-
Gehören Sie zu den Ersten, denen das gefällt!
SlideShare verwendet Cookies, um die Funktionalität und Leistungsfähigkeit der Webseite zu verbessern und Ihnen relevante Werbung bereitzustellen. Wenn Sie diese Webseite weiter besuchen, erklären Sie sich mit der Verwendung von Cookies auf dieser Seite einverstanden. Lesen Sie bitte unsere Nutzervereinbarung und die Datenschutzrichtlinie.
SlideShare verwendet Cookies, um die Funktionalität und Leistungsfähigkeit der Webseite zu verbessern und Ihnen relevante Werbung bereitzustellen. Wenn Sie diese Webseite weiter besuchen, erklären Sie sich mit der Verwendung von Cookies auf dieser Seite einverstanden. Lesen Sie bitte unsere unsere Datenschutzrichtlinie und die Nutzervereinbarung.
Productive Machine Learning and Deep Learning Projects
Machine Learning (ML) and Deep Learning (DL), known holistically as Artificial Intelligence, are no longer luxuries but necessities if companies want to remain relevant n today’s market. Data driven organizations that encourage the development of ML and DL projects allow companies to create and deploy models to create predictions in real time. Even more exciting, these real time predictions allow organizations to trigger actions based on these predictions, which ultimately improves the bottom line. However, organizations struggle to incorporate ML and DL projects to create models that improve performance. This talk focuses on how companies can enable data science platforms so that data engineers, data scientists and business analysts can quickly explore data, create and test ML and DL models, and deploy to staging and production environments regardless of the language or framework used by the team and organization.
Gehören Sie zu den Ersten, denen das gefällt!
Sie haben diese Folie bereits ins Clipboard „“ geclippt.
Loggen Sie sich ein, um Kommentare anzuzeigen.