Anzeige

Más contenido relacionado

Presentaciones para ti(20)

Similar a Mesoscon 2015(20)

Anzeige

Mesoscon 2015

  1. Mesos  @  Bloomberg MesosCon  2015
 Skand  S  Gupta
 Bloomberg  LP
  2. Bloomberg • Bloomberg  technology  helps  drive  the  world’s  financial  markets   – We  run  one  of  the  world’s  largest  private  network  with  over  20,000   routers  across  our  network   – We  developed  “cloud  computing”  and  deployed  “software  as  a  service”   well  ahead  of  the  general  marketplace   – Our  technology,  has  brought  transparency  to  the  global  financial  markets   • Bloomberg  technologists   – More  than  3,000  software  developers  and  designers  located  around  the   world  (London,  NYC,    SF)   – BloombergLabs.com  (@BloombergLabs)  is  our  platform  for  dialogue   between  our  experts  and  the  broader  tech  community     • Our  clients   – Over  320,000  subscribers   – Primarily  financial  professionals  including  investment  bankers,  CFOs,   investor  relations,  hedge  funds  managers,  foreign  exchange,  etc. Copyright 2015 Bloomberg L.P.
  3. Banks Reported Flawed Interest Data for LIBOR
 (WSJ) 2008
  4. LIBOR • Impacts  consumer  lending  such  as  mortgages,  student  loans,  etc.    (LIBOR  +   ~3%)     • $450  Trillion  worth  of  financial  deals  are  dependent  on  it • Measure  of  trust  in  financial  system  
  5. Banks Reported Flawed Interest Data for LIBOR
 (WSJ) 2008 CFTC Orders Barclays to Pay $200 Million Fine
 (CFTC) 2012
  6. Banks Reported Flawed Interest Data for LIBOR
 (WSJ) 2008 CFTC Orders Barclays to Pay $200 Million Fine
 (CFTC) 2012 Deutsche Bank Pays $2.5 Billion to Settle Rate- Rigging Case
 (NYT) 2015
  7. Banks Reported Flawed Interest Data for LIBOR
 (WSJ) 2008 CFTC Orders Barclays to Pay $200 Million Fine
 (CFTC) 2012 Deutsche Bank Pays $2.5 Billion to Settle Rate- Rigging Case
 (NYT) 2015 Fines  Totaling  $6  Billion!
  8. Source:  Commodity  Futures  Trading  Commission “The  Cartel”
  9. Compliance  Platform  and  Processing  Pipeline   Chat Reference Data Trade Data Customer Data Product Data Market Data Counterparty Email Social Media Voice Human-­‐  and  Machine-­‐ generated  Data Surveillance   Pipeline Communication   Data Transactional   Data User   Data Case   Management Compliance  Platform Compliance  Storage Compliance   Officers Search,   Review,   Analyze
  10. Work  Loads  –  Complex  Event  Processing Policies •Real  Time  Low  Latency   Processing   •CPU  bound  
  11. Work  Loads  –  Text  Searches Text Index Tokens •Distributed   •Memory  bound  
  12. Work  Loads  –  Analytics  &  Reporting •Ad  Hoc   •Distributed   •Reporting:  I/O  bound     •Analytics:  CPU  bound
  13. Work  Loads Policies • Real  Time  Low   Latency  Processing   • CPU  bound     Text Index Tokens • Distributed   • Memory  bound     • Ad  Hoc   • Distributed   • Reporting:  I/O  bound     • Analytics:  CPU  bound  
  14. Complex  Event  Processing Before  Mesos Text  Search Reporting  &  Analytics Lights  up  during  market  hours Idle,  till  its  not! Can’t  get  enough
 resources
  15. Before  Mesos Complex  Event  Processing Text  Search Reporting  &  Analytics • Time  consuming  to  re-­‐size  a  static  cluster • Wasted  resources • Operational  overhead
  16. Kafka Processing
  Topologies Mesos   Elastic  Data  Processing  and  Analytics  Stack Open  REST  API  (Play) Pre-­‐fabricated  Hardware Applications HDFS Service  Discovery Marathon StormChronos Accumulo Monitoring
  17. Marathon Slave Proxy Bridge HA Proxy SVC 1 SVC 2 Slave Proxy Bridge HA Proxy SVC 1 SVC 3 Service  Discovery  (Mesosphere  Implementation) • Only  works  with  Marathon • No  support  for  multiple  Marathons   • Services  not  running  on  Mesos   • How  do  clients  discover  global  port  in  Marathon?     • How  do  external  clients  discover  services  running  on  Mesos?
  18. Marathon Marathon HDFS Zookeeper SD Python Endpoint SD REST Endpoint Client Slave Proxy Bridge HA Proxy SVC 1 SVC 2 Slave Proxy Bridge HA Proxy SVC 1 SVC 3 Service  Discovery  Modifications DNS
  19. Master Master Monitoring  Applications Master
  20. Master Master Master Monitoring  Applications
  21. Monitoring  Applications Master Master Master • Log  aggregation   • Application  statistics     • Alerting!
  22. Mesos Slave Log Shipper App1 App2 App3 StatsD CollectD Master Master Master Monitoring  Applications
  23. Mesos Slave Log Shipper App1 App2 App3 StatsD CollectD Master Master Master Monitoring  Applications
  24. Mesos Slave Log Shipper App1 App2 App3 StatsD CollectD Kafka Master Master Master Monitoring  Applications
  25. Mesos Slave Log Shipper App1 App2 App3 StatsD CollectD Kafka Master Master Master ELK Monitoring  Applications
  26. Mesos Slave Log Shipper App1 App2 App3 StatsD CollectD Kafka Master Master Master ELK Monitoring  Applications
  27. Mesos Slave Log Shipper App1 App2 App3 StatsD CollectD Kafka Master Master Master ELK InfluxDB Grafana Monitoring  Applications
  28. Mesos Slave Log Shipper App1 App2 App3 StatsD CollectD Kafka Master Master Master ELK InfluxDB Grafana Monitoring  Applications
  29. Mesos Slave Log Shipper App1 App2 App3 StatsD CollectD Kafka Master Master Master ELK InfluxDB Grafana Riemann Alerting Monitoring  Applications
  30. Access  Control   • Applications  deployed  via  Marathon   • Give  the  power  to  users  to  deploy  when  they  want   and  what  they  want   • Isolate  core  services  from  accidents     • Isolate  user  applications Marathon Kafka Accumulo Policy Engine
  31. Access  Control  -­‐  Deploying  Application Password W/ SSL MarathonReverse Proxy Key Store 1. Launch App 2. Store AppKey 3. Launch App 4. AppKey
  32. Access  Control Password W/ SSL MarathonReverse Proxy Key Store 1. Update <AppKey> 2. Check Access <AppKey> 3. Update App 4. Success / Failure
  33. Access  Control Password W/ SSL Marathon Reverse Proxy Key Store Manage Apps NimbusManage Topologies
  34. Lessons • Protect  your  Zookeeper  cluster(s)   • Don’t  run  HDFS  on  Mesos  in  your  first  deployment   • Understand  the  back-­‐off  factor  in  Marathon   – https://github.com/mesosphere/marathon/issues/1504   • Clean  up  the  sandboxes  periodically  (and  frequently)   • Build  a  monitoring  infrastructure  for  applications   • Run  multiple  clusters   • Mesos  is  very  stable!
  35. http://careers.bloomberg.com   sgupta178@bloomberg.net
 @skandsg We  Are  Hiring!
Anzeige