Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

Meghana Ravikumar - Optimized Image Classification on the Cheap

102 Aufrufe

Veröffentlicht am

Optimized Image Classification on the Cheap

In this talk, we anchor on building an image classifier trained on the Stanford Cars dataset to evaluate two approaches to transfer learning -fine tuning and feature extraction- and the impact of hyperparameter optimization on these techniques. Once we define the most performant transfer learning technique for Stanford Cars, we will double the size of the dataset through image augmentation to boost the classifier’s performance. We will use Bayesian optimization to learn the hyperparameters associated with image transformations using the downstream image classifier’s performance as the guide. In conjunction with model performance, we will also focus on the features of these augmented images and the downstream implications for our image classifier.

To both maximize model performance on a budget and explore the impact of optimization on these methods, we apply a particularly efficient implementation of Bayesian optimization to each of these architectures in this comparison. Our goal is to draw on a rigorous set of experimental results that can help us answer the question: how can resource-constrained teams make trade-offs between efficiency and effectiveness using pre-trained models?

Veröffentlicht in: Technologie
  • Als Erste(r) kommentieren

Meghana Ravikumar - Optimized Image Classification on the Cheap

  1. 1. ImageNet Pretrained Convolutional Layers Fully Connected Layer ImageNet Pretrained Convolutional Layers Fully Connected Layer Input Convolutional Features Classification Input Convolutional Features Classification
  2. 2. ImageNet Pretrained Convolutional Layers Fully Connected Layer Car Image Data Convolutional Features Classification
  3. 3. Partial Full
  4. 4. Acura TLX 2015 https://arxiv.org/abs/1512.03385
  5. 5. Low Cost 10% of epochs Medium Cost 50% of epochs Full Cost 100% of epochs
  6. 6. ImageNet Pretrained Convolutional Layers Fully Connected Layer ImageNet Pretrained Convolutional Layers Fully Connected Layer Input Convolutional Features Classification Input Convolutional Features Classification
  7. 7. ImageNet Pretrained Convolutional Layers Fully Connected Layer Car Image Data Convolutional Features Classification
  8. 8. Stanford Cars Dataset Image Augmentation Model Training (ResNet 18 fine-tuned) Model Accuracy SigOpt Model Validation Accuracy Suggested Hyperparameters Suggested Hyperparameters
  9. 9. ImageNet Pretrained Convolutional Layers Fully Connected Layer Input Convolutional Features Classification
  10. 10. ImageNet Pretrained Convolutional Layers Fully Connected Layer Input Convolutional Features Classification Cars Image Data Image Augmentation Accuracy

×