells
yz
PI’s : y z, x z , x y, x z
EPI’s: x z , x z
Minimal form of T = x z + x z + y z OR
T = x z + x z + x y
PROBLEM 12: SIMPLIFY USING K-MAPS
 )15,13,12,11,10,8,7,6,5,2,1,0(),,,( mzyxwfT
1 1 0 1
0 1 1 1
1 1 1 0
1 0 1 1
wx 00 01 11 10
00
01
11
10
yz
PI’s: x z , w y z, w x y , w y z , w x y, xz, w y z,w y z, w x y
w x y
EPI’s: none
Minimal form of T = x z + w y z + w x y + w y z + w x y OR
T = x z + w y z + w x y + w y z + w x y
1 1 0 1
0 1 1 1
1 1 1 0
1 0 1 1
1 1 0 1
0 1 1 1
1 1 1 0
1 0 1 1
PROBLEM 13: SIMPLIFY USING K-MAPS. WRITE THE
SIMPLIFIED SOP & POS EXPRESSIONS.
 )15,13,12,11,9,8,7,5,4,0(),,,( Mzyxwf
0 1 1 1
0 0 0 1
0 0 0 1
0 0 0 1
wx 00 01 11 10
00
01
11
10
yz
PI’s: w x y , w x z, y z
EPI’s: w x z , y z
0 1 1 1
0 0 0 1
0 0 0 1
0 0 0 1
wx 00 01 11 10
00
01
11
10
yz
Minimal SOP form of T = w x z + y z
PI’s: w +z , x +z,y+z,w+y,x+y
EPI’s: w +z , x +z, y+z
Minimal POS form of T =(w +z ).(x +z ).(y+z)
PROBLEM 14: SIMPLIFY USING K-MAPS & IDENTIFY
PRIME IMPLICANTS & ESSENTIAL PRIME IMPLICANTS
DCBACBADCBCDADCADCBAf ),,,(
1 1 1 1
0 1 1 0
0 0 0 0
1 0 1 1
AB 00 01 11 10
00
01
11
10
CD
PI’s: B D ,B C, A B , A D
EPI’s: B D ,B C, A D
Minimal form of T = B D + B C+ A D
After converting to Canonical SOP form, write in Minterm notation.
 )11,10,8,7,5,3,2,1,0(),,,( mDCBAf
PROBLEM 15: SIMPLIFY USING K-MAPS & IDENTIFY
PRIME IMPLICANTS & ESSENTIAL PRIME IMPLICANTS
))()()()((),,,( DCBADCBADCBADBADBADCBAf 
1 0 0 1
1 1 1 0
1 1 0 0
1 0 0 1
AB 00 01 11 10
00
01
11
10
CD
Minimal POS form of T =
After converting to Canonical POS form, write in Maxterm notation.
 )15,14,11,9,6,3,1(),,,( MDCBAf
B+D (EPI)
A+B+C (EPI)
B+C+D (EPI)
))()(( DCBCBADB 
DBBDACBT 
If u group 1’s, u can get Minimal POS form as
PROBLEM 16: SIMPLIFY USING K-MAPS & IMPLEMENT
USING BASIC GATES
 )12,11,10,7,6,4,3,2(),,,( MDCBAf
1 1 0 0
0 1 0 0
0 1 1 1
1 1 0 0
AB 00 01 11 10
00
01
11
10
CD
PI’s: B C, A B C, C D, ABD PI’s: B+C, A+C, B+C+D, A+B+D
EPI’s: B C, A B C, C D EPI’s: B+C, A+C, B+C+D
Minimal SOPform of R= B C+A B C+ C D
Minimal POSform of R =(B+C)(A+C)(B+C+D)
1 1 0 0
0 1 0 0
0 1 1 1
1 1 0 0
AB 00 01 11 10
00
01
11
10
CD
A
B
C
R
D
PROBLEM 16: SIMPLIFY USING K-MAPS &
IMPLEMENT USING BASIC GATES CONTD…
R =(B+C)( A+C)( B+C+D)
 )31,29,27,25,15,13,11,9(),,,,( mEDCBAf
PROBLEM 17: SIMPLIFY USING K-MAPS
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0
AB 000 001 011
00
01
11
10
CDE
110111101100010
NOTE THIS
BE
PROBLEM 18: SIMPLIFY USING K-MAPS
 )31,30,27,26,25,17,15,14,11,10,9,1(),,,,( mEDCBAf
0 1 0 0
0 1 1 1
0 1 1 1
0 1 0 0
0 0 0 0
0 0 1 1
0 0 1 1
0 0 0 0
AB 000 001 011
00
01
11
10
CDE
110111101100010
NOTE THIS
BD
C D E
B C E
BDEDCYofformMinimal 
PROBLEM 19: SIMPLIFY USING K-MAPS
 )31,29,27,25,21,19,15,14,13,11,10,9,5,3(),,,,( mEDCBAf
0 0 1 0
0 1 1 1
0 1 1 0
0 0 1 0
0 1 0 0
0 1 1 1
0 1 1 0
0 1 0 0
AB 000 001 011
00
01
11
10
CDE
110111101100010
BE
C D E
A B D
BDABEEDCDECYofformMinimal 
C D E
PROBLEM 20: SIMPLIFY USING K-MAPS


)31,19,11,3(can writeWe
),,,,(
T
decbaabcdedecbadecbaedcbafT
ABCDEDECBDECAYofformMinimal 
0 0 1 0
0 0 1 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
AB 000 001 011
00
01
11
10
CDE
110111101100010
B C D E
A C D E
ABCDE
PROBLEM 21: SIMPLIFY USING K-MAPS
 )27,26,25,24,19,18,17,16,14,12,11,10,9,8,6,4,2,0(),,,,( MEDCBAf
))()(( CBCAEAYofformMinimal 
0 1 1 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 1 0
0 1 1 0
1 1 1 1
1 1 1 1
AB 000 001 011
00
01
11
10
CDE
110111101100010
B +C (EPI)
A +C (EPI)
A +E (EPI)
C+E (PI)
 d)c,b,f(a,GthatShow  )15,13,10,8,7,5,2,0(
 )14,12,11,9,6,4,3,1(Gofcomplementtheis
equations.2theofnaturecomplementtheillustratetomap-KaUse
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1
AB 00 01 11 10
00
01
11
10
CD
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1
AB 00 01 11 10
00
01
11
10
CD
DB
DBBDG


DB
DBDBGsGrouping

 ))((,'0
PROBLEM 22:
INCOMPLETELY SPECIFIED FUNCTIONS(DON’T CARE TERMS)
When an O/P is not known for
every combination of I/P variables,
the function is said to be
incompletely specified.
Eg. BCD (B3B2B1B0)
to Excess-3 BCD (X3X2X1X0)
Code Converter
B3 B2 B1 B0 X3 X2 X1 X0
0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0
0 1 0 0 0 1 1 1
0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 1 0
1 0 0 0 1 0 1 1
1 0 0 1 1 1 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X
1 0 1 0
1 0 1 0
x x x x
1 0 x x
BCD (B3B2B1B0) to Excess-3 BCD (X3X2X1X0) Code Converter eg.
We have 4 O/Ps here & hence we need to get 4 expressions.
1 0 0 1
1 0 0 1
x x x x
1 0 x x
B3B2
00 01 11 10
00
01
11
10
00 BX 
B1B0
2) K-map for X1
B3B2
00 01 11 10
00
01
11
10
B1B0
0101011 BBBBBBX 
1) K-map for X0
0 0 0 0
0 1 1 1
x x x x
1 1 x x
0 1 1 1
1 0 0 0
x x x x
0 1 x x
B3B2
00 01 11 10
00
01
11
10
)10(2
)01(2)10(2
01202122
BBB
BBBBBB
BBBBBBBX



B1B0
4) K-map for X3
B3B2
00 01 11 10
00
01
11
10
B1B0
120233 BBBBBX 
BCD (B3B2B1B0) to Excess-3 BCD (X3X2X1X0) Code Converter eg.
3) K-map for X2
0 0 1 1
1 1 0 0
0 1 1 0
X X X X
00 01 11 10
00
01
11
10
B1B0
Simplify using K-maps
 
 


)10,8,7,5,0()15,14,13,11,4,2,1(),,,()2
)11,10,9,8()15,13,5,4,3,2(),,,()1
dmDCBAf
dmDCBAfV
CBAADCBV 
X 1 0 1
1 X X 0
0 1 1 1
X 0 1 X
00 01 11 10
00
01
11
10
B1B0
B3B2 B3B2
DBACBDCAf 
Simplify using K-maps
 
 


)28,24,14,10()30,26,23,21,8,7,5(),,,,()2
)26,24,10,8(30,28,27,25,22,20,19,17,14,12,11,9,6,4,3,1(),,,,()1
dMEDCBAf
dmEDCBAf
ECECV  ))()(( HFEHGEHFEf 
0 1 1 0
X 1 1 X
X 1 1 X
0 1 1 0
1 0 0 1
1 0 0 1
1 0 0 1
1 0 0 1
AB 000 001 011
00
01
11
10
CDE
110111101100010
1 1 1 1
0 1 1 X
X 1 1 0
1 1 1 1
1 0 0 1
1 1 1 X
X 1 1 0
1 0 0 1
DE 000 001 011
00
01
11
10
FGH
110111101100010
)( HFE  )( HGE 
)( HFE EC EC
PROBLEMS ON CIRCUIT DESIGN
PROBLEMS ON DESIGN
1) Design a logic circuit which has a single O/P variable z which
is to be true when I/P variables a & b are true or when b is
false but a & c are true.
a b c Z
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
OPCanonicalSabccabcbaz 
0 0 0 0
0 1 1 1
00 01 11 10
0
1
a
bc
)( bcaz
SOPMinimalabacz


a
b
c
z
2) Design a logic circuit whose O/P is to be true when the value
if I/P s exceeds 3. The weighting for each I/P variable is as
follows.
w=3, x=3, y=2, z=1. (Left as an exercise)
3) Design a logic circuit that controls the passage of a signal ‘A’
according to the following requirement.
i. O/P ‘X’ will = ‘A’ when control I/Ps B & C are the same.
ii. ‘X’ will remain ‘HIGH’ when B & C are different.
Implement the ckt using suitable gates.
PROBLEMS ON DESIGN
A B C X
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1
1 1 1 1
00 01 11 10
0
1
a
bc
CBAX 
A
B
C
X
1. Difficult to use when no. of variables is > 6.
2. The recognition of groups that form EPI’s becomes
difficult for large K-maps.
3. The technique does not involve a systematic
algorithmic procedure that is suitable for computers.
Since it is a manual technique, simplification
process depends on human abilities.

Weitere ähnliche Inhalte

Was ist angesagt?

Am transmitter
Am transmitterAm transmitter
Am transmitterAJAL A J
 
boolean algebra and logic simplification
boolean algebra and logic simplificationboolean algebra and logic simplification
boolean algebra and logic simplificationUnsa Shakir
 
Band pass filter
Band pass filterBand pass filter
Band pass filterMadeha Arif
 
Chapter 5: Cominational Logic with MSI and LSI
Chapter 5: Cominational Logic with MSI and LSIChapter 5: Cominational Logic with MSI and LSI
Chapter 5: Cominational Logic with MSI and LSIEr. Nawaraj Bhandari
 
Verilog data types -For beginners
Verilog data types -For beginnersVerilog data types -For beginners
Verilog data types -For beginnersDr.YNM
 
Enrutamiento
EnrutamientoEnrutamiento
EnrutamientoComdat4
 
Differential amplifier
Differential amplifierDifferential amplifier
Differential amplifierJayadeep Kumar
 
Differential amplifier
Differential amplifierDifferential amplifier
Differential amplifiersarunkutti
 
SOP POS, Minterm and Maxterm
SOP POS, Minterm and MaxtermSOP POS, Minterm and Maxterm
SOP POS, Minterm and MaxtermSelf-employed
 

Was ist angesagt? (20)

Am transmitter
Am transmitterAm transmitter
Am transmitter
 
Test Bench Development
Test Bench DevelopmentTest Bench Development
Test Bench Development
 
boolean algebra and logic simplification
boolean algebra and logic simplificationboolean algebra and logic simplification
boolean algebra and logic simplification
 
Band pass filter
Band pass filterBand pass filter
Band pass filter
 
Chapter 5: Cominational Logic with MSI and LSI
Chapter 5: Cominational Logic with MSI and LSIChapter 5: Cominational Logic with MSI and LSI
Chapter 5: Cominational Logic with MSI and LSI
 
Digital Logic circuit
Digital Logic circuitDigital Logic circuit
Digital Logic circuit
 
Verilog data types -For beginners
Verilog data types -For beginnersVerilog data types -For beginners
Verilog data types -For beginners
 
Audio Amplifier Presentation
Audio Amplifier PresentationAudio Amplifier Presentation
Audio Amplifier Presentation
 
Televisión Digital terrestre (TDT)
Televisión Digital terrestre (TDT)Televisión Digital terrestre (TDT)
Televisión Digital terrestre (TDT)
 
Enrutamiento
EnrutamientoEnrutamiento
Enrutamiento
 
Class AB amplifiers
Class AB amplifiersClass AB amplifiers
Class AB amplifiers
 
Differential amplifier
Differential amplifierDifferential amplifier
Differential amplifier
 
Active filters
Active filtersActive filters
Active filters
 
HDL (hardware description language) presentation
HDL (hardware description language) presentationHDL (hardware description language) presentation
HDL (hardware description language) presentation
 
Representation of signals
Representation of signalsRepresentation of signals
Representation of signals
 
Single sidebands ssb lathi
Single sidebands ssb   lathiSingle sidebands ssb   lathi
Single sidebands ssb lathi
 
Differential amplifier
Differential amplifierDifferential amplifier
Differential amplifier
 
SOP POS, Minterm and Maxterm
SOP POS, Minterm and MaxtermSOP POS, Minterm and Maxterm
SOP POS, Minterm and Maxterm
 
logic family
logic familylogic family
logic family
 
Binary parallel adder
Binary parallel adderBinary parallel adder
Binary parallel adder
 

Ähnlich wie Principles of Combinational Logic-1

Ähnlich wie Principles of Combinational Logic-1 (20)

Digital Basics
Digital BasicsDigital Basics
Digital Basics
 
Lec 2 digital basics
Lec 2 digital basicsLec 2 digital basics
Lec 2 digital basics
 
18 pc09 1.2_ digital logic gates _ boolean algebra_basic theorems
18 pc09 1.2_ digital logic gates _ boolean algebra_basic theorems18 pc09 1.2_ digital logic gates _ boolean algebra_basic theorems
18 pc09 1.2_ digital logic gates _ boolean algebra_basic theorems
 
Minimization Technique .ppt
 Minimization Technique .ppt Minimization Technique .ppt
Minimization Technique .ppt
 
13 Boolean Algebra
13 Boolean Algebra13 Boolean Algebra
13 Boolean Algebra
 
Boolean algebra
Boolean algebraBoolean algebra
Boolean algebra
 
1Boolean Alegebra 3booleanalgebraold-160325120651.pdf
1Boolean Alegebra 3booleanalgebraold-160325120651.pdf1Boolean Alegebra 3booleanalgebraold-160325120651.pdf
1Boolean Alegebra 3booleanalgebraold-160325120651.pdf
 
Module 1 ppt class.pptx
Module 1 ppt class.pptxModule 1 ppt class.pptx
Module 1 ppt class.pptx
 
Module ppt class.pptx
Module ppt class.pptxModule ppt class.pptx
Module ppt class.pptx
 
Chapter 2 Boolean Algebra (part 2)
Chapter 2 Boolean Algebra (part 2)Chapter 2 Boolean Algebra (part 2)
Chapter 2 Boolean Algebra (part 2)
 
B sc ii sem unit 2(b) ba
B sc ii sem unit 2(b) baB sc ii sem unit 2(b) ba
B sc ii sem unit 2(b) ba
 
Document from Saikrish.S.pdf
Document from Saikrish.S.pdfDocument from Saikrish.S.pdf
Document from Saikrish.S.pdf
 
2dig circ
2dig circ2dig circ
2dig circ
 
BOOLEAN ALGEBRA & LOGIC GATE
BOOLEAN ALGEBRA & LOGIC GATEBOOLEAN ALGEBRA & LOGIC GATE
BOOLEAN ALGEBRA & LOGIC GATE
 
B sc3 unit 3 boolean algebra
B sc3 unit 3 boolean algebraB sc3 unit 3 boolean algebra
B sc3 unit 3 boolean algebra
 
Boolean algebra
Boolean algebraBoolean algebra
Boolean algebra
 
pos and do not care ppt.pptx
pos and do not care ppt.pptxpos and do not care ppt.pptx
pos and do not care ppt.pptx
 
Chapter 2.pdf
Chapter 2.pdfChapter 2.pdf
Chapter 2.pdf
 
Boolean Algebra
Boolean AlgebraBoolean Algebra
Boolean Algebra
 
14 Lec11 2003
14 Lec11 200314 Lec11 2003
14 Lec11 2003
 

Kürzlich hochgeladen

Novel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsNovel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsResearcher Researcher
 
Research Methodology for Engineering pdf
Research Methodology for Engineering pdfResearch Methodology for Engineering pdf
Research Methodology for Engineering pdfCaalaaAbdulkerim
 
Earthing details of Electrical Substation
Earthing details of Electrical SubstationEarthing details of Electrical Substation
Earthing details of Electrical Substationstephanwindworld
 
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Erbil Polytechnic University
 
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Sumanth A
 
Prach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism CommunityPrach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism Communityprachaibot
 
KCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosKCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosVictor Morales
 
Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating SystemRashmi Bhat
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating SystemRashmi Bhat
 
Turn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxTurn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxStephen Sitton
 
List of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdfList of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdfisabel213075
 
DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM.pdf
DEVICE DRIVERS AND INTERRUPTS  SERVICE MECHANISM.pdfDEVICE DRIVERS AND INTERRUPTS  SERVICE MECHANISM.pdf
DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM.pdfAkritiPradhan2
 
"Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ..."Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ...Erbil Polytechnic University
 
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithm
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithmComputer Graphics Introduction, Open GL, Line and Circle drawing algorithm
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithmDeepika Walanjkar
 
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdfPaper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdfNainaShrivastava14
 
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONTHE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONjhunlian
 
Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating SystemRashmi Bhat
 
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfComprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfalene1
 
Cost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based questionCost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based questionSneha Padhiar
 
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHTEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHSneha Padhiar
 

Kürzlich hochgeladen (20)

Novel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsNovel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending Actuators
 
Research Methodology for Engineering pdf
Research Methodology for Engineering pdfResearch Methodology for Engineering pdf
Research Methodology for Engineering pdf
 
Earthing details of Electrical Substation
Earthing details of Electrical SubstationEarthing details of Electrical Substation
Earthing details of Electrical Substation
 
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
 
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
 
Prach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism CommunityPrach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism Community
 
KCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosKCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitos
 
Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating System
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating System
 
Turn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxTurn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptx
 
List of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdfList of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdf
 
DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM.pdf
DEVICE DRIVERS AND INTERRUPTS  SERVICE MECHANISM.pdfDEVICE DRIVERS AND INTERRUPTS  SERVICE MECHANISM.pdf
DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM.pdf
 
"Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ..."Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ...
 
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithm
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithmComputer Graphics Introduction, Open GL, Line and Circle drawing algorithm
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithm
 
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdfPaper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
 
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONTHE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
 
Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating System
 
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfComprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
 
Cost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based questionCost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based question
 
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHTEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
 

Principles of Combinational Logic-1

  • 1. LOGIC DESIGN PART A Unit 1: PRINCIPLES OF COMBINATIONAL LOGIC-1 Definition of Combinational logic: It deals with the techniques of combining basic gates into circuits that perform some desired function.
  • 2.  Outputs are functions of (present) inputs.  No memory element. (like flipflops)  Do not have feedback from output to input.  Egs. Adder, subtractor, decoder, encoder, multiplexer. COMBINATIONAL LOGIC
  • 3. BASICS OF DIGITAL ELECTRONICS  Digital Electronics represents information (0, 1) with only two discrete values.  Ideally “no voltage” (e.g., 0v) represents a 0 and “full source voltage” (e.g., 5v) represents a 1  Realistically “low voltage” (e.g., <1v) represents a 0 and “high voltage” (e.g., >4v) represents a 1  We achieve these discrete values by using switches.  We use transistor switches, which operates at high speed, electronically, and small in size.
  • 4. GATES  The most basic digital devices are called gates.  Gates got their name from their function of allowing or blocking (gating) the flow of digital information.  A gate has one or more inputs and produces an output depending on the input(s).  A gate is called a combinational circuit.  Three most important gates are: AND, OR,
  • 5. GATES  Simple gates  AND  OR  NOT  Functionality can be expressed by a truth table  A truth table lists output for each possible input combination  Precedence  NOT > AND > OR  F = A B + A B = (A (B)) + ((A) B)
  • 6. AND, OR, NOT GATES
  • 7. GATES  Additional useful gates  NAND  NOR  XOR  NAND = AND + NOT  NOR = OR + NOT  XOR implements exclusive-OR function  NAND and NOR gates require only 2 transistors  AND and OR need 3 transistors!
  • 8. Equivalent symbols for NAND & NOR gates
  • 9. GATES(CONT.)  Proving NAND gate is universal
  • 10. BASIC CONCEPTS (CONT.)  Proving NOR gate is universal
  • 12. LOGIC CHIPS (CONT.)  Integration levels  SSI (small scale integration)  Introduced in late 1960s  1-10 gates (previous examples)  MSI (medium scale integration)  Introduced in late 1960s  10-100 gates  LSI (large scale integration)  Introduced in early 1970s  100-10,000 gates  VLSI (very large scale integration)  Introduced in late 1970s  More than 10,000 gates
  • 15. LOGIC FUNCTIONS  Logical functions can be expressed in several ways:  Truth table  Logical expressions  Graphical form  Example:  Majority function  Output is one whenever majority of inputs is 1  We use 3-input majority function
  • 16. LOGIC FUNCTIONS (CONT.) 3-input majority function A B C F 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1  Logical expression form after simplification: F = A B + B C + A C
  • 17. LOGIC CIRCUIT DESIGN PROCESS  A simple logic design process involves  Problem specification  Truth table derivation  Derivation of logical expression  Simplification of logical expression  Implementation
  • 18. DERIVING LOGICAL EXPRESSIONS  Derivation of logical expressions from truth tables  Sum-of-products (SOP) form  Product-of-sums (POS) form  SOP form  Write an AND term for each input combination that produces a 1 output  Write the variable if its value is 1; complement otherwise  OR the AND terms to get the final expression  POS form  Dual of the SOP form
  • 19. SUM OF PRODUCT (SOP) FORM  3-input majority function A B C F 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 SOP logical expression F = A B C + A B C + A B C + A B C  Four product terms  Because there are 4 rows with a 1 output   
  • 20. PRODUCT OF SUM (POS) FORM  3-input majority function A B C F 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1     POS logical expression F = (A + B + C) (A + B + C) (A + B + C) (A + B + C) • Four sum terms Because there are 4 rows with a 0 output
  • 21. DEFINITIONS: 1) Literal: It is a Boolean variable or its complement. Eg. A, B ,C, B 2) Product term: It is a logical AND of literals or is a literal. Eg. A B C , B C , AB 3) Sum term: It is a logical OR of literals or is a literal. Eg. (A + B + C), (A + B ) 4) SOP: It is the logical OR of multiple product terms. 5) POS: It is the logical AND of multiple Sum terms.
  • 22. Definitions: 6) Minterm A minterm is a special case product term which contains all the input variables (each literal occuring only once) of the function. • A function with n variables has 2n minterms • A three-variable function, such as f(x,y,z), has 23 = 8 minterms. Minterm Is true when… Shorthand x’y’z’ x’y’z x’yz’ x’yz xy’z’ xy’z xyz’ xyz x=0, y=0, z=0 x=0, y=0, z=1 x=0, y=1, z=0 x=0, y=1, z=1 x=1, y=0, z=0 x=1, y=0, z=1 x=1, y=1, z=0 x=1, y=1, z=1 m0 m1 m2 m3 m4 m5 m6 m7
  • 23. DEFINITIONS: 7) MAXTERM It is a special case Sum term which contains all the input variables of the function, occurring only once.  A function with n variables has 2n minterms  A three-variable function, such as f(x,y,z), has 23 = 8 minterms. Maxterm Is false when… Shorthand x + y + z x=0, y=0, z=0 M0 x + y + z’ x=0, y=0, z=1 M1 x + y’ + z x=0, y=1, z=0 M2 x + y’ + z’ x=0, y=1, z=1 M3 x’ + y + z x=1, y=0, z=0 M4 x’ + y + z’ x=1, y=0, z=1 M5 x’ + y’ + z x=1, y=1, z=0 M6 x’ + y’ + z’ x=1, y=1, z=1 M7
  • 24.
  • 25. DEFINITIONS: 8) Canonical SOP • It is a complete set of minterms that defines when an O/P variable is a logical 1. • Canonical or Standard SOP form is an SOP form of expression in which each product term contains all the literals. Eg. A B C + A B C + A B C + A B C 9) Canonical POS It is a POS form in which each Sum term contains all the literals. Eg. (A + B + C) (A + B + C)(A + B + C)
  • 26. CANONICAL SOP FORM & MINTERM NOTATION Every function can be written as a unique sum of minterms. You can obtain the canonical SOP form by picking the rows having O/P =1.    )6,3,2,1,0( 63210 m mmmmm CABBCACBACBACBAf
  • 27. CANONICAL POS FORM & MAXTERM NOTATION
  • 29. Express the following SOP equation in 1) Minterm notation 2) Maxterm notation abccbabcacbacbaW ),,( -- Minterm notation        )6,5,2,0( )7,4,3,1(... ... ... )2 7431 7431 74317431 7431 MW MMMMMW MMMMW mmmmmmmmW mmmmW -- Maxterm notation  ).7,4,3,1()1 mW
  • 30. Express the following SOP equation in 1) Minterm notation 2) Maxterm notation           )6,4,1( )7,5,3,2,0(.... )(.... .... )2 )7,5,3,2,0()1 75320 75320 7532075320 75320 MW MMMMMMX MmMMMMMX mmmmmmmmmmX mmmmmX mX abccbabcacbacbaX ii … Minterm notation … Maxterm notation
  • 31. Convert to Canonical SOP form NMLNMLNLMLMN NNMLNNMMLLML LMMNMLR srqpsrqpspqrsrqpsrqpsqrpqrsp qqppsrssrrqp srqpR m         )())(( )()2 ))(())(( )1 )14,10,7,6,5,4,2(
  • 32. Convert to Canonical POS form ))()()(( ))(( ))(()2 ))()(( ))()()(( ))()()(( ))()()(( ))(( ))(()1 cbacbacbacba cbaaccba cbbaX zyxwzyxwzyxw zyxwzyxwzyxwzyxw zyxwzyxwzyxwzyxw zyxwzyxwzyxwzyxw zyxxwwzzyyxw zyxwP         
  • 33. LOGICAL EXPRESSION SIMPLIFICATION Methods:  Algebraic manipulation  Use Boolean laws to simplify the expression  Difficult to use  Don’t know if you have the simplified form  Karnaugh map (K-map) method  Graphical method  Easy to use  Can be used to simplify logical expressions with a few variables.  Quine Mc-Cluskey method  Used for more than 6 variable functions  Tedious procedure
  • 34. 1) ALGEBRAIC MANIPULATION METHOD  Majority function example A B C + A B C + A B C + A B C = A B C + A B C + A B C + A B C + A B C + A B C  We can now simplify this expression as B C + A C + A B  A difficult method to use for complex expressions Added extra
  • 35. KARNAUGH MAP METHOD OF SIMPLICATION Note the order
  • 36. 5 VARIABLE K-MAP dec A BCDE O/P 0 00000 1 00001 2 00010 3 00011 4 00100 5 00101 6 00110 7 00111 8 01000 9 01001 10 01010 11 01011 12 01100 13 01101 14 01110 15 01111 dec A BCDE O/P 16 10000 17 10001 18 10010 19 10011 20 10100 21 10101 22 10110 23 10111 24 11000 25 11001 26 11010 27 11011 28 11100 29 11101 30 11110 31 11111 LOGICALLY ADJACENT COLUMNS
  • 37. DEFINITIONS  Implicant: Any single minterm(cell) or permitted group of minterms. Eg. Implicants are:  )6,4,2,0(mY 1 0 0 1 1 0 0 1 c cbcbcaca cabcbacbacba ,,,, ,,,, 0 1 00 01 11 10 A BC
  • 38. DEFINITIONS  Prime Implicant: A group of minterms which cannot be combined with any other minterms or groups.  P.I is c  P.Is are: x z, y 1 0 0 1 1 0 0 1 0 1 00 01 11 10 0 1 1 1 0 0 1 1 0 1 00 01 11 10 A BC A BC
  • 39. DEFINITIONS Essential Prime Implicant: A prime implicant in which one or more minterms are unique i.e, it contains atleast one minterm that is not contained in any other prime implicant. E.P.Is are: a c & b c The simplified exprn. must contain all EPIs & may or may not contain non-essential PIs. The aim is to choose the PI’s so that no cell with ‘1’ is left uncovered. 1 0 1 1 0 0 1 0 0 1 00 01 11 10 Unique ‘1’ cells A BC
  • 40. GENERAL RULES FOR USING THE K- MAP Combine ones into groups of (1, 2, 4, 8, …) squares Form the largest group size.(PIs) Form the min number of groups. Two groups should not intersect unless this will enable a small group to be larger in size.
  • 41.  For every Minterm in the given expression, put a ‘1’ into the corresponding cell & ‘0’ in the other cells.  Check for logical adjacency for the minterm cells. ( Cells are said to be logically adjacent if there occurs change in only 1 bit b/w them)  Eg. Cells 0 & 4 are adjacent 000 100 Arrow shows changed bit.  Group logically adjacent 1-cells to form subcubes such that their size = 2n cells (2,4,8,16..) and it is as large as possible.  Then each group represents a product term with reduced no. of variables.
  • 42. PROBLEM 1: SIMPLIFY USING K-MAPS  )7,6,3,2,1(),,( zyxfD 0 1 1 1 0 0 1 1 0 1 00 01 11 10 x yz PI’s : xz, y EPI’s: xz, y Minimal form of D = x z + y
  • 43. PROBLEM 2: SIMPLIFY USING K-MAPS  )7,5,4,3,2,0(),,( zyxfD 0 1 00 01 11 10 x yz 1 0 1 1 1 1 1 0 PI’s : y z, x z, x y, x z, x y, yz EPI’s: none ( because no unique ‘1’ cells) Minimal form of D = y z + x z + x y OR D = x z + x y + yz There are 2 solutions because in each case, all ‘1’ cells are covered with the chosen set of groups.
  • 44. PROBLEM 3: SIMPLIFY USING K-MAPS  )15,13,11,9,5,4,1,0(),,,( dcbafK PI’s : a c, c d, a d EPI’s: a c, a d Non-essential PI: c d Minimal form of K = a c + a d 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 cd ab 00 01 11 10 00 01 11 10 Unique ‘1’ cells
  • 45. PROBLEM 4: SIMPLIFY USING K-MAPS  )15,13,10,8,7,5,2,0(),,,( dcbafX PI’s : b d, b d EPI’s: b d, b d Minimal form of X = b d + b d = b d 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 cd ab 00 01 11 10 00 01 11 10
  • 46. PROBLEM 5: SIMPLIFY USING K-MAPS  )14,12,11,9,6,4,3,1(),,,( dcbafX PI’s : b d, b d EPI’s: b d, b d Minimal form of X = b d + b d = b d 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 cd ab 00 01 11 10 00 01 11 10
  • 47. PROBLEM 6: SIMPLIFY USING K-MAPS  )13,7,6,5,2(),,,( dcbafX PI’s : a b d, b c d, a c d, a b c EPI’s: a b d, a b c Minimal form of X = a b d + a b c + a c d OR X= a b d + a b c + b c d 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 cd ab 00 01 11 10 00 01 11 10 Unique ‘1’ cells
  • 48. PROBLEM 7: SIMPLIFY USING K-MAPS  )14,13,12,9,8,6,5,4,2,1,0(),,,( dcbafX PI’s : c , a d, b d EPI’s: c , a d, b d Minimal form of X = c + a d + b d 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 cd ab 00 01 11 10 00 01 11 10 Unique ‘1’ cells
  • 49. PROBLEM 8: SIMPLIFY USING K-MAPS PI’s : cd , a b c, a b c, b d, a d EPI’s: cd , a b c, a b c Minimal form of X = cd + a b c + a b c + b d OR X= cd + a b c + a b c + a d 0 1 1 0 1 1 1 0 0 0 1 0 1 1 1 0 cd ab 00 01 11 10 00 01 11 10 Unique ‘1’ cells
  • 50. PROBLEM 9: SIMPLIFY USING K-MAPS  )15,13,11,10,9,8,7,5,1(),,,( dcbafX 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 1 cd ab 00 01 11 10 00 01 11 10 Unique ‘1’ cells PI’s : cd , a d, a b , b d EPI’s: cd , b d, a b Minimal form of X = cd + b d + a b
  • 51. PROBLEM 10: SIMPLIFY USING K-MAPS ).......(),,,( OPformcanonicalStoconvertzxyzwxywzyxwfT   )14,12,10,8,7,6(mT 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 wx 00 01 11 10 00 01 11 10 Unique ‘1’ cells yz PI’s : x y z, w z , w x y. EPI’s: w z , w x y. Minimal form of T = w z + w x y.
  • 52. PROBLEM 11: SIMPLIFY USING K-MAPS  )14,13,12,11,9,6,5,4,3,1(),,,( mzyxwfT 0 1 1 0 1 1 0 1 1 1 0 1 0 1 1 0 wx 00 01 11 10 00 01 11 10 Unique ‘1’ cells yz PI’s : y z, x z , x y, x z EPI’s: x z , x z Minimal form of T = x z + x z + y z OR T = x z + x z + x y
  • 53. PROBLEM 12: SIMPLIFY USING K-MAPS  )15,13,12,11,10,8,7,6,5,2,1,0(),,,( mzyxwfT 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 wx 00 01 11 10 00 01 11 10 yz PI’s: x z , w y z, w x y , w y z , w x y, xz, w y z,w y z, w x y w x y EPI’s: none Minimal form of T = x z + w y z + w x y + w y z + w x y OR T = x z + w y z + w x y + w y z + w x y 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1
  • 54. PROBLEM 13: SIMPLIFY USING K-MAPS. WRITE THE SIMPLIFIED SOP & POS EXPRESSIONS.  )15,13,12,11,9,8,7,5,4,0(),,,( Mzyxwf 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 wx 00 01 11 10 00 01 11 10 yz PI’s: w x y , w x z, y z EPI’s: w x z , y z 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 wx 00 01 11 10 00 01 11 10 yz Minimal SOP form of T = w x z + y z PI’s: w +z , x +z,y+z,w+y,x+y EPI’s: w +z , x +z, y+z Minimal POS form of T =(w +z ).(x +z ).(y+z)
  • 55. PROBLEM 14: SIMPLIFY USING K-MAPS & IDENTIFY PRIME IMPLICANTS & ESSENTIAL PRIME IMPLICANTS DCBACBADCBCDADCADCBAf ),,,( 1 1 1 1 0 1 1 0 0 0 0 0 1 0 1 1 AB 00 01 11 10 00 01 11 10 CD PI’s: B D ,B C, A B , A D EPI’s: B D ,B C, A D Minimal form of T = B D + B C+ A D After converting to Canonical SOP form, write in Minterm notation.  )11,10,8,7,5,3,2,1,0(),,,( mDCBAf
  • 56. PROBLEM 15: SIMPLIFY USING K-MAPS & IDENTIFY PRIME IMPLICANTS & ESSENTIAL PRIME IMPLICANTS ))()()()((),,,( DCBADCBADCBADBADBADCBAf  1 0 0 1 1 1 1 0 1 1 0 0 1 0 0 1 AB 00 01 11 10 00 01 11 10 CD Minimal POS form of T = After converting to Canonical POS form, write in Maxterm notation.  )15,14,11,9,6,3,1(),,,( MDCBAf B+D (EPI) A+B+C (EPI) B+C+D (EPI) ))()(( DCBCBADB  DBBDACBT  If u group 1’s, u can get Minimal POS form as
  • 57. PROBLEM 16: SIMPLIFY USING K-MAPS & IMPLEMENT USING BASIC GATES  )12,11,10,7,6,4,3,2(),,,( MDCBAf 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 AB 00 01 11 10 00 01 11 10 CD PI’s: B C, A B C, C D, ABD PI’s: B+C, A+C, B+C+D, A+B+D EPI’s: B C, A B C, C D EPI’s: B+C, A+C, B+C+D Minimal SOPform of R= B C+A B C+ C D Minimal POSform of R =(B+C)(A+C)(B+C+D) 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 AB 00 01 11 10 00 01 11 10 CD
  • 58. A B C R D PROBLEM 16: SIMPLIFY USING K-MAPS & IMPLEMENT USING BASIC GATES CONTD… R =(B+C)( A+C)( B+C+D)
  • 59.  )31,29,27,25,15,13,11,9(),,,,( mEDCBAf PROBLEM 17: SIMPLIFY USING K-MAPS 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 AB 000 001 011 00 01 11 10 CDE 110111101100010 NOTE THIS BE
  • 60. PROBLEM 18: SIMPLIFY USING K-MAPS  )31,30,27,26,25,17,15,14,11,10,9,1(),,,,( mEDCBAf 0 1 0 0 0 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 AB 000 001 011 00 01 11 10 CDE 110111101100010 NOTE THIS BD C D E B C E BDEDCYofformMinimal 
  • 61. PROBLEM 19: SIMPLIFY USING K-MAPS  )31,29,27,25,21,19,15,14,13,11,10,9,5,3(),,,,( mEDCBAf 0 0 1 0 0 1 1 1 0 1 1 0 0 0 1 0 0 1 0 0 0 1 1 1 0 1 1 0 0 1 0 0 AB 000 001 011 00 01 11 10 CDE 110111101100010 BE C D E A B D BDABEEDCDECYofformMinimal  C D E
  • 62. PROBLEM 20: SIMPLIFY USING K-MAPS   )31,19,11,3(can writeWe ),,,,( T decbaabcdedecbadecbaedcbafT ABCDEDECBDECAYofformMinimal  0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 AB 000 001 011 00 01 11 10 CDE 110111101100010 B C D E A C D E ABCDE
  • 63. PROBLEM 21: SIMPLIFY USING K-MAPS  )27,26,25,24,19,18,17,16,14,12,11,10,9,8,6,4,2,0(),,,,( MEDCBAf ))()(( CBCAEAYofformMinimal  0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 AB 000 001 011 00 01 11 10 CDE 110111101100010 B +C (EPI) A +C (EPI) A +E (EPI) C+E (PI)
  • 64.  d)c,b,f(a,GthatShow  )15,13,10,8,7,5,2,0(  )14,12,11,9,6,4,3,1(Gofcomplementtheis equations.2theofnaturecomplementtheillustratetomap-KaUse 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 AB 00 01 11 10 00 01 11 10 CD 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 AB 00 01 11 10 00 01 11 10 CD DB DBBDG   DB DBDBGsGrouping   ))((,'0 PROBLEM 22:
  • 65. INCOMPLETELY SPECIFIED FUNCTIONS(DON’T CARE TERMS) When an O/P is not known for every combination of I/P variables, the function is said to be incompletely specified. Eg. BCD (B3B2B1B0) to Excess-3 BCD (X3X2X1X0) Code Converter B3 B2 B1 B0 X3 X2 X1 X0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1 0 1 0 1 1 0 0 0 0 1 1 0 1 0 0 1 0 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 1 0 1 0 X X X X 1 0 1 1 X X X X 1 1 0 0 X X X X 1 1 0 1 X X X X 1 1 1 0 X X X X 1 1 1 1 X X X X
  • 66. 1 0 1 0 1 0 1 0 x x x x 1 0 x x BCD (B3B2B1B0) to Excess-3 BCD (X3X2X1X0) Code Converter eg. We have 4 O/Ps here & hence we need to get 4 expressions. 1 0 0 1 1 0 0 1 x x x x 1 0 x x B3B2 00 01 11 10 00 01 11 10 00 BX  B1B0 2) K-map for X1 B3B2 00 01 11 10 00 01 11 10 B1B0 0101011 BBBBBBX  1) K-map for X0
  • 67. 0 0 0 0 0 1 1 1 x x x x 1 1 x x 0 1 1 1 1 0 0 0 x x x x 0 1 x x B3B2 00 01 11 10 00 01 11 10 )10(2 )01(2)10(2 01202122 BBB BBBBBB BBBBBBBX    B1B0 4) K-map for X3 B3B2 00 01 11 10 00 01 11 10 B1B0 120233 BBBBBX  BCD (B3B2B1B0) to Excess-3 BCD (X3X2X1X0) Code Converter eg. 3) K-map for X2
  • 68. 0 0 1 1 1 1 0 0 0 1 1 0 X X X X 00 01 11 10 00 01 11 10 B1B0 Simplify using K-maps       )10,8,7,5,0()15,14,13,11,4,2,1(),,,()2 )11,10,9,8()15,13,5,4,3,2(),,,()1 dmDCBAf dmDCBAfV CBAADCBV  X 1 0 1 1 X X 0 0 1 1 1 X 0 1 X 00 01 11 10 00 01 11 10 B1B0 B3B2 B3B2 DBACBDCAf 
  • 69. Simplify using K-maps       )28,24,14,10()30,26,23,21,8,7,5(),,,,()2 )26,24,10,8(30,28,27,25,22,20,19,17,14,12,11,9,6,4,3,1(),,,,()1 dMEDCBAf dmEDCBAf ECECV  ))()(( HFEHGEHFEf  0 1 1 0 X 1 1 X X 1 1 X 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 AB 000 001 011 00 01 11 10 CDE 110111101100010 1 1 1 1 0 1 1 X X 1 1 0 1 1 1 1 1 0 0 1 1 1 1 X X 1 1 0 1 0 0 1 DE 000 001 011 00 01 11 10 FGH 110111101100010 )( HFE  )( HGE  )( HFE EC EC
  • 71. PROBLEMS ON DESIGN 1) Design a logic circuit which has a single O/P variable z which is to be true when I/P variables a & b are true or when b is false but a & c are true. a b c Z 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 OPCanonicalSabccabcbaz  0 0 0 0 0 1 1 1 00 01 11 10 0 1 a bc )( bcaz SOPMinimalabacz   a b c z
  • 72. 2) Design a logic circuit whose O/P is to be true when the value if I/P s exceeds 3. The weighting for each I/P variable is as follows. w=3, x=3, y=2, z=1. (Left as an exercise) 3) Design a logic circuit that controls the passage of a signal ‘A’ according to the following requirement. i. O/P ‘X’ will = ‘A’ when control I/Ps B & C are the same. ii. ‘X’ will remain ‘HIGH’ when B & C are different. Implement the ckt using suitable gates. PROBLEMS ON DESIGN A B C X 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 00 01 11 10 0 1 a bc CBAX  A B C X
  • 73. 1. Difficult to use when no. of variables is > 6. 2. The recognition of groups that form EPI’s becomes difficult for large K-maps. 3. The technique does not involve a systematic algorithmic procedure that is suitable for computers. Since it is a manual technique, simplification process depends on human abilities.