Anzeige

Final Evaluation

Graduate Engineering Trainee at Green Power Pakistan um Green Power Pakistan
8. Jun 2016
Anzeige

Más contenido relacionado

Presentaciones para ti(20)

Anzeige

Similar a Final Evaluation(20)

Final Evaluation

  1. DESIGN ,FABRICATION & TESTING OF SOLAR PARABOLIC DISH CONCENTRATING SYSTEM Hamdard University Faculty of Engineering Sciences and Technology Hamdard Institute of Engineering Technology
  2. Project Members • Hafiz Shahroz Ali Khan BENG/S12/0106 • Farrukh Abid BENG/S12/0105 • Sajid Abbas BENG/S12/0114 Project Supervisor : Prof Dr Abdul Hameed Memon
  3. Potential Of Solar Energy Source : http://www.alhasan.com/sites/default/files/0001_57.png
  4. Solar energy Utilization
  5. Solar Thermal Energy • Solar thermal energy (STE) is a form of energy and a technology for harnessing solar energy to generate thermal energy or electrical energy. • Solar energy can be utilized by using both concentrating and non concentrating solar collectors. Concentrating collectors can be classified in major three types:  Parabolic trough  Power tower  Parabolic Dish • We are using Solar Parabolic dish collector in our project due to its high efficiency than other two types.
  6. Comparison Of Solar Concentrating Systems Parabolic Trough Dish / Engine Power tower Size 30- 320 MW 5-25 KW 10-200MW Operating Temperature 390 ºC 750 ºC 565 ºC Peak efficiency 20 % 29.4% 23% Technology Development Risk Low High Medium Hybrid Design Yes Yes Yes Annual Efficiency 11-16% 12-25% 7-20%
  7. Literature review  Experimental study of a parabolic solar concentrator by A.R.E.i Ouederni, AW Dashmani ,F Astri ,M ben Salah and S ben Nasarallah. In the experimental conditioned the temperature reaches an average value of 380 0C after 23 min which represents the heating time of the receiver.  Study on design of molten salt solar receivers for beam-down solar concentrator. H. Hasuike, Y. Yoshizawa, A. Suzuki. Solar Energy: 2006, 1255-1262 (i) The Solar Hybrid Fuel Project of Japan aimed to develop molten salt solar receivers with solar concentrators. (ii) The working fluid temperatures reached around 580°C and the solar cavity receiver designs were rated at an efficiency of 90% with thermal output of 100 MWth.
  8.  A solar concentrating photovoltaic / thermal collector Joseph Sydney Coventry June 2004 for the degree of Doctor of Philosophy at the Australian National University. • This thesis discusses aspects of a novel solar concentrating photovoltaic / thermal (PV/T)Collector that has been designed to produce both electricity and hot water.  Solar radiation studies at Karachi, Pakistan by Firoz Ahmed, Department of Physics university of Karachi. • The city of Karachi, on the average receives about 3,000 hours per year and nearly 8.3 hours per day, of bright useable sunshine. • Karachi being a coastal station has average relative humidity, greater than 65 % throughout the year. The exception months being July -August when the average relative humidity is high as 80 to 90 %. • The global solar radiation data Pakistan Meteorological Department , Quetta of the last 25 years gives an annual total 7000 MJm-2d-1 on the monthly average basis.
  9.  Design and development of a parabolic dish solar water heater by Ibrahim Ladan Mohammed. Mechanical engineering Department, college of Engineering Kaduna Polytechnic, Kaduna, Nigeria. • The design and development of a parabolic dish solar water heater for domestic hot water application (up to 100°C ) is described. • The heater is to provide 40 litres of hot water a day for a family of four. • Thermal efficiencies of 52% - 56% were obtained.  Design and Study of Portable Solar Dish Concentrator by Fareed .M.Mohamed, Autaf.S.Jassim, Etal. • The parabolic concentrator has high sun light reflectivity (up to 76%). • The high reflectivity of solar radiation increases water outlet temperature in receiver cavity. • Furthermore using designed –sun light tracking system increased the operation efficiency to 30 %.
  10. Project Goals • Design and Fabrication of laboratory scale dish type solar concentrator. • Study and Performance of dish type concentrator to investigate the effect of the following factors for its performance. a) Solar Insolation b) Concentration ratio c) To analyze the quality of steam to its potential for power generation.
  11. Pictorial View
  12. AutoCAD Drawing
  13. AutoCAD Drawing
  14. SUN EARTH RELATIONSHIP AND NECESSARY ANGLES
  15. -30 -20 -10 0 10 20 30 1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169 176 183 190 197 204 211 218 225 232 239 246 253 260 267 274 281 288 295 302 309 316 323 330 337 344 351 358 DeclinationAngle Day Of the Year Declination angle VS day of the year
  16. SOLAR CONSTANT • ISC is energy from the sun per unit area, per unit time receive on a unit area of surface perpendicular to the radiation in space, at the earth’s mean distance from the sun. In 1971 NASA weighted average value of Solar Constant is Isc= 1353 W/m2
  17. PROJECT ELEMENTS Parabolic Concentrator Parameters Diameter of single PDSC 0.9m Thickness of Mirror 5mm Area of single aperture 0.70606m2 Depth of parabola 0.05m Focal length 1.02m Refractive index of glass 1.5 Reflectivity of glass 8% Transmittance of glass 92% Reflectivity of AgNO3 97.5%
  18. Geometry of Paraboloid • The equation of Paraboloid z = • In cylindrical coordinate z = • Depth was calculated from h = • The surface area of parabola Aa = • Focal length was calculated from f = • CRG =
  19. Reflected Surface • In glass type solar concentrator reflection and refraction both occurs, when light intersect with soda-lime window glass it is reflected 8% assuming no absorbing • ρ+α+τ =1 • τ = 1- 0.08 τ = 0.92 = 92% • The refractive index of glass is 1.5. Reflectivity of silver is 97.5%
  20. Collector Efficiency • Optical or Collector efficiency ηo= . • Thermal energy produced by the solar collector is Qabs = Qin – Qloss • Heat transfer Qabs = Aa.ρs.m.αr. τc S.Ia ρs.m is specular reflectance of concentrator, τc is Transmittance of concentrator, S is shading factor of receiver, αr is absorbance of the receiver. ρs.m.αr. τc are the material dependent parameters these are remain constant.
  21. Receiver Parameters Material Copper Gauge 0.004m Receiving Diameter 0.2032m Band Diameter/Receiver Diameter 0.0889m Thickness 0.004m Effective area 0.068m2 Geometrical Concentration factors 10.38,20.76&31.15 Specific heat capacity of copper 0.385 kJ/kgK Thermal Conductivity 386W/mK Absorptivity 30% Emissivity 72% Internal Volume 600cm3 External Volume 788cm3 Height 0.127m Fluid Water Specific heat capacity of water 4.179 kJ/kgK Thermal coefficient of water 1065.5W/m2K
  22. RELATED FORMULAE • Volume Vabs= r2h • Area Aabs= + πdabsl • Copper is an opaque body τ =0 So, ρ+α =1 Uo = + +
  23. Mini Ball Valve Reducing Nipple Variable Valve Nozzle FITTINGS
  24. SPECIFICATION OF FITTINGS Name DN Size Wall thickness(mm) Type Weight(g) Female 90o Elbow 8 `` 1.2 SS-304-E90- 04 55 Female Tee 8 `` 1.2 SS-304-T-04 76 Hex Nipple 8 `` 1.2 SS-304-N-04 25 Round socket 8 `` 1.2 SS-304-S-04 20 Hex Head Plug 8 `` 1.2 SS-304-T-04 76 Hex Reducing Bush 8×6 ``× ’’ 1.2 SS-304-RB- 0402 14
  25. Reducer Concentric 8×6 ``× ’’ 1.2 SS-304-RS- 0402 26 3 Piece Union 8 `` 1.4 SS-304-UC- 04 88 Variable Valve 8 `` 1.25 ***** **** Mini Ball valve F×M 8 `` 1.25 PN 63 ***** Nozzle 6 ’’ 1.2 SS-304-HCN- 0202 17.5
  26. Micro Turbine
  27. Cost Concave Mirrors 16000 Supporting Stand 15500 Receiver 6875 Fittings 6575 Glass-wool 570 Pipe Insulation 300 Banding Tape 120 Paint 605 Instruments 7000 Pump 500 Battery 1000 Wiring 200 Turbine 1500 Total 56745
  28. EXPERIMENTAL SETUP Effects of solar concentration • Concentration Ratio increases thermal efficiency of the system. • At different concentration ratio desired temperature can be achieved. • Higher concentration ratio takes minimum / less time for steam production. • Concentration ratio rises the pressure of steam.
  29. • Geometric concentrating ratio CRG = • The testing is performed at different concentrating ratio by using 1, 2 and 3 collectors respectively: • Concentrating Ratio: 10.38 • Concentrating Ratio: 20.76 • Concentrating Ratio: 31.15
  30. CR:10.38, water inlet at 27.2 ºC Date:9/2/2016 TIME AMBIENT Temperature (oC) Solar Insolation (W/m2) Absorbing Surface Temperature Average receiver Temperature Insulation Temperature (oC) Flow Temper (oC) PRESSURE(G) (Bar) 9:00 20 685 32 15 26 25 0 9:15 22 686 53 25 27 32 0 9:30 23 781 60 49 28 41 0 9:45 26 718 63 55 33 49 0 10:00 27 810 78 70 33.3 54 0 10:15 28 875 85 79 34 69 0 10:30 30 889 87 94 35 73 0 10:45 34.4 965 89 97 36 85 0 11:00 37.3 968 102 105 37 105 0.2 11:15 38.1 969 106 110 38 109 0.4
  31. Flow Temperature Pressure (G) (Bar) Pressure (abs) (Kpa) Latent Heat of Steam (KJ/Kg) Specific Enthalpy of Saturated Steam (KJ/Kg) Specific Enthalpy of Saturated Water (KJ/Kg) Specific Volume of Saturated Steam (m3/Kg) Specific Volume of Saturated Water (m3/Kg) 105 0.2 120.902 kpa 2243.18 2683.39 440.213 1.41848 0.001047 109 0.4 138.626 kpa 2232.41 2689.55 457.13 1.24811 0.001051
  32. 9:00 9:15 9:30 9:45 10:0 0 10:1 5 10:3 0 10:4 5 11:0 0 11:1 5 Ambient Temperature 20 22 23 26 27 28 30 34.4 37.3 38.1 Aborbing surface Temperature 32 53 60 63 78 85 87 89 102 106 average receiver temperature 15 25 49 55 70 79 94 97 105 110 Insulation Temperature 26 27 28 33 33.3 34 35 36 37 38 20 22 23 26 27 28 30 34.4 37.3 38.1 32 53 60 63 78 85 87 89 102 106 15 25 49 55 70 79 94 97 105 110 26 27 28 33 33.3 34 35 36 37 38 0 20 40 60 80 100 120 Temperature(oC) Time CR:10.38
  33. 685 686 781 718 810 875 889 965 968 969 0 200 400 600 800 1000 1200 9:00 9:15 9:30 9:45 10:00 10:15 10:30 10:45 11:00 11:15 SolarInsolation(W/m2) Time Solar Insolation
  34. CR: 20.76, Water inlet at 22.4oC Date 11/2/2016 TIME AMBIENT Temperatur e (oC) Solar Insolation (W/m2) Absorbing Surface Temperatur e Average receiver Temperatur e Insulation Temperatur e (oC) Flow Temper (oC) PRESSUR E(G) (Bar) 10:15 26 729 57.3 45 32 33 0 10:30 26 760 72 70 27.2 59 0 10:45 27 726 84.7 82 29.4 69.2 0 11:00 28.5 737 93 100 35 84.6 0 11:15 28.7 736 108 112 35.2 109 0.4 11:30 28.9 737 122 116 36 101 0.9 11:40 27.5 738 102.9 75 36.5 70 0 11:55 29.4 910 126.7 115 37 113 0.6 12:05 31.2 836 98.8 85 34 72 0 12:25 33.4 925 132 110 36 119 0.8
  35. Pressure (abs) (Kpa) Latent Heat of Steam (KJ/Kg) Specific Enthalpy of Saturated Steam (KJ/Kg) Specific Enthalpy of Saturated Water (KJ/Kg) Specific Volume of Saturated Steam (m3/Kg) Specific Volume of Saturated Water (m3/Kg) 0.0503 2422.7 2560.9 138.28 28.001 0.00100536 0.1904 2360.13 2607.1 246.97 8.0093 0.00101658 0.3013 2335.06 2624.73 289.66 5.206 0.0010222 0.5696 2296.4 2650.66 354.26 2.86777 0.00103214 1.3862 2232.41 2689.55 457.13 1.24811 0.00105075 1.05091 2253.83 2677.15 423.319 1.617 0.00104424 0.312 2333.08 2626.1 293.018 5.0397 0.00102276 1.5843 2221.53 2695.6 474.072 1.1015 0.0010541 0.34 2328.11 2629.51 301.39 4.6498 0.00102396 1.9245 2204.94 2704.48 499.53 0.9182 0.00105942
  36. 10:15 10:30 10:45 11:00 11:15 11:30 11:40 11:55 12:05 12:25 Ambient 26 26 27 28.5 28.7 28.9 27.5 29.4 31.2 33.4 Absorbing Surface Temperature 57.3 72 84.7 93 108 122 102.9 126.7 98.8 132 Average receiver temperature 45 70 82 100 112 116 75 115 85 110 Insulation Temperature 32 27.2 29.4 35 35.2 36 36.5 37 34 36 steam flow temperature 33 59 69.2 84.6 109 101 70 113 72 119 26 26 27 28.5 28.7 28.9 27.5 29.4 31.2 33.4 57.3 72 84.7 93 108 122 102.9 126.7 98.8 132 45 70 82 100 112 116 75 115 85 110 32 27.2 29.4 35 35.2 36 36.5 37 34 36 33 59 69.2 84.6 109 101 70 113 72 119 0 20 40 60 80 100 120 140 TEMPERATURE(oC) TIME
  37. 0 100 200 300 400 500 600 700 800 900 1000 10:15 10:30 10:45 11:00 11:15 11:30 11:40 11:55 12:05 12:25 SolarInsolation(W/m2) Time Solar Insolation
  38. • CR:31.15 water inlet 25.2 Date: 15/2/2016 Time Solar Insolation (W/m2) AMBIENT Temperature (oC) Absorbing Surface Temperature (oC) Average receiver Temperature (oC) Steam flow Temperature (oC) Pressure (G) (Bar) 11:00 672 26 81 75 36 0 11:15 799 28 110 108 112 0.5 11:30 822 30 104.5 85 79 0 11:45 920 32 119 115 117 0.8 12:00 860 32 94 85 65 0 12:15 887 35 109 95 60 0 12:30 900 36 142 120 124 1.2
  39. Pressure (abs) (Kpa) Latent Heat of Steam (KJ/Kg) Specific Enthalpy of Saturated Steam (KJ/Kg) Specific Enthalpy of Saturated Water (KJ/Kg) Specific Volume of Saturated Steam (m3/Kg) Specific Volume of Saturated Water (m3/Kg) 0.0594 2415.6 2566.38 150 23.93 0.0010063 1.5327 2224.26 2589.54 469.83 1.13615 0.001053 0.117512 2384.29 2701.55 205.156 12.6 0.0010116 1.80509 2210.51 2701.55 491 0.9749 0.001057 1.2954 2357.69 2686.49 448.66 1.3366 0.001049 0.19945 2224.26 26868.8 251.55 7,667 0.001027 1.53277 2310.59 2310.59 469.8 1.1363 0.001053
  40. 0 20 40 60 80 100 120 140 160 1 1 : 0 0 1 1 : 1 5 1 1 : 3 0 1 1 : 4 5 1 2 : 0 0 1 2 : 1 5 1 2 : 3 0 TEMPERATUE(OC) TIME CR: 31.15 Ambient Absorbing Surface Temperature Average receiver Temperature Steam flow Water in
  41. 672 799 822 920 860 887 900 0 100 200 300 400 500 600 700 800 900 1000 11:00 11:15 11:30 11:45 12:00 12:15 12:30 SOLARINSOLATION(W/M2) TIME CR: 31.15 Power
  42. Comparison At different concentration Ratios 1 2 3 4 5 6 7 8 9 10 CR3 75 108 CR1 15 25 49 55 70 79 94 97 105 110 CR2 45 70 82 100 0 20 40 60 80 100 120
  43. Efficency η= ̇ • η1= 5.7% • η2 =11.3% • η3 =20.17%
  44. Safety Precautions • Proper clothing should be worn. • Avoid loose clothing and jewelry. • Protective equipment must be worn when necessary (i.e.: hard hats, ear plugs, goggles, gloves, safety shoes, etc.). • Always covered hot receiver with insulation • Don’t touch receiver from bottom side without gloves. • Move Concentrator with Care. • Don’t place concentrating mirror Adjacent ? • Notice Temperature and pressure gauge reading time to time when system is in running condition.
  45. Future Work • In this project different modification could be done. • Our project based on Batch flow system it could be change in to continuous flow. • Steam could be superheated by placing a super heater. • Molten salt is also used in Receiver or super heater. • Tracking mechanism could be placed in concentrators.
  46. THANK YOU
Anzeige