Fast, Cheap and Deep – Scaling Machine Learning: Distributed high throughput machine learning is both a challenge and a key enabling technology. Using a Parameter Server template we are able to distribute algorithms efficiently over multiple GPUs and in the cloud. This allows us to design very fast recommender systems, factorization machines, classifiers, and deep networks. This degree of scalability allows us to tackle computationally expensive problems efficiently, yielding excellent results e.g. in visual question answering.