SlideShare a Scribd company logo
1 of 19
Download to read offline
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 1
CHAPTER 1- FUNCTIONS
1.1 RELATIONS
1.1.1 Representing Relations
1- By Arrow Diagram
One to one relation
x x + 2
Many to one relation
x x2
2- By Ordered Pair
(1, 3), (2, 4), (3, 5)
(1, 4), ( −2, 4), (3, 9), ( −3, 9)
3. By Graph
y (Image)
4 X
3 X
0 1 2 x (object)
One to many relation
x x
Many to many relation
360 min
3600 sec
60 sec
0.25 day
6 hours
1 min
2160 sec
1 hour
−2
2
3
−3
4
9
1
2
3
3
4
5
2
−2
3
−3
4
9
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 2
domain
codomain
A B
Set A is called domain of the relation and set B is the codomain.
Each of the elements in the domain (Set A) is an object. So 1, 2 and 3 are called object.
Each of the elements in the codomain (Set B) is an image. So 3, 4, 5 and 6 are called image.
The set that contains all the images that are matched is the range.
A B
Domain={ 1,2,3 } codomain= {3,4,5,6}
Object = 1, 2, 3 image = 3, 4, 5, 6
Range= {3, 4, 5}
Object image
1.2 FUNCTIONS
1. Function is a special relation where every object in a domain has only one image. A function is also
known as a mapping.
2. From the types of relation we have learned, only one to one relation and many to one relation are
function.
Function notation
Small letter: f, g, h or something else…
xxf 2: →
Read as function f map x onto 2x
Example:
f : x 2x
f(x) = 2x
x = 1,
f(1) = 2(1)
= 2
1
2
3
3
4
5
6
object
image
Concept:
xxf 2: →
xxf 2)( =
Look at the difference between
these two.
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 3
Example 1:
1. Given function 23: −→ xxf . Find
(a) the image of –1
f(x)= 3x – 2
f(-1) = 3(– 1) – 2
= – 3 – 2
= – 5
(b) object which has the image 4
f(x) = 3x – 2
Given that the image is 4,
So f(x) = 4
Compare and ,
Hence,
3x – 2 = 4
3x = 6
x = 2
2. Given that f(x) = px + 3 and f(4)= 5. Find the value of p.
f(x) = px + 3
If x=4,
f(4)= 4p + 3
f(4)= 5
Compare and ,
Hence,
534 =+p
24 =p
2
1
=p
If the given is object, so we are going to
find the value of image. -1 is the object
because we have to find the value of its
image.
If the given is image, so we are going to find
the value of object. 4 is the image because we
have to find the value of its object.
1
2
1 2
1
2
1 2
From the information given, we know
that 4 is the object and 5 is the image.
The both function is compared because
they are under the same function or in
other way there are having the same
object which is 4. So the value of p can be
calculated.
Remember the concept:
f : x 3x – 2 then
f(x)= 3x – 2 and when x= –1,
f(-1) = 3(– 1) – 2
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 4
Example 2:
The function g is defined by
mx
x
xg
+
=
2
)( If g(5) = 3g(2), find the value of m. Hence, find:
(a) image of 4.
(b) the value of x such that the function g is undefined.
Answer:
g(5) = 3g(2)
60 + 12m = 20 + 10m
2m = - 40
m = -20
(a)
204
)4(2
)4(
−
=g
=
2
1
−
(b) 020 =−x
20=x
EXERCISE 1.2
1. Given function f is defined by 45)( −= xxf . Find the value of x if 14)( −=xf .
2. Given that 32)( −= xxf . Find the image of 5.
3. Given that function f such that
4
32
)(
−
−
=
x
x
xf .
(i) The image of 5.
(ii ) the value of x such that the function f is undefined
4. Given the function h such that 132)( 2
++= kxxxh and 9)1( =h . Find the value of k.
5. Given the function 13: +→ xxf , find
(a) the image of 2,
(b) the value of x if f(x) = x.
6. Given the function 34: +→ xxw , find the value of p such that 23)( =pw .
7. Given the function 52: −→ xxn . Find the value of k at which kkn =)( .
mm ++
= 2
)2(2
5
)5(2
.3
m
g
+
=
5
)5(2
)5( and
m
g
+
=
5
)2(2
)2( . Replace
g(5) with
m+5
)5(2
and g(2) with
m+5
)2(2
.
Any number that is divided by zero will result
undefined or infinity. The value of denominator
cannot equal to zero because it would cause
the solution becomes undefined or infinity. To
find the value of x to make the function
undefined, the denominator must be equal to
zero.
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 5
1.3 COMPOSITE FUNCTIONS
A f:x 3x B g:x x2
C
gf(x) = g[f(x)] gf
= g(3x)
= (3x)2
Example 1:
Given function 1: +→ xxf and xxg 3: → . Find the composite function gf.
f(x) = x + 1
g(x) = 3x
gf(x) = g[f(x)]
= g(x +1)
= 3(x +1)
Hence, gf: x 3(x +1)
Example 2:
The following information refers to the functions f and g.
Find
(a) the value of k,
(b) fg(x).
x
1
2
3x
3
6
(3x)2
9
36
The figure shows Set A, B and C.
The combined effect of two
functions can be represented by
the function gf(x) and not fg(x).
This is because the range of f has
become the domain of function g
or f(x) becomes the domain of
function g.
This is f(x) which has become the object of
function g
The concept is:
f(x) = 3x
f(k) = 3(k)
f(3) = 3(3)
f[g(x) ]= 3g(x)
(x +1) has become the object of function g which is
replacing x. [g(x)=3x and g(x+1)=3(x+1)]. When x in the
object is replaced by (x+1) so x in the image is also
replaced by (x+1) and become 3(x+1). We can also
expand the expression and becomes 3x + 3.
Replace f(x) with its image which is (x +1)
kx
x
xg
xxf
≠
−
→
−→
,
1
4
:
32:
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 6
Solution:
In Form One we have learned that any number that divided by zero will result infinity or undefined.
For part (a), if there is given an expression which is a fraction there must be given an information that
the value of unknown in the denominator that it cannot be. For example, 2,
2
: ≠
−
→ x
x
h
xg . The
part of denominator is 2−x . If 2=x , the denominator would be 0 and the solution will be undefined
or infinity. So x cannot equal to 2. For the question above, we know that x cannot equal to 1 because if
1=x ,the denominator would be 0 and the solution will be undefined or infinity. It is given that kx ≠ .
We already know that 1≠x . So compare these two equations and it would result 1=k . So 1 is the
answer for part (a)
For part (b),
f(x)=2x – 3 and) 1,
1
4
)( ≠
−
= x
x
xg
fg(x) = f[g(x)]
= )
1
4
(
−x
f
= 2 )
1
4
(
−x
- 3
=
1
8
−x
- 3
=
1
)1(3
1
8
−
−
−
− x
x
x
=
1
)1(38
−
−−
x
x
=
1
338
−
+−
x
x
=
1
311
−
−
x
x
, 1≠x
Example 3:
The following information refers to the functions f and g.
2,
2
3
:
34:
≠
−
→
−→
x
x
xg
xxf
Replace g(x) with
1
4
−x
f(x)=2x – 3 ,
)
1
4
(
−x
f = 2 )
1
4
(
−x
- 3
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 7
Find
(a) the value of gf(1)
(b) f2
Solution:
For part (a), at first we have to find gf(x).
Given xxf 34)( −= and 2,
2
3
)( ≠
−
= x
x
xg
gf(x)= g[f(x)]
= g(4 – 3x)
=
2)34(
3
−− x
=
x32
3
−
gf(x)=
3
2
,
32
3
≠
−
x
x
gf(1)=
)1(32
3
−
=
32
3
−
=
1
3
−
= 3−
For part (b), f2
means ff.
Given xxf 34)( −=
ff(x)= f[f(x)]
= f ]34[ x−
= )34(34 x−−
= x9124 +−
= 89 −x
89)(2
−= xxf
Replace f(x) with x34 −
2
3
)(
−
=
x
xg
2)34(
3
)34(
−−
=−
x
xg
Replace f(x) with x34 −
xxf 34)( −= ,
f ]34[ x− = )34(34 x−−
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 8
1.3.1 Determining one of the function in a given composite function
(1)The following information refers to the functions f and fg.
Find function g.
Solution:
Given 32)( −= xxf and 1,
1
311
)( ≠
−
−
= x
x
x
xfg
If 32)( −= xxf ,
If 32)( −= yyf
So 3)]([2)]([ −= xgxgf
3)]([2)( −= xgxfg
Given 1,
1
311
)( ≠
−
−
= x
x
x
xfg .
Compare the two equations.
Hence,
1
311
3)]([2
−
−
=−
x
x
xg
3
1
311
)]([2 +
−
−
=
x
x
xg
1
)1(3
1
311
)]([2
−
−
+
−
−
=
x
x
x
x
xg
1
)1(3311
)]([2
−
−+−
=
x
xx
xg
1
33311
)]([2
−
−+−
=
x
xx
xg
1
8
)]([2
−
=
x
xg
)1(2
8
)]([
−
=
x
xg
1,
1
311
:
32:
≠
−
−
→
−→
x
x
x
xfg
xxf
Remember the concept…
f(x) = 2x – 3
f(k) = 2k – 3
f(3) = 2(3) – 3
f[g(x)]= 2g(x) – 3
Simplify 8 and 2
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 9
1
4
)(
−
=
x
xg
Hence 1,
1
4
: ≠
−
→ x
x
xg
(2) The following information refers to the functions f and fg.
Find function f.
Solution:
1
311
1
4
1
311
)]([
−
−
=





−
−
−
=
x
x
x
f
x
x
xgf
Let
y
x
=
−1
4
yxy −=4
yxy += 4
y
y
x
+
=
4
Substitute and into ,
1
4
)
4
(311
)(
−
+
+
−
=
y
y
y
y
yf
=
y
y
y
y
y
y
−
+
+
−
4
)
312
(11
1,
1
311
:
1
4
:
≠
−
−
→
−
→
x
x
x
xfg
x
xg
1,
1
311
:
1
4
:
≠
−
−
→
−
→
x
x
x
xfg
x
xg
2
3
1
2 3 1
Convert 1 to a fraction
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 10
=
y
yy
y
y
y
y
−+
−
−
4
31211
=
y
y
yy
4
31211 −−
=
y
y
y
4
128 −
=
4
128 y
y
y
×
−
= 32 −y
32)( −= yyf
32)( −= xxf
EXERCISE 1.3
1. Function f and gf are given as
2
1
)(
+
=
x
xf and 23)( += xxgf respectively. Find function g.
2. Given xxf 35)( −= and xxg 4)( = . Find function fg.
3. Given 6)( −= xxgf and 34)( −= xxg . Find
(i) function f
(ii) function fg
4. Given the function xxw 23)( −= and 1)( 2
−= xxv , find the functions
(a) wv
(b) vw
5. Given the function 2: +→ xxw and kx
x
x
xv ≠
−
−
→ ,
1
12
)( ,
(a) state the value of k
(b) find
(i) wv(x)
(ii) vw(x)
Simplify
It means
y
y 128 −
divided by
y
4
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 11
1.4 INVERSE FUNCTIONS
If yxf =)( then xyf =−
)(1
A B
Example 1 x 3x + 1
Given 13: +→ xxf
If x=1,
1)1(3)1( +=f
= 13 +
= 4
Hence,
4)1( =f x 3x +1
So,
3
1−y
y
f-1
(4) = 1
3
1−x
x
let
yx =+13
13 −= yx
3
1−
=
y
x
f-1
(y)
3
1−
=
y
f-1
(x)
3
1−
=
x
f-1
(4)
3
14 −
=
= 1
41
X Y
Inverse function
1−
f
f
1
≠
Tips…
1−
f
f
1−
f
f
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 12
1.4.1 Determining the inverse function
Example 1:
Given 2,
2
5
: ≠
−
→ x
x
xg . Determine the inverse function 1−
g .
Solution:
let
y
x
=
− 2
5
52 =− yxy
yxy 25 +=
y
y
x
25 +
=
y
y
yg
25
)(1 +
=−
0,
25
)(1
≠
+
=−
x
x
x
xg
Example 2:
The function f is defined by xxf 43: −→ . Find f-1
(-5)
Method 1
Let
yx =− 43
yx −= 34
4
3 y
x
−
=
4
3
)(1 y
yf
−
=−
4
3
)(1 x
xf
−
=−
4
)5(3
)5(1 −−
=−−
f
4
8
=
1
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 13
2)5(1
=−−
f
Method 2
We know that
And
x 3 - 4x
Hence,
543 −=− x
534 +=x
84 =x
2=x
So,
2)5(1
=−−
f
EXERCISE 1.4
1. Given xxf 35)( −= and xxg 4)( = . Find
(i) the value of )4(1
−−
f
(ii) the value of )4()( 1
−−
gf
2. Given xxg 35)( −= and xxgf 4)(1
=−
. Find function f.
3. Given 6)( −= xxgf and 34)( −= xxg . Find
(i) 1
)( −
gf
(ii ) the value of )2(fg
4. Given 1,
1
2
: ≠
−
→ x
x
x
xf ,
(a) find the function 1−
f
(b) state the value of x such that 1−
f does not exist.
5. Show that the function 1,
1
: ≠
−
→ x
x
x
xf , has an inverse function that maps onto its self.
6. If 2: −→ xxh , find the value of p given that 8)(1
=−
ph .
2
image
xxf 43)( −=
yf =−−
)5(1
image
y -5
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 14
1.5 ABSOLUTE FUNCTION
Absolute function means the value of image is always positive because of the modulus sign.
Given xxg −→ 2: and y= ( )g x .Find the value of y if 3=x
y= ( )g x
= |)3(| g
= |32| −
= |1| −
= 1
1.5.1 Graph of absolute function
Example:
Given xxf −= 2)( and |)(| xfy = . Sketch the graph of |)(| xfy = for the domain 0≤ x ≤ 6. Hence
state the corresponding range of y.
|)(| xfy =
|2| x−=
Minimum value of y=0
When 2-x = 0 (2, 0)
X=2
i) x = 0
y |02| −=
|2|= (0, 2)
2=
ii) ) x = 6
y |62| −=
|4| −= (6 , 4)
4=
Then, sketch the graph using the points.
This is called modulus. Any value in the
modulus would be positive. If the number
is positive, it remains positive but it is
negative it would change to positive
when remove the modulus sign.
Minimum value of y must be zero
because of absolute value cannot be
negative so the minimum it could be is
zero.
Replace g(x) with is x−2
Replace f(x) with its image which is x−2
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 15
Y
5
4
3 |)(| xfy =
2
1
0 x
1 2 3 4 5 6
Hence, the corresponding range of y is 0≤ y ≤ 4
:: Some important information to be understood ::
1. Concept Of Solving Quadratic Equation by factorization
0432
=−− xx
0)4)(1( =−+ xx
01 =+x or 04 =−x
1−=x or 4=x
Example:
Given xxxf 52)( 2
−= . Find the possible values of k such that kf =−
)3(1
x 2x2
– 5x
Solution:
kf =−
)3(1
Hence,
352 2
=− xx
0352 2
=−− xx
0)3)(12( =−+ xx
Range of x
Range of y
3
To make a product equal to zero, one of
them or both must be equal to zero. We
do not know either x-1 is equal to zero or
x-4 equal to zero so that is why we use
the word ‘or’ not ‘and.’
The general form of quadratic equation is
02
=++ cbxax . To factorize and use the
concept, the equation must be equal to zero.
k
image
object
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 16
012 =+x or 03 =−x
2
1
−=x or 3=x
2
1
)3(1
−=−
f or 3)3(1
=−
f
Given that kf =−
)3(1
2
1
−=k or 3=k
2. Concept of Square root and any root which is multiple of 2
In lower secondary we have learned that if x2
= 4 then x = 2. Actually the right answer for it is not 2 but
2± ( 2± is +2 and -2). This is because if (2)2,
the answer is 4 and if (-2)2
, the answer is also 4. So the
square root of 4 is 2± . It is also the same for fourth root, sixth root and so on. But in certain situation,
the answer will be only one.
Example:
Solve the equation 644 2
=x .
Solution:
4
16
644
2
2
±=
=
=
x
x
x
3. Comparison method
Example:
Given the functions 2,
2
: ≠
−
→ x
x
h
xg and 0,
12
:1
≠
+
→−
x
x
kx
xg where h and k are constants,
find the value of h and of k.
Solution:
From the information given, we know that the method that we have to use to solve the question is
comparison method.
To make a product equal to zero, one of
them or both must be equal to zero. We
do not know either 2x+1 is equal to zero
or x-3 equal to zero so that is why we use
the word ‘or’ not ‘and.’
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 17
First, we have to find the inverse function of g.
Let
y
x
h
=
− 2
hyyx =− 2
yhyx 2+=
y
yh
x
2+
=
y
yh
yg
2
:1 +
→−
0,
2
:1
≠
+
→−
x
x
xh
xg
Given that
0,
12
:1
≠
+
→−
x
x
kx
xg
Both of them are inverse function of g.
So compare and ,
0,
)(
)2()(
:1
≠
+
→−
x
x
xh
xg
0,
)(
)()12(
:1
≠
+
→−
x
x
xk
xg
Hence ,
12=h and 2=k
1
2
1 2
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 18
CHAPTER REVIEW EXERCISE
1. Diagram 1 shows the relation between set J and set K.
DIAGRAM 1
State
(a) the codomain of the relation,
(b) the type of the relation.
2. Diagram 2 shows the graph of the function y = f(x).
It is given that f(x)= ax + b.
Find
(a) the value of a and of b,
(b) the value of m if m is mapped onto itself under the function f,
(c) the value of x if f -1
(x) = f 2
(x).
3. Function h is given as .,
1
4
)( kx
x
kx
xh ≠
−
−
= Find the value of k.
4. Given function 5)( += hxxg and ,
2
)(1 kx
xg
+
=−
find the values of h and k.
5. Given 2,
2
3
: ≠
−
→ x
x
xg . Find the values of x if xxg =)( .
1•
2•
•2
•4
•6
•8
•10
Set J
Set K
1 3
11
23
x
y
y= f(x)
O
DIAGRAM 2
Additional Mathematics Module Form 4
Chapter 1- Functions SMK Agama Arau, Perlis
Page | 19
6. Functions f and g are defined by hxxf −→ 3: and 0,: ≠→ x
x
k
xg , where h and k are
constants. It is given that f −1
(10) = 4 and fg(2) = 16. Find the value of h and of k.
7. Given that 23)( −= xxf and 1)( 2
−= xxfg , find
(i) the function g
(ii) the value of gf(3)
8 Given 22)( += xxf and |)(| xfy = . Sketch the graph of |)(| xfy = for the domain 0≤ x ≤ 4. Hence
state the corresponding range of y.
9. Given that function h is defined as 12: +→ pxxh . Given that the value of 3 maps onto itself under
the function h, find
(a) the value of p
(b) the value of )2(1
−−
hh
10. Given that the functions 12)( −= xxh and qpxxhh +=)( , where p and q are constants, calculate
(a) the value of p and q
(b) the value of m for which mh 2)1( =−
11. Function g and composite function fg are defined by 3: +→ xxg and 76: 2
++→ xxxfg .
(a) Sketch the graph of y = ( )g x for the domain −5≤ x ≤ 3.
(b) Find f(x).
12. Given quadratic function 2
( ) 2 3 2g x x x= − + . find
(a) g(3),
(b) the possible values of x if 22)( =xg
13. Functions f and g are given as 2
: xxf → and qpxxg +→: , where p and q are constants.
(a) Given that )1()1( gf = and )5()3( gf = , find the value of p and of q.
(b) By using the values of p and q obtained in (a), find the functions
(i) gg
(ii) 1−
g
14. If 63)( −= xxw and 16)( −= xxv , find
(a) )(xwv
(b) the value of x such that xxwv =− )2( .
15. Given 63)( −= xxf . Find the values of x if 3)( =xf .

More Related Content

What's hot

Chapter1 functions
Chapter1 functionsChapter1 functions
Chapter1 functionsMonie Joey
 
Chapter 3 quadratc functions
Chapter 3  quadratc functionsChapter 3  quadratc functions
Chapter 3 quadratc functionsatiqah ayie
 
Chapter 9- Differentiation Add Maths Form 4 SPM
Chapter 9- Differentiation Add Maths Form 4 SPMChapter 9- Differentiation Add Maths Form 4 SPM
Chapter 9- Differentiation Add Maths Form 4 SPMyw t
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Fatini Adnan
 
Teknik menjawab matematik tambahan 1
Teknik menjawab matematik tambahan 1Teknik menjawab matematik tambahan 1
Teknik menjawab matematik tambahan 1Aidil-Nur Zainal
 
Aplikasi integral-luas-volume
Aplikasi integral-luas-volumeAplikasi integral-luas-volume
Aplikasi integral-luas-volumeSMPNegeri12
 
Chapter 6 coordinate geometry
Chapter 6  coordinate geometryChapter 6  coordinate geometry
Chapter 6 coordinate geometryatiqah ayie
 
Add maths complete f4 & f5 Notes
Add maths complete f4 & f5 NotesAdd maths complete f4 & f5 Notes
Add maths complete f4 & f5 NotesBright Minds
 
Grafik fungsi (graph of function)
Grafik fungsi (graph of function)Grafik fungsi (graph of function)
Grafik fungsi (graph of function)Avied Purnomo
 
Chapter 2 Factorisation Form 2 Cikgu Harnish Skor Impian
Chapter 2 Factorisation Form 2 Cikgu Harnish Skor ImpianChapter 2 Factorisation Form 2 Cikgu Harnish Skor Impian
Chapter 2 Factorisation Form 2 Cikgu Harnish Skor ImpianHarnish Kaur
 
Aljabar dalam Matematika
Aljabar dalam MatematikaAljabar dalam Matematika
Aljabar dalam Matematikasiska sri asali
 
Section 2.3 properties of functions
Section 2.3 properties of functions Section 2.3 properties of functions
Section 2.3 properties of functions Wong Hsiung
 
Metode numeris (s03) persamaan non linier simultan
Metode numeris (s03)   persamaan non linier simultanMetode numeris (s03)   persamaan non linier simultan
Metode numeris (s03) persamaan non linier simultanDida Amalia
 
Solved exercises double integration
Solved exercises double integrationSolved exercises double integration
Solved exercises double integrationKamel Attar
 
Paper 1 form 4 mid year (complete)
Paper 1 form 4 mid year (complete)Paper 1 form 4 mid year (complete)
Paper 1 form 4 mid year (complete)Ilyane Farahin
 
66136916 kimia-paper-2-f4-akhir-sbp-06
66136916 kimia-paper-2-f4-akhir-sbp-0666136916 kimia-paper-2-f4-akhir-sbp-06
66136916 kimia-paper-2-f4-akhir-sbp-06adasafwan
 

What's hot (20)

Chapter1 functions
Chapter1 functionsChapter1 functions
Chapter1 functions
 
Form 4 add maths note
Form 4 add maths noteForm 4 add maths note
Form 4 add maths note
 
Chapter 3 quadratc functions
Chapter 3  quadratc functionsChapter 3  quadratc functions
Chapter 3 quadratc functions
 
Chapter 9- Differentiation Add Maths Form 4 SPM
Chapter 9- Differentiation Add Maths Form 4 SPMChapter 9- Differentiation Add Maths Form 4 SPM
Chapter 9- Differentiation Add Maths Form 4 SPM
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)
 
Teknik menjawab matematik tambahan 1
Teknik menjawab matematik tambahan 1Teknik menjawab matematik tambahan 1
Teknik menjawab matematik tambahan 1
 
Aplikasi integral-luas-volume
Aplikasi integral-luas-volumeAplikasi integral-luas-volume
Aplikasi integral-luas-volume
 
Chapter 6 coordinate geometry
Chapter 6  coordinate geometryChapter 6  coordinate geometry
Chapter 6 coordinate geometry
 
Add maths complete f4 & f5 Notes
Add maths complete f4 & f5 NotesAdd maths complete f4 & f5 Notes
Add maths complete f4 & f5 Notes
 
Grafik fungsi (graph of function)
Grafik fungsi (graph of function)Grafik fungsi (graph of function)
Grafik fungsi (graph of function)
 
Chapter 2 Factorisation Form 2 Cikgu Harnish Skor Impian
Chapter 2 Factorisation Form 2 Cikgu Harnish Skor ImpianChapter 2 Factorisation Form 2 Cikgu Harnish Skor Impian
Chapter 2 Factorisation Form 2 Cikgu Harnish Skor Impian
 
Ceramah Add Mth
Ceramah Add MthCeramah Add Mth
Ceramah Add Mth
 
Aljabar dalam Matematika
Aljabar dalam MatematikaAljabar dalam Matematika
Aljabar dalam Matematika
 
Section 2.3 properties of functions
Section 2.3 properties of functions Section 2.3 properties of functions
Section 2.3 properties of functions
 
Capitulo 5 Soluciones Purcell 9na Edicion
Capitulo 5 Soluciones Purcell 9na EdicionCapitulo 5 Soluciones Purcell 9na Edicion
Capitulo 5 Soluciones Purcell 9na Edicion
 
Metode numeris (s03) persamaan non linier simultan
Metode numeris (s03)   persamaan non linier simultanMetode numeris (s03)   persamaan non linier simultan
Metode numeris (s03) persamaan non linier simultan
 
Linear law
Linear lawLinear law
Linear law
 
Solved exercises double integration
Solved exercises double integrationSolved exercises double integration
Solved exercises double integration
 
Paper 1 form 4 mid year (complete)
Paper 1 form 4 mid year (complete)Paper 1 form 4 mid year (complete)
Paper 1 form 4 mid year (complete)
 
66136916 kimia-paper-2-f4-akhir-sbp-06
66136916 kimia-paper-2-f4-akhir-sbp-0666136916 kimia-paper-2-f4-akhir-sbp-06
66136916 kimia-paper-2-f4-akhir-sbp-06
 

Viewers also liked

Altar de Zeus de Pèrgam
Altar de Zeus de Pèrgam Altar de Zeus de Pèrgam
Altar de Zeus de Pèrgam Laura BG
 
155678818 percubaan-2013-penang-matematik-k1-131001112726-phpapp01
155678818 percubaan-2013-penang-matematik-k1-131001112726-phpapp01155678818 percubaan-2013-penang-matematik-k1-131001112726-phpapp01
155678818 percubaan-2013-penang-matematik-k1-131001112726-phpapp01Sofia Mahmood
 
Càncer de pulmó
Càncer de pulmóCàncer de pulmó
Càncer de pulmóLaura BG
 
Mgb kedah-mathematics2-upsr-year-6
Mgb kedah-mathematics2-upsr-year-6Mgb kedah-mathematics2-upsr-year-6
Mgb kedah-mathematics2-upsr-year-6Sofia Mahmood
 
2010percubaann9mathskpaper2 120430162344-phpapp01
2010percubaann9mathskpaper2 120430162344-phpapp012010percubaann9mathskpaper2 120430162344-phpapp01
2010percubaann9mathskpaper2 120430162344-phpapp01Sofia Mahmood
 
105316800 100-f1-math-140601233104-phpapp02
105316800 100-f1-math-140601233104-phpapp02105316800 100-f1-math-140601233104-phpapp02
105316800 100-f1-math-140601233104-phpapp02Sofia Mahmood
 
5indiceslogarithms 120909011915-phpapp02
5indiceslogarithms 120909011915-phpapp025indiceslogarithms 120909011915-phpapp02
5indiceslogarithms 120909011915-phpapp02Sofia Mahmood
 
Percubaan pmr 2013 pahang matematik kertas 2 (1) (1)
Percubaan pmr 2013 pahang matematik kertas 2 (1) (1)Percubaan pmr 2013 pahang matematik kertas 2 (1) (1)
Percubaan pmr 2013 pahang matematik kertas 2 (1) (1)Sofia Mahmood
 
Luis caraballo 24695744 ing.sistema
Luis caraballo 24695744 ing.sistemaLuis caraballo 24695744 ing.sistema
Luis caraballo 24695744 ing.sistemaLuis Caraballo
 
Vapour life usa
Vapour life usaVapour life usa
Vapour life usasubmite
 
Luis caraballo 24695744 ensayo
Luis caraballo 24695744 ensayoLuis caraballo 24695744 ensayo
Luis caraballo 24695744 ensayoLuis Caraballo
 
E-COMMERCE AND THE FUTURE OF RETAIL: 2015
E-COMMERCE AND THE FUTURE OF RETAIL: 2015E-COMMERCE AND THE FUTURE OF RETAIL: 2015
E-COMMERCE AND THE FUTURE OF RETAIL: 2015Cooper Smith
 

Viewers also liked (17)

Remember1
Remember1Remember1
Remember1
 
Devyani Dhumal
Devyani DhumalDevyani Dhumal
Devyani Dhumal
 
Altar de Zeus de Pèrgam
Altar de Zeus de Pèrgam Altar de Zeus de Pèrgam
Altar de Zeus de Pèrgam
 
155678818 percubaan-2013-penang-matematik-k1-131001112726-phpapp01
155678818 percubaan-2013-penang-matematik-k1-131001112726-phpapp01155678818 percubaan-2013-penang-matematik-k1-131001112726-phpapp01
155678818 percubaan-2013-penang-matematik-k1-131001112726-phpapp01
 
Càncer de pulmó
Càncer de pulmóCàncer de pulmó
Càncer de pulmó
 
Mgb kedah-mathematics2-upsr-year-6
Mgb kedah-mathematics2-upsr-year-6Mgb kedah-mathematics2-upsr-year-6
Mgb kedah-mathematics2-upsr-year-6
 
Pmr matematik perak
Pmr matematik perakPmr matematik perak
Pmr matematik perak
 
Upsr sarawak 2010
Upsr sarawak 2010Upsr sarawak 2010
Upsr sarawak 2010
 
2010percubaann9mathskpaper2 120430162344-phpapp01
2010percubaann9mathskpaper2 120430162344-phpapp012010percubaann9mathskpaper2 120430162344-phpapp01
2010percubaann9mathskpaper2 120430162344-phpapp01
 
105316800 100-f1-math-140601233104-phpapp02
105316800 100-f1-math-140601233104-phpapp02105316800 100-f1-math-140601233104-phpapp02
105316800 100-f1-math-140601233104-phpapp02
 
5indiceslogarithms 120909011915-phpapp02
5indiceslogarithms 120909011915-phpapp025indiceslogarithms 120909011915-phpapp02
5indiceslogarithms 120909011915-phpapp02
 
Percubaan pmr 2013 pahang matematik kertas 2 (1) (1)
Percubaan pmr 2013 pahang matematik kertas 2 (1) (1)Percubaan pmr 2013 pahang matematik kertas 2 (1) (1)
Percubaan pmr 2013 pahang matematik kertas 2 (1) (1)
 
Masa dan waktu
Masa dan waktuMasa dan waktu
Masa dan waktu
 
Luis caraballo 24695744 ing.sistema
Luis caraballo 24695744 ing.sistemaLuis caraballo 24695744 ing.sistema
Luis caraballo 24695744 ing.sistema
 
Vapour life usa
Vapour life usaVapour life usa
Vapour life usa
 
Luis caraballo 24695744 ensayo
Luis caraballo 24695744 ensayoLuis caraballo 24695744 ensayo
Luis caraballo 24695744 ensayo
 
E-COMMERCE AND THE FUTURE OF RETAIL: 2015
E-COMMERCE AND THE FUTURE OF RETAIL: 2015E-COMMERCE AND THE FUTURE OF RETAIL: 2015
E-COMMERCE AND THE FUTURE OF RETAIL: 2015
 

Similar to Chapter1 functions

Form 4 Add Maths Note
Form 4 Add Maths NoteForm 4 Add Maths Note
Form 4 Add Maths NoteChek Wei Tan
 
Form 4-add-maths-note
Form 4-add-maths-noteForm 4-add-maths-note
Form 4-add-maths-notejacey tan
 
Chapter2 functionsandgraphs-151003144959-lva1-app6891
Chapter2 functionsandgraphs-151003144959-lva1-app6891Chapter2 functionsandgraphs-151003144959-lva1-app6891
Chapter2 functionsandgraphs-151003144959-lva1-app6891Cleophas Rwemera
 
GEN-MATH-WEEK-2.pptx
GEN-MATH-WEEK-2.pptxGEN-MATH-WEEK-2.pptx
GEN-MATH-WEEK-2.pptxKenCubero
 
Module 2 linear functions
Module 2   linear functionsModule 2   linear functions
Module 2 linear functionsdionesioable
 
College algebra 7th edition by blitzer solution manual
College algebra 7th edition by blitzer solution manualCollege algebra 7th edition by blitzer solution manual
College algebra 7th edition by blitzer solution manualrochidavander
 
Module 3 quadratic functions
Module 3   quadratic functionsModule 3   quadratic functions
Module 3 quadratic functionsdionesioable
 
Logarithms
LogarithmsLogarithms
Logarithmssupoteta
 
Operation on functions
Operation on functionsOperation on functions
Operation on functionsJeralyn Obsina
 
Lesson 2_Eval Functions.pptx
Lesson 2_Eval Functions.pptxLesson 2_Eval Functions.pptx
Lesson 2_Eval Functions.pptxAlfredoLabador
 
4.1 inverse functions t
4.1 inverse functions t4.1 inverse functions t
4.1 inverse functions tmath260
 
Module 2 polynomial functions
Module 2   polynomial functionsModule 2   polynomial functions
Module 2 polynomial functionsdionesioable
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuityPume Ananda
 

Similar to Chapter1 functions (20)

AnsChap1.pdf
AnsChap1.pdfAnsChap1.pdf
AnsChap1.pdf
 
Form 4 Add Maths Note
Form 4 Add Maths NoteForm 4 Add Maths Note
Form 4 Add Maths Note
 
Form 4-add-maths-note
Form 4-add-maths-noteForm 4-add-maths-note
Form 4-add-maths-note
 
Chapter2 functionsandgraphs-151003144959-lva1-app6891
Chapter2 functionsandgraphs-151003144959-lva1-app6891Chapter2 functionsandgraphs-151003144959-lva1-app6891
Chapter2 functionsandgraphs-151003144959-lva1-app6891
 
Chapter 2 - Functions and Graphs
Chapter 2 - Functions and GraphsChapter 2 - Functions and Graphs
Chapter 2 - Functions and Graphs
 
GEN-MATH-WEEK-2.pptx
GEN-MATH-WEEK-2.pptxGEN-MATH-WEEK-2.pptx
GEN-MATH-WEEK-2.pptx
 
Module 2 linear functions
Module 2   linear functionsModule 2   linear functions
Module 2 linear functions
 
College algebra 7th edition by blitzer solution manual
College algebra 7th edition by blitzer solution manualCollege algebra 7th edition by blitzer solution manual
College algebra 7th edition by blitzer solution manual
 
Functions
FunctionsFunctions
Functions
 
Lesson 3 Operation on Functions
Lesson 3 Operation on FunctionsLesson 3 Operation on Functions
Lesson 3 Operation on Functions
 
Module 3 quadratic functions
Module 3   quadratic functionsModule 3   quadratic functions
Module 3 quadratic functions
 
Logarithms
LogarithmsLogarithms
Logarithms
 
Operation on functions
Operation on functionsOperation on functions
Operation on functions
 
FUNCIONES.pptx
FUNCIONES.pptxFUNCIONES.pptx
FUNCIONES.pptx
 
Lesson 2_Eval Functions.pptx
Lesson 2_Eval Functions.pptxLesson 2_Eval Functions.pptx
Lesson 2_Eval Functions.pptx
 
4.1 inverse functions t
4.1 inverse functions t4.1 inverse functions t
4.1 inverse functions t
 
Composite functions
Composite functionsComposite functions
Composite functions
 
Module 2 polynomial functions
Module 2   polynomial functionsModule 2   polynomial functions
Module 2 polynomial functions
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuity
 
Function
FunctionFunction
Function
 

More from Sofia Mahmood

lowest common factor
lowest common factorlowest common factor
lowest common factorSofia Mahmood
 
Greatest common factor(FSTB)
Greatest common factor(FSTB)Greatest common factor(FSTB)
Greatest common factor(FSTB)Sofia Mahmood
 
Peruncingan4 130904060748-140216080750-phpapp01
Peruncingan4 130904060748-140216080750-phpapp01Peruncingan4 130904060748-140216080750-phpapp01
Peruncingan4 130904060748-140216080750-phpapp01Sofia Mahmood
 
Unit8mass 121015084639-phpapp02
Unit8mass 121015084639-phpapp02Unit8mass 121015084639-phpapp02
Unit8mass 121015084639-phpapp02Sofia Mahmood
 
Final 2008 math f2 paper 2
Final 2008 math f2 paper 2Final 2008 math f2 paper 2
Final 2008 math f2 paper 2Sofia Mahmood
 
Factor list prime.pl
Factor list prime.plFactor list prime.pl
Factor list prime.plSofia Mahmood
 
Greatest common factor.pl
Greatest common factor.plGreatest common factor.pl
Greatest common factor.plSofia Mahmood
 
156679855 matematik-2-terengganu-130822220727-phpapp02
156679855 matematik-2-terengganu-130822220727-phpapp02156679855 matematik-2-terengganu-130822220727-phpapp02
156679855 matematik-2-terengganu-130822220727-phpapp02Sofia Mahmood
 
105317254 100-f2-math-140601233425-phpapp02
105317254 100-f2-math-140601233425-phpapp02105317254 100-f2-math-140601233425-phpapp02
105317254 100-f2-math-140601233425-phpapp02Sofia Mahmood
 
2014 percubaanmathsupsrskemapenang-140724221211-phpapp02
2014 percubaanmathsupsrskemapenang-140724221211-phpapp022014 percubaanmathsupsrskemapenang-140724221211-phpapp02
2014 percubaanmathsupsrskemapenang-140724221211-phpapp02Sofia Mahmood
 
2012 percubaanmatematikupsrtiadaskematerengganu-130524063039-phpapp02
2012 percubaanmatematikupsrtiadaskematerengganu-130524063039-phpapp022012 percubaanmatematikupsrtiadaskematerengganu-130524063039-phpapp02
2012 percubaanmatematikupsrtiadaskematerengganu-130524063039-phpapp02Sofia Mahmood
 
2012 percubaanmatematikupsrtiadaskematerengganu-130524063039-phpapp02
2012 percubaanmatematikupsrtiadaskematerengganu-130524063039-phpapp022012 percubaanmatematikupsrtiadaskematerengganu-130524063039-phpapp02
2012 percubaanmatematikupsrtiadaskematerengganu-130524063039-phpapp02Sofia Mahmood
 

More from Sofia Mahmood (18)

lowest common factor
lowest common factorlowest common factor
lowest common factor
 
percubaan spm perak
percubaan spm perakpercubaan spm perak
percubaan spm perak
 
upsr matematik (A)
upsr matematik (A)upsr matematik (A)
upsr matematik (A)
 
Greatest common factor(FSTB)
Greatest common factor(FSTB)Greatest common factor(FSTB)
Greatest common factor(FSTB)
 
Peruncingan4 130904060748-140216080750-phpapp01
Peruncingan4 130904060748-140216080750-phpapp01Peruncingan4 130904060748-140216080750-phpapp01
Peruncingan4 130904060748-140216080750-phpapp01
 
Unit8mass 121015084639-phpapp02
Unit8mass 121015084639-phpapp02Unit8mass 121015084639-phpapp02
Unit8mass 121015084639-phpapp02
 
Paper 1 julai 2011
Paper 1 julai 2011Paper 1 julai 2011
Paper 1 julai 2011
 
Final 2008 math f2 paper 2
Final 2008 math f2 paper 2Final 2008 math f2 paper 2
Final 2008 math f2 paper 2
 
Factor list prime.pl
Factor list prime.plFactor list prime.pl
Factor list prime.pl
 
Factor list all.pl
Factor list all.plFactor list all.pl
Factor list all.pl
 
Greatest common factor.pl
Greatest common factor.plGreatest common factor.pl
Greatest common factor.pl
 
add math form 4/5
add math form 4/5add math form 4/5
add math form 4/5
 
156679855 matematik-2-terengganu-130822220727-phpapp02
156679855 matematik-2-terengganu-130822220727-phpapp02156679855 matematik-2-terengganu-130822220727-phpapp02
156679855 matematik-2-terengganu-130822220727-phpapp02
 
105317254 100-f2-math-140601233425-phpapp02
105317254 100-f2-math-140601233425-phpapp02105317254 100-f2-math-140601233425-phpapp02
105317254 100-f2-math-140601233425-phpapp02
 
2014 percubaanmathsupsrskemapenang-140724221211-phpapp02
2014 percubaanmathsupsrskemapenang-140724221211-phpapp022014 percubaanmathsupsrskemapenang-140724221211-phpapp02
2014 percubaanmathsupsrskemapenang-140724221211-phpapp02
 
2012 percubaanmatematikupsrtiadaskematerengganu-130524063039-phpapp02
2012 percubaanmatematikupsrtiadaskematerengganu-130524063039-phpapp022012 percubaanmatematikupsrtiadaskematerengganu-130524063039-phpapp02
2012 percubaanmatematikupsrtiadaskematerengganu-130524063039-phpapp02
 
UPSR JOHOR 2010
UPSR JOHOR 2010UPSR JOHOR 2010
UPSR JOHOR 2010
 
2012 percubaanmatematikupsrtiadaskematerengganu-130524063039-phpapp02
2012 percubaanmatematikupsrtiadaskematerengganu-130524063039-phpapp022012 percubaanmatematikupsrtiadaskematerengganu-130524063039-phpapp02
2012 percubaanmatematikupsrtiadaskematerengganu-130524063039-phpapp02
 

Chapter1 functions

  • 1. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 1 CHAPTER 1- FUNCTIONS 1.1 RELATIONS 1.1.1 Representing Relations 1- By Arrow Diagram One to one relation x x + 2 Many to one relation x x2 2- By Ordered Pair (1, 3), (2, 4), (3, 5) (1, 4), ( −2, 4), (3, 9), ( −3, 9) 3. By Graph y (Image) 4 X 3 X 0 1 2 x (object) One to many relation x x Many to many relation 360 min 3600 sec 60 sec 0.25 day 6 hours 1 min 2160 sec 1 hour −2 2 3 −3 4 9 1 2 3 3 4 5 2 −2 3 −3 4 9
  • 2. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 2 domain codomain A B Set A is called domain of the relation and set B is the codomain. Each of the elements in the domain (Set A) is an object. So 1, 2 and 3 are called object. Each of the elements in the codomain (Set B) is an image. So 3, 4, 5 and 6 are called image. The set that contains all the images that are matched is the range. A B Domain={ 1,2,3 } codomain= {3,4,5,6} Object = 1, 2, 3 image = 3, 4, 5, 6 Range= {3, 4, 5} Object image 1.2 FUNCTIONS 1. Function is a special relation where every object in a domain has only one image. A function is also known as a mapping. 2. From the types of relation we have learned, only one to one relation and many to one relation are function. Function notation Small letter: f, g, h or something else… xxf 2: → Read as function f map x onto 2x Example: f : x 2x f(x) = 2x x = 1, f(1) = 2(1) = 2 1 2 3 3 4 5 6 object image Concept: xxf 2: → xxf 2)( = Look at the difference between these two.
  • 3. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 3 Example 1: 1. Given function 23: −→ xxf . Find (a) the image of –1 f(x)= 3x – 2 f(-1) = 3(– 1) – 2 = – 3 – 2 = – 5 (b) object which has the image 4 f(x) = 3x – 2 Given that the image is 4, So f(x) = 4 Compare and , Hence, 3x – 2 = 4 3x = 6 x = 2 2. Given that f(x) = px + 3 and f(4)= 5. Find the value of p. f(x) = px + 3 If x=4, f(4)= 4p + 3 f(4)= 5 Compare and , Hence, 534 =+p 24 =p 2 1 =p If the given is object, so we are going to find the value of image. -1 is the object because we have to find the value of its image. If the given is image, so we are going to find the value of object. 4 is the image because we have to find the value of its object. 1 2 1 2 1 2 1 2 From the information given, we know that 4 is the object and 5 is the image. The both function is compared because they are under the same function or in other way there are having the same object which is 4. So the value of p can be calculated. Remember the concept: f : x 3x – 2 then f(x)= 3x – 2 and when x= –1, f(-1) = 3(– 1) – 2
  • 4. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 4 Example 2: The function g is defined by mx x xg + = 2 )( If g(5) = 3g(2), find the value of m. Hence, find: (a) image of 4. (b) the value of x such that the function g is undefined. Answer: g(5) = 3g(2) 60 + 12m = 20 + 10m 2m = - 40 m = -20 (a) 204 )4(2 )4( − =g = 2 1 − (b) 020 =−x 20=x EXERCISE 1.2 1. Given function f is defined by 45)( −= xxf . Find the value of x if 14)( −=xf . 2. Given that 32)( −= xxf . Find the image of 5. 3. Given that function f such that 4 32 )( − − = x x xf . (i) The image of 5. (ii ) the value of x such that the function f is undefined 4. Given the function h such that 132)( 2 ++= kxxxh and 9)1( =h . Find the value of k. 5. Given the function 13: +→ xxf , find (a) the image of 2, (b) the value of x if f(x) = x. 6. Given the function 34: +→ xxw , find the value of p such that 23)( =pw . 7. Given the function 52: −→ xxn . Find the value of k at which kkn =)( . mm ++ = 2 )2(2 5 )5(2 .3 m g + = 5 )5(2 )5( and m g + = 5 )2(2 )2( . Replace g(5) with m+5 )5(2 and g(2) with m+5 )2(2 . Any number that is divided by zero will result undefined or infinity. The value of denominator cannot equal to zero because it would cause the solution becomes undefined or infinity. To find the value of x to make the function undefined, the denominator must be equal to zero.
  • 5. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 5 1.3 COMPOSITE FUNCTIONS A f:x 3x B g:x x2 C gf(x) = g[f(x)] gf = g(3x) = (3x)2 Example 1: Given function 1: +→ xxf and xxg 3: → . Find the composite function gf. f(x) = x + 1 g(x) = 3x gf(x) = g[f(x)] = g(x +1) = 3(x +1) Hence, gf: x 3(x +1) Example 2: The following information refers to the functions f and g. Find (a) the value of k, (b) fg(x). x 1 2 3x 3 6 (3x)2 9 36 The figure shows Set A, B and C. The combined effect of two functions can be represented by the function gf(x) and not fg(x). This is because the range of f has become the domain of function g or f(x) becomes the domain of function g. This is f(x) which has become the object of function g The concept is: f(x) = 3x f(k) = 3(k) f(3) = 3(3) f[g(x) ]= 3g(x) (x +1) has become the object of function g which is replacing x. [g(x)=3x and g(x+1)=3(x+1)]. When x in the object is replaced by (x+1) so x in the image is also replaced by (x+1) and become 3(x+1). We can also expand the expression and becomes 3x + 3. Replace f(x) with its image which is (x +1) kx x xg xxf ≠ − → −→ , 1 4 : 32:
  • 6. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 6 Solution: In Form One we have learned that any number that divided by zero will result infinity or undefined. For part (a), if there is given an expression which is a fraction there must be given an information that the value of unknown in the denominator that it cannot be. For example, 2, 2 : ≠ − → x x h xg . The part of denominator is 2−x . If 2=x , the denominator would be 0 and the solution will be undefined or infinity. So x cannot equal to 2. For the question above, we know that x cannot equal to 1 because if 1=x ,the denominator would be 0 and the solution will be undefined or infinity. It is given that kx ≠ . We already know that 1≠x . So compare these two equations and it would result 1=k . So 1 is the answer for part (a) For part (b), f(x)=2x – 3 and) 1, 1 4 )( ≠ − = x x xg fg(x) = f[g(x)] = ) 1 4 ( −x f = 2 ) 1 4 ( −x - 3 = 1 8 −x - 3 = 1 )1(3 1 8 − − − − x x x = 1 )1(38 − −− x x = 1 338 − +− x x = 1 311 − − x x , 1≠x Example 3: The following information refers to the functions f and g. 2, 2 3 : 34: ≠ − → −→ x x xg xxf Replace g(x) with 1 4 −x f(x)=2x – 3 , ) 1 4 ( −x f = 2 ) 1 4 ( −x - 3
  • 7. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 7 Find (a) the value of gf(1) (b) f2 Solution: For part (a), at first we have to find gf(x). Given xxf 34)( −= and 2, 2 3 )( ≠ − = x x xg gf(x)= g[f(x)] = g(4 – 3x) = 2)34( 3 −− x = x32 3 − gf(x)= 3 2 , 32 3 ≠ − x x gf(1)= )1(32 3 − = 32 3 − = 1 3 − = 3− For part (b), f2 means ff. Given xxf 34)( −= ff(x)= f[f(x)] = f ]34[ x− = )34(34 x−− = x9124 +− = 89 −x 89)(2 −= xxf Replace f(x) with x34 − 2 3 )( − = x xg 2)34( 3 )34( −− =− x xg Replace f(x) with x34 − xxf 34)( −= , f ]34[ x− = )34(34 x−−
  • 8. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 8 1.3.1 Determining one of the function in a given composite function (1)The following information refers to the functions f and fg. Find function g. Solution: Given 32)( −= xxf and 1, 1 311 )( ≠ − − = x x x xfg If 32)( −= xxf , If 32)( −= yyf So 3)]([2)]([ −= xgxgf 3)]([2)( −= xgxfg Given 1, 1 311 )( ≠ − − = x x x xfg . Compare the two equations. Hence, 1 311 3)]([2 − − =− x x xg 3 1 311 )]([2 + − − = x x xg 1 )1(3 1 311 )]([2 − − + − − = x x x x xg 1 )1(3311 )]([2 − −+− = x xx xg 1 33311 )]([2 − −+− = x xx xg 1 8 )]([2 − = x xg )1(2 8 )]([ − = x xg 1, 1 311 : 32: ≠ − − → −→ x x x xfg xxf Remember the concept… f(x) = 2x – 3 f(k) = 2k – 3 f(3) = 2(3) – 3 f[g(x)]= 2g(x) – 3 Simplify 8 and 2
  • 9. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 9 1 4 )( − = x xg Hence 1, 1 4 : ≠ − → x x xg (2) The following information refers to the functions f and fg. Find function f. Solution: 1 311 1 4 1 311 )]([ − − =      − − − = x x x f x x xgf Let y x = −1 4 yxy −=4 yxy += 4 y y x + = 4 Substitute and into , 1 4 ) 4 (311 )( − + + − = y y y y yf = y y y y y y − + + − 4 ) 312 (11 1, 1 311 : 1 4 : ≠ − − → − → x x x xfg x xg 1, 1 311 : 1 4 : ≠ − − → − → x x x xfg x xg 2 3 1 2 3 1 Convert 1 to a fraction
  • 10. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 10 = y yy y y y y −+ − − 4 31211 = y y yy 4 31211 −− = y y y 4 128 − = 4 128 y y y × − = 32 −y 32)( −= yyf 32)( −= xxf EXERCISE 1.3 1. Function f and gf are given as 2 1 )( + = x xf and 23)( += xxgf respectively. Find function g. 2. Given xxf 35)( −= and xxg 4)( = . Find function fg. 3. Given 6)( −= xxgf and 34)( −= xxg . Find (i) function f (ii) function fg 4. Given the function xxw 23)( −= and 1)( 2 −= xxv , find the functions (a) wv (b) vw 5. Given the function 2: +→ xxw and kx x x xv ≠ − − → , 1 12 )( , (a) state the value of k (b) find (i) wv(x) (ii) vw(x) Simplify It means y y 128 − divided by y 4
  • 11. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 11 1.4 INVERSE FUNCTIONS If yxf =)( then xyf =− )(1 A B Example 1 x 3x + 1 Given 13: +→ xxf If x=1, 1)1(3)1( +=f = 13 + = 4 Hence, 4)1( =f x 3x +1 So, 3 1−y y f-1 (4) = 1 3 1−x x let yx =+13 13 −= yx 3 1− = y x f-1 (y) 3 1− = y f-1 (x) 3 1− = x f-1 (4) 3 14 − = = 1 41 X Y Inverse function 1− f f 1 ≠ Tips… 1− f f 1− f f
  • 12. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 12 1.4.1 Determining the inverse function Example 1: Given 2, 2 5 : ≠ − → x x xg . Determine the inverse function 1− g . Solution: let y x = − 2 5 52 =− yxy yxy 25 += y y x 25 + = y y yg 25 )(1 + =− 0, 25 )(1 ≠ + =− x x x xg Example 2: The function f is defined by xxf 43: −→ . Find f-1 (-5) Method 1 Let yx =− 43 yx −= 34 4 3 y x − = 4 3 )(1 y yf − =− 4 3 )(1 x xf − =− 4 )5(3 )5(1 −− =−− f 4 8 = 1
  • 13. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 13 2)5(1 =−− f Method 2 We know that And x 3 - 4x Hence, 543 −=− x 534 +=x 84 =x 2=x So, 2)5(1 =−− f EXERCISE 1.4 1. Given xxf 35)( −= and xxg 4)( = . Find (i) the value of )4(1 −− f (ii) the value of )4()( 1 −− gf 2. Given xxg 35)( −= and xxgf 4)(1 =− . Find function f. 3. Given 6)( −= xxgf and 34)( −= xxg . Find (i) 1 )( − gf (ii ) the value of )2(fg 4. Given 1, 1 2 : ≠ − → x x x xf , (a) find the function 1− f (b) state the value of x such that 1− f does not exist. 5. Show that the function 1, 1 : ≠ − → x x x xf , has an inverse function that maps onto its self. 6. If 2: −→ xxh , find the value of p given that 8)(1 =− ph . 2 image xxf 43)( −= yf =−− )5(1 image y -5
  • 14. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 14 1.5 ABSOLUTE FUNCTION Absolute function means the value of image is always positive because of the modulus sign. Given xxg −→ 2: and y= ( )g x .Find the value of y if 3=x y= ( )g x = |)3(| g = |32| − = |1| − = 1 1.5.1 Graph of absolute function Example: Given xxf −= 2)( and |)(| xfy = . Sketch the graph of |)(| xfy = for the domain 0≤ x ≤ 6. Hence state the corresponding range of y. |)(| xfy = |2| x−= Minimum value of y=0 When 2-x = 0 (2, 0) X=2 i) x = 0 y |02| −= |2|= (0, 2) 2= ii) ) x = 6 y |62| −= |4| −= (6 , 4) 4= Then, sketch the graph using the points. This is called modulus. Any value in the modulus would be positive. If the number is positive, it remains positive but it is negative it would change to positive when remove the modulus sign. Minimum value of y must be zero because of absolute value cannot be negative so the minimum it could be is zero. Replace g(x) with is x−2 Replace f(x) with its image which is x−2
  • 15. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 15 Y 5 4 3 |)(| xfy = 2 1 0 x 1 2 3 4 5 6 Hence, the corresponding range of y is 0≤ y ≤ 4 :: Some important information to be understood :: 1. Concept Of Solving Quadratic Equation by factorization 0432 =−− xx 0)4)(1( =−+ xx 01 =+x or 04 =−x 1−=x or 4=x Example: Given xxxf 52)( 2 −= . Find the possible values of k such that kf =− )3(1 x 2x2 – 5x Solution: kf =− )3(1 Hence, 352 2 =− xx 0352 2 =−− xx 0)3)(12( =−+ xx Range of x Range of y 3 To make a product equal to zero, one of them or both must be equal to zero. We do not know either x-1 is equal to zero or x-4 equal to zero so that is why we use the word ‘or’ not ‘and.’ The general form of quadratic equation is 02 =++ cbxax . To factorize and use the concept, the equation must be equal to zero. k image object
  • 16. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 16 012 =+x or 03 =−x 2 1 −=x or 3=x 2 1 )3(1 −=− f or 3)3(1 =− f Given that kf =− )3(1 2 1 −=k or 3=k 2. Concept of Square root and any root which is multiple of 2 In lower secondary we have learned that if x2 = 4 then x = 2. Actually the right answer for it is not 2 but 2± ( 2± is +2 and -2). This is because if (2)2, the answer is 4 and if (-2)2 , the answer is also 4. So the square root of 4 is 2± . It is also the same for fourth root, sixth root and so on. But in certain situation, the answer will be only one. Example: Solve the equation 644 2 =x . Solution: 4 16 644 2 2 ±= = = x x x 3. Comparison method Example: Given the functions 2, 2 : ≠ − → x x h xg and 0, 12 :1 ≠ + →− x x kx xg where h and k are constants, find the value of h and of k. Solution: From the information given, we know that the method that we have to use to solve the question is comparison method. To make a product equal to zero, one of them or both must be equal to zero. We do not know either 2x+1 is equal to zero or x-3 equal to zero so that is why we use the word ‘or’ not ‘and.’
  • 17. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 17 First, we have to find the inverse function of g. Let y x h = − 2 hyyx =− 2 yhyx 2+= y yh x 2+ = y yh yg 2 :1 + →− 0, 2 :1 ≠ + →− x x xh xg Given that 0, 12 :1 ≠ + →− x x kx xg Both of them are inverse function of g. So compare and , 0, )( )2()( :1 ≠ + →− x x xh xg 0, )( )()12( :1 ≠ + →− x x xk xg Hence , 12=h and 2=k 1 2 1 2
  • 18. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 18 CHAPTER REVIEW EXERCISE 1. Diagram 1 shows the relation between set J and set K. DIAGRAM 1 State (a) the codomain of the relation, (b) the type of the relation. 2. Diagram 2 shows the graph of the function y = f(x). It is given that f(x)= ax + b. Find (a) the value of a and of b, (b) the value of m if m is mapped onto itself under the function f, (c) the value of x if f -1 (x) = f 2 (x). 3. Function h is given as ., 1 4 )( kx x kx xh ≠ − − = Find the value of k. 4. Given function 5)( += hxxg and , 2 )(1 kx xg + =− find the values of h and k. 5. Given 2, 2 3 : ≠ − → x x xg . Find the values of x if xxg =)( . 1• 2• •2 •4 •6 •8 •10 Set J Set K 1 3 11 23 x y y= f(x) O DIAGRAM 2
  • 19. Additional Mathematics Module Form 4 Chapter 1- Functions SMK Agama Arau, Perlis Page | 19 6. Functions f and g are defined by hxxf −→ 3: and 0,: ≠→ x x k xg , where h and k are constants. It is given that f −1 (10) = 4 and fg(2) = 16. Find the value of h and of k. 7. Given that 23)( −= xxf and 1)( 2 −= xxfg , find (i) the function g (ii) the value of gf(3) 8 Given 22)( += xxf and |)(| xfy = . Sketch the graph of |)(| xfy = for the domain 0≤ x ≤ 4. Hence state the corresponding range of y. 9. Given that function h is defined as 12: +→ pxxh . Given that the value of 3 maps onto itself under the function h, find (a) the value of p (b) the value of )2(1 −− hh 10. Given that the functions 12)( −= xxh and qpxxhh +=)( , where p and q are constants, calculate (a) the value of p and q (b) the value of m for which mh 2)1( =− 11. Function g and composite function fg are defined by 3: +→ xxg and 76: 2 ++→ xxxfg . (a) Sketch the graph of y = ( )g x for the domain −5≤ x ≤ 3. (b) Find f(x). 12. Given quadratic function 2 ( ) 2 3 2g x x x= − + . find (a) g(3), (b) the possible values of x if 22)( =xg 13. Functions f and g are given as 2 : xxf → and qpxxg +→: , where p and q are constants. (a) Given that )1()1( gf = and )5()3( gf = , find the value of p and of q. (b) By using the values of p and q obtained in (a), find the functions (i) gg (ii) 1− g 14. If 63)( −= xxw and 16)( −= xxv , find (a) )(xwv (b) the value of x such that xxwv =− )2( . 15. Given 63)( −= xxf . Find the values of x if 3)( =xf .