Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×

DIP Syllabus.pdf

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Nächste SlideShare
Ip vi sem-vsj final
Ip vi sem-vsj final
Wird geladen in …3
×

Hier ansehen

1 von 2 Anzeige

Weitere Verwandte Inhalte

Ähnlich wie DIP Syllabus.pdf (20)

Weitere von ShivareddyGangam (20)

Anzeige

Aktuellste (20)

DIP Syllabus.pdf

  1. 1. School of Computer Sciences Department of Computer Science Name of the Academic Program: Master of Computer Applications (MCA) Course Code: PCATC30012 Title of the Course: Digital Image Processing L-T-P: 3+1+0=4 Credits: 4 Prerequisite Course / Knowledge (If any): ● Fundamental of Computer graphics and basic knowledge of python/Matlab. ● Students should have basic knowledge of mathematics. Course Outcomes (COs) After completion of this course successfully, the students will be able to CO-1. Review the fundamental concepts of a digital image processing system. (Level 2 Understand) CO-2. Analyze images in the frequency domain using various transforms. (Level 4 Analyze) CO-3. Apply the techniques for image enhancement and image restoration. (Level 3 Apply) CO-4. Use morphological techniques on images. (Level 3 Apply) CO-5. Employ image segmentation and representation techniques on images. (Level 3 Apply) Mapping of Course Outcomes (COs) with Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1 0 CO1 2 3 2 1 1 1 2 3 3 2 CO2 3 2 1 1 1 2 2 3 2 2 CO3 3 2 3 1 1 2 2 3 1 2 CO4 2 3 3 1 2 1 2 1 2 3 CO5 2 3 2 1 1 2 1 1 2 3 1/30
  2. 2. PCATC30012: Digital Image Processing Credits: 4 IA: 40 Marks Contact Hrs (L:T:P): 4 (3:1:0) End Exam: 60 Marks Unit 1 (15 hrs) Introduction: Digital image processing, Applications of digital image processing, Fundamental steps in digital image processing, and Components of an image processing system. Digital image fundamentals: Image sampling and quantization, some basic relationships between pixels, Linear and nonlinear operation. Unit 2 (15 hrs) Image enhancement in the spatial domain: Some basic gray level transformations, Histogram processing, Enhancement using arithmetic/logic operations, Basics of spatial filtering, Smoothing spatial filters, Sharpening spatial filters. Image enhancement in the frequency domain: Introduction to the Fourier transform and the frequency domain, Smoothing frequency domain filters, Sharpening frequency domain filters, homomorphic filtering. Unit 3 (15 hrs) Image restoration: A model of the image degradation/restoration process, Noise models, Restoration in the presence of noise only-spatial filtering, Periodic noise reduction by frequency domain filtering. Morphological image processing: Preliminaries, Dilation and erosion, Opening and closing, the hit-or-miss transformation, Some basic morphological algorithms. Unit 4 (15 hrs) Image segmentation: Detection of discontinuities, Edge linking and boundary detection, Thresholding, Region-based segmentation, Segmentation by morphological watersheds. Representation and description: Representation, Boundary descriptors, Regional descriptors, Use of principal components for description, Relational descriptors. Reference Books: 1. Rafael C. Gonzalez and Richard E. Woods (2008), Digital Image Processing, 3rd Edition, Pearson Education. 2. Milan Sonka, Vaclav Hlavac, Roger Boyle (2014), Image Processing, Analysis and Machine Vision, 4Th edition, Cengage Learning. 3. Anil K. Jain (1997), Fundamentals of Digital Image Processing, Prentice-Hall of India Pvt. Ltd. 4. Richard O. Duda, Peter E. Hart, David G. Stork (2008), Pattern Classification, 2nd Edition, John Wiley & sons. 2/30

×