Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×

Analysis by shloka

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Nächste SlideShare
Franchisee Business Proposal
Franchisee Business Proposal
Wird geladen in …3
×

Hier ansehen

1 von 22 Anzeige

Weitere Verwandte Inhalte

Diashows für Sie (20)

Ähnlich wie Analysis by shloka (20)

Anzeige

Aktuellste (20)

Anzeige

Analysis by shloka

  1. 1. A PREDICTIVE ANALYTICS PRIMER A N A L Y S I S B Y S H L O K A
  2. 2. B Y T H O M A S H . D A V E N P O R T A N A L Y S I S B Y S H L O K A
  3. 3. P r e d i c t i v e a n a l y t i c s i s t h e b r a n c h o f t h e a d v a n c e d a n a l y t i c s w h i c h i s u s e d t o m a k e p r e d i c t i o n s a b o u t u n k n o w n f u t u r e e v e n t s . P R E D I C T I V E A N A L Y T I C S
  4. 4. P r e d i c t i v e a n a l y t i c s u s e s m a n y t e c h n i q u e s f r o m d a t a m i n i n g , s t a t i s t i c s , m o d e l i n g , m a c h i n e l e a r n i n g , a n d a r t i f i c i a l i n t e l l i g e n c e t o a n a l y z e c u r r e n t d a t a t o m a k e p r e d i c t i o n s a b o u t f u t u r e .
  5. 5. 2 1 K n o w w h e r e y o u ’ r e l i k e l y t o b e i n t h e f u t u r e . I d e n t i f y d i f f e r e n t g r o u p s o f c u s t o m e r s f o r t a r g e t e d a n a l y s i s a n d p r e c i s i o n m a r k e t i n g . W H Y D O W E N E E D P R E D I C T I V E A N A L Y T I C S ?
  6. 6. 4 3 A n a l y z e y o u r d a t a t o p r e d i c t i n d i v i d u a l o r g r o u p b e h a v i o r . Q u a n t i f y t h e r i s k a s s o c i a t e d w i t h c u s t o m e r s o r a c q u i s i t i o n s . W H Y D O W E N E E D P R E D I C T I V E A N A L Y T I C S ?
  7. 7. Q u a n t i t a t i v e a n a l y s i s i s n ’ t m a g i c — b u t i t i s n o r m a l l y d o n e w i t h a l o t o f p a s t d a t a , a l i t t l e s t a t i s t i c a l w i z a r d r y , a n d s o m e i m p o r t a n t a s s u m p t i o n s . ITS NOT MAGIC!
  8. 8.   T H A T C A N M A K E L I F E E A S I E R O R   T O U G H ! E L E M E N T S
  9. 9. I T S T A R T S W I T H D A T A It is imperative that any advanced analytics are based on stable and accurate information. Therefore, there's huge focus on sound data management to ensure all data is properly scrubbed and validated prior to analysis. 01
  10. 10. I T S T A R T S W I T H D A T A Lack of good data is the most common barrier to organisations seeking to employ predictive analytics. If you have multiple channels, it is imperative that they capture data on customer purchases in the same way your previous channels did. 01
  11. 11. I T S T A R T S W I T H D A T A it’s a fairly tough job to create a single customer data warehouse with unique customer IDs on everyone, and all past purchases customers have made through all channels. If you’ve already done that, you’ve got an incredible asset for predictive customer analytics. 01
  12. 12. P r e d i c t i v e a n a l y t i c s e n c o m p a s s e s a h o s t o f t o o l s a n d t e c h n i q u e s t o a c h i e v e y o u r s p e c i f i c g o a l s a n d i n c r e a s e y o u r k n o w l e d g e . 02 T H E S T A T I S T I C S
  13. 13. P R E D I C T I V E A N A L Y T I C S T O O L S A N D T E C H N I Q U E S
  14. 14. R E G R E S S I O N A N A L Y S I S I N I T S V A R I O U S F O R M S I S T H E P R I M A R Y T O O L An analyst hypothesizes that a set of independent variables are statistically correlated with the purchase of a product for a sample of customers. The analyst performs a regression analysis to see just how correlated each variable is and finds that each variable in the model is important. The analyst can then use the regression coefficients to create a score predicting the likelihood of the purchase. T H E S T A T I S T I C S
  15. 15. E v e r y m o d e l h a s t h e m , a n d i t ’ s i m p o r t a n t t o k n o w w h a t t h e y a r e a n d m o n i t o r w h e t h e r t h e y a r e s t i l l t r u e . 04 A S S U M P T I O N
  16. 16. S i n c e f a u l t y o r o b s o l e t e a s s u m p t i o n s c a n c l e a r l y b r i n g d o w n w h o l e b a n k s a n d e v e n ( n e a r l y ! ) w h o l e e c o n o m i e s , i t ’ s p r e t t y i m p o r t a n t t h a t t h e y b e c a r e f u l l y e x a m i n e d .   A S S U M P T I O N
  17. 17. M a n a g e r s s h o u l d a l w a y s a s k a n a l y s t s w h a t t h e k e y a s s u m p t i o n s a r e , a n d w h a t w o u l d h a v e t o h a p p e n f o r t h e m t o n o l o n g e r b e v a l i d . A n d b o t h m a n a g e r s a n d a n a l y s t s s h o u l d c o n t i n u a l l y m o n i t o r t h e w o r l d t o s e e i f k e y f a c t o r s i n v o l v e d i n a s s u m p t i o n s m i g h t h a v e c h a n g e d o v e r t i m e . A S S U M P T I O N
  18. 18. I f y o u r m o d e l w a s c r e a t e d s e v e r a l y e a r s a g o , i t m a y n o l o n g e r a c c u r a t e l y p r e d i c t c u r r e n t b e h a v i o u r . T h e g r e a t e r t h e e l a p s e d t i m e , t h e m o r e l i k e l y c u s t o m e r b e h a v i o u r h a s c h a n g e d .   A R E A S O N S F O R I N V A L I D A S S U M P T I O N S A: TIME
  19. 19. N e t f l i x p r e d i c t i v e m o d e l s t h a t w e r e c r e a t e d o n e a r l y I n t e r n e t u s e r s ( t e c h n i c a l l y - f o c u s e d a n d y o u n g ) h a d t o b e r e t i r e d b e c a u s e l a t e r I n t e r n e t u s e r s ( e s s e n t i a l l y e v e r y o n e ) w e r e d i f f e r e n t .  A R E A S O N S F O R I N V A L I D A S S U M P T I O N S A: TIME
  20. 20. P r e d i c t i v e m o d e l ’ s a s s u m p t i o n s m a y n o l o n g e r b e v a l i d i s i f t h e a n a l y s t d i d n ’ t i n c l u d e a k e y v a r i a b l e i n t h e m o d e l , a n d t h a t v a r i a b l e h a s c h a n g e d s u b s t a n t i a l l y o v e r t i m e . A R E A S O N S F O R I N V A L I D A S S U M P T I O N S B: MISSING KEY VARIABLE
  21. 21. A R E A S O N S F O R I N V A L I D A S S U M P T I O N S B: MISSING KEY VARIABLE T h e f i n a n c i a l c r i s i s o f 2 0 0 8 - 9 , c a u s e d l a r g e l y b y i n v a l i d m o d e l s p r e d i c t i n g h o w l i k e l y m o r t g a g e c u s t o m e r s w e r e t o r e p a y t h e i r l o a n s . T h e m o d e l s d i d n ’ t i n c l u d e t h e p o s s i b i l i t y t h a t h o u s i n g p r i c e s m i g h t s t o p r i s i n g o r t h e y m i g h t f a l l . I n e s s e n c e , t h e f a c t t h a t h o u s i n g p r i c e s w o u l d a l w a y s r i s e w a s a h i d d e n a s s u m p t i o n .
  22. 22. A S K Q U E S T I O N S C a n y o u t e l l m e s o m e t h i n g a b o u t t h e s o u r c e o f d a t a y o u u s e d i n y o u r a n a l y s i s ? A r e y o u s u r e t h e s a m p l e d a t a a r e r e p r e s e n t a t i v e o f t h e p o p u l a t i o n ? A r e t h e r e a n y o u t l i e r s i n y o u r d a t a d i s t r i b u t i o n ? H o w d i d t h e y a f f e c t t h e r e s u l t s ? W h a t a s s u m p t i o n s a r e b e h i n d y o u r a n a l y s i s ? A r e t h e r e a n y c o n d i t i o n s t h a t w o u l d m a k e y o u r a s s u m p t i o n s i n v a l i d ? W H A T S H O U L D M A N A G E R S D O ?

×