SlideShare a Scribd company logo
1 of 28
INTERPOLATION
INTERPOLATION FOR UNEQUAL INTERVALS
 LAGRANGE’S INTERPOLATING
FORMULA
 Let y = f(x) be the given function
 Let 𝑦0, 𝑦1, … 𝑦𝑛 be the (𝑛 + 1) points of the
given function corresponding to 𝑥0, 𝑥1, … 𝑥 𝑛
 The polynomial 𝑦 = 𝑓 𝑥 can be written as
 𝑓 𝑥 =
𝑥−𝑥1 𝑥−𝑥2 ··· 𝑥−𝑥 𝑛
𝑥0−𝑥1 𝑥0−𝑥2 ··· 𝑥0−𝑥 𝑛
𝑦0 +
𝑥 − 𝑥0 𝑥 − 𝑥2 ··· 𝑥 − 𝑥 𝑛
𝑥1 − 𝑥0 𝑥1 − 𝑥2 ··· 𝑥1 − 𝑥 𝑛
𝑦1 +
𝑥 − 𝑥0 𝑥 − 𝑥1 ··· 𝑥 − 𝑥 𝑛
𝑥2 − 𝑥0 𝑥2 − 𝑥1 ··· 𝑥2 − 𝑥 𝑛
𝑦2
+ ⋯ +
𝑥−𝑥0 𝑥−𝑥1 ··· 𝑥−𝑥 𝑛−1
𝑥 𝑛−𝑥0 𝑥 𝑛−𝑥1 ··· 𝑥 𝑛−𝑥 𝑛−1
𝑦 𝑛
INVERSE INTERPOLATION
 It is the process of finding a value of x
for the corresponding value of y and
we use Lagrange’s interpolation
formula by taking the independent
variable as y and the dependent
variable as x. It is the inverse process
of direct interpolation in which we find
the values of y corresponding to a
value of x, not present in the table.
INVERSE INTERPOLATION BY LAGRANGE’S
 𝑥 =
𝑦−𝑦1 𝑦−𝑦2 ··· 𝑦−𝑦 𝑛
𝑦0−𝑦1 𝑦0−𝑦2 ··· 𝑦0−𝑦 𝑛
𝑥0 +
𝑦−𝑦0 𝑦−𝑦2 ··· 𝑦−𝑦 𝑛
𝑦1−𝑦0 𝑦1−𝑦2 ··· 𝑦1−𝑦 𝑛
𝑥1 +
⋯
+
𝑦−𝑦0 𝑦−𝑦1 ··· 𝑦−𝑦 𝑛−1
𝑦 𝑛−𝑦 𝑦 𝑛−𝑦1 ··· 𝑦 𝑛−𝑦 𝑛−1
𝑥 𝑛
USE OF LAGRANGIAN
INTERPOLATION
 It is a process of computing
intermediate values of a function from
a given set of tabular values of the
function.
DIVIDED DIFFERENCE
 Let 𝑦 = 𝑓(𝑥) be the given function
which takes the values
f(𝑥0), 𝑓(𝑥1) … 𝑓(𝑥 𝑛) corresponding to
the arguments 𝑥0, 𝑥1, … 𝑥 𝑛
respectively, where the intervals
𝑥1 – 𝑥0 , 𝑥2 − 𝑥1 , … 𝑥 𝑛 – 𝑥 𝑛−1 need not
equal
REPRESENTATION BY DIVIDED DIFFERENCE
TABLE
𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡
𝑥
𝐸𝑛𝑡𝑟𝑦
𝑓(𝑥)
𝐹𝑖𝑟𝑠𝑡 𝐷. 𝐷
Δ1 𝑓(𝑥)
𝑆𝑒𝑐𝑜𝑛𝑑 𝐷. 𝐷
Δ1
2
𝑓(𝑥)
𝑇ℎ𝑖𝑟𝑑 𝐷. 𝐷
Δ1
3
𝑓(𝑥)
𝑥0
𝑥1
𝑥2
𝑥3
𝑥4
𝑓(𝑥0)
𝑓 𝑥1
𝑓 𝑥2
𝑓 𝑥3
𝑓(𝑥4)
𝑓 𝑥1 –𝑓 𝑥0
𝑥1 –𝑥0
= 𝑓 𝑥0, 𝑥1
𝑓 𝑥2 –𝑓 𝑥1
𝑥2 –𝑥1
= 𝑓 𝑥1, 𝑥2
𝑓 𝑥3 –𝑓 𝑥2
𝑥3 –𝑥2
= 𝑓 𝑥2, 𝑥3
𝑓 𝑥4 –𝑓 𝑥3
𝑥4 –𝑥3
= 𝑓 𝑥3, 𝑥4
𝑓 𝑥1,𝑥2 −𝑓 𝑥0,𝑥1
𝑥2−𝑥0
=
𝑓(𝑥0, 𝑥1, 𝑥2)
𝑓 𝑥2,𝑥3 −𝑓 𝑥1,𝑥2
𝑥3−𝑥1
=
𝑓(𝑥1, 𝑥2, 𝑥3)
𝑓 𝑥3,𝑥4 −𝑓 𝑥2,𝑥3
𝑥4−𝑥2
=
𝑓(𝑥2, 𝑥3, 𝑥4)
𝑓 𝑥1,𝑥2,𝑥3 −𝑓 𝑥0,𝑥1,𝑥2
x3−𝑥0
=
𝑓(𝑥0, 𝑥1, 𝑥2, 𝑥3)
𝑓 𝑥2,𝑥3,𝑥4 −𝑓 𝑥1,𝑥2,𝑥3
𝑥4−𝑥1
=
𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)
PROPERTIES OF DIVIDED DIFFERENCES
 1. The divided differences are
symmetrical in all their arguments, that
is, the value of any difference is
independent of the order of the
arguments.
 2. The divided difference of the product
of a constant and a function is equal to
the product of the constant and the
divided difference of the function.
 3. The operator Δ1 is linear
 4. The 𝑛 𝑡ℎ
divided difference of a
polynomial of degree 𝑛 is a constant
NEWTON DIVIDED DIFFERENCE INTERPOLATION
 If 𝑓(𝑥) is a polynomial of degree𝑛, and
𝑓(𝑥0), 𝑓(𝑥1), … 𝑓(𝑥 𝑛) are the
corresponding values of arguments
𝑥0, 𝑥1, … . 𝑥 𝑛 respectively, not
necessarly equally spaced.
 Then 𝑓 𝑥 = 𝑓 𝑥0 + ( 𝑥 −
INTERPOLATION WITH EQUAL INTERVALS
 FORWARD DIFFERENCE
 If 𝑦0, 𝑦1, … 𝑦𝑛 are the values of 𝑦 = 𝑓(𝑥)
corresponding to the arguments 𝑥0, 𝑥1, … 𝑥 𝑛 ,
where 𝑥1 − 𝑥0 , 𝑥2 − 𝑥1, … 𝑥 𝑛 − 𝑥 𝑛−1 are equal
 𝑖. 𝑒 𝑥𝑖 = 𝑥0 + 𝑖ℎ, 𝑖 = 0,1,2 … 𝑛
 Define Δ𝑦0 = 𝑦1 − 𝑦0 , Δ𝑦1 = 𝑦2 − 𝑦1 … . Δ𝑦 𝑛−1 =
𝑦𝑛 − 𝑦 𝑛−1
 And Δ2
𝑦0 = Δ𝑦1 − Δ𝑦0 , Δ2
𝑦1 = Δ𝑦2 −
Δ𝑦1 … . Δ2
𝑦 𝑛−1 = Δ𝑦𝑛 − Δ𝑦 𝑛−1
 And so on
 Here Δ is called Newton’s forward difference
operator
 NEWTON’S FORWARD
DIFFERENCE FORMULA
 If 𝑦0, 𝑦1, … 𝑦𝑛 are the values of 𝑦 =
𝑓(𝑥) corresponding to the arguments
𝑥0, 𝑥1, … 𝑥 𝑛
 Then y = 𝑦0 + 𝑝∆𝑦0 +
𝑝 𝑝−1
2!
∆2
𝑦0 +
𝑝 𝑝−1 𝑝−2
3!
∆3
𝑦0 + ⋯
 Where 𝑝 =
𝑥−𝑥0
ℎ
.
FORWARD DIFFERENCE
TABLE
𝑥 𝑦 Δ Δ2
Δ3
Δ4
Δ5
𝑥0
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑦0
𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
Δ𝑦0
Δ𝑦1
Δ𝑦2
Δ𝑦3
Δ𝑦4
Δ2
𝑦0
Δ2
𝑦1
Δ2
𝑦2
Δ2
𝑦3
Δ3
𝑦0
Δ3
𝑦1
Δ3
𝑦2
Δ4
𝑦0
Δ4
𝑦1
Δ5
𝑦0
BACKWARD DIFFERENCE
 The differences 𝑦1 − 𝑦0, 𝑦2 − 𝑦1, … . 𝑦𝑛 −
𝑦 𝑛−1 are called first backward differences
and denoted by
 𝛻𝑦1 = 𝑦1 − 𝑦0, 𝛻𝑦2 = 𝑦2 − 𝑦1, … .
𝛻𝑦𝑛 = 𝑦𝑛 − 𝑦 𝑛−1
 And 𝛻2
𝑦1 = 𝛻𝑦1 − 𝛻𝑦0,
𝛻2
𝑦2 = 𝛻𝑦2 − 𝛻𝑦1, … .
𝛻2
𝑦𝑛 = 𝛻𝑦𝑛 − 𝛻𝑦 𝑛−1
and so on
NEWTON’S BACKWARD DIFFERENCE FORMULA
 If 𝑦0, 𝑦1, … 𝑦𝑛 are the values of 𝑦 =
𝑓(𝑥) corresponding to the arguments
𝑥0, 𝑥1, … 𝑥 𝑛
 Then 𝑦 = 𝑦𝑛 + 𝑝𝛻𝑦𝑛 +
𝑝 𝑝+1
2!
𝛻2
𝑦𝑛 +
𝑝 𝑝+1 𝑝+2
3!
𝛻3
𝑦𝑛 + ⋯
 Where 𝑝 =
𝑥−𝑥 𝑛
ℎ
.
BACKWARD DIFFERENCE
TABLE
𝑥 𝑦 𝛻 𝛻2
𝛻3
𝛻4
𝛻5
𝑥0
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑦0
𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
𝛻𝑦1
𝛻𝑦2
𝛻𝑦3
𝛻𝑦4
𝛻𝑦5
𝛻2
𝑦2
𝛻2
𝑦3
𝛻2
𝑦4
𝛻2
𝑦5
𝛻3
𝑦3
𝛻3
𝑦4
𝛻3
𝑦5
𝛻4
𝑦4
𝛻4
𝑦5
𝛻5
𝑦5
NUMERICAL
DIFFERENTIATION
DERIVATIVES USING DIVIDED DIFFERENCE
 Procedure
 Step 1. By using Newton’s divided
difference formula find 𝑓(𝑥) in terms of
x
 Step 2. Find the derivatives of 𝑓(𝑥)
DERIVATIVE - USING NEWTON’S FORWARD DIFFERENCE
FORMULA
 The first derivative of y at 𝑥 = 𝑥0 + 𝑝ℎ (near beginning of the data)
is
𝑑𝑦
𝑑𝑥
=
𝑑𝑦
𝑑𝑝
𝑑𝑝
𝑑𝑥

𝑑𝑦
𝑑𝑥
=
1
ℎ
∆𝑦0 +
2𝑝−1
2!
∆2 𝑦0 +
3𝑝2−6𝑝+2
3!
∆3 𝑦0 + ⋯
 The second derivative of y at 𝑥 = 𝑥0 + 𝑝ℎ is
𝑑2 𝑦
𝑑𝑥2 =
𝑑2 𝑦
𝑑𝑝2
𝑑𝑝
𝑑𝑥
2

𝑑2 𝑦
𝑑𝑥2 =
1
ℎ2 ∆2
𝑦0 + (𝑝 − 1)∆3
𝑦0 +
6𝑝2−18𝑝+11
12
∆4
𝑦0 + ⋯
 The third derivative y at 𝑥 = 𝑥0 + 𝑝ℎ

𝑑3 𝑦
𝑑𝑥3 =
1
ℎ3 ∆3
𝑦0 +
12𝑝−18
12
∆4
𝑦0+. .
 For tabular values, at 𝑥 = 𝑥0, (𝑝 = 0)

𝑑𝑦
𝑑𝑥
=
1
ℎ
∆𝑦0 −
∆2 𝑦0
2
+
∆3 𝑦0
3
−
∆4 𝑦0
4
+ ⋯

𝑑2 𝑦
𝑑𝑥2 =
1
ℎ2 ∆2
𝑦0 − ∆3
𝑦0 +
11
12
∆4
𝑦0 − ⋯

𝑑3 𝑦
𝑑𝑥3 =
1
ℎ3 ∆3 𝑦0 −
3
2
∆4 𝑦0+. .
DERIVATIVE - USING NEWTON’S BACKWARD DIFFERENCE
FORMULA
 The first derivative of y at 𝑥 = 𝑥 𝑛 + 𝑝ℎ (near end of the data) is
𝑑𝑦
𝑑𝑥
=
𝑑𝑦
𝑑𝑝
𝑑𝑝
𝑑𝑥

𝑑𝑦
𝑑𝑥
=
1
ℎ
𝛻𝑦 𝑛 +
2𝑝+1
2!
𝛻2 𝑦 𝑛 +
3𝑝2+6𝑝+2
3!
𝛻3 𝑦 𝑛 + ⋯
 The second derivative of y at 𝑥 = 𝑥 𝑛 + 𝑝ℎ is
𝑑2 𝑦
𝑑𝑥2 =
𝑑2 𝑦
𝑑𝑝2
𝑑𝑝
𝑑𝑥
2

𝑑2 𝑦
𝑑𝑥2 =
1
ℎ2 𝛻2
𝑦 𝑛 + (𝑝 + 1)𝛻3
𝑦 𝑛 +
6𝑝2+18𝑝+11
12
𝛻4
𝑦0 + ⋯
 The third derivative of y at 𝑥 = 𝑥 𝑛 + 𝑝ℎ

𝑑3 𝑦
𝑑𝑥3 =
1
ℎ3 𝛻3
𝑦 𝑛 +
12𝑝+18
12
𝛻4
𝑦0+. .
 For tabular values, at 𝑥 = 𝑥 𝑛, (𝑝 = 0)

𝑑𝑦
𝑑𝑥
=
1
ℎ
𝛻𝑦 𝑛 +
𝛻2 𝑦 𝑛
2
+
𝛻3 𝑦 𝑛
3
+ ⋯

𝑑2 𝑦
𝑑𝑥2 =
1
ℎ2 𝛻2
𝑦 𝑛 + 𝛻3
𝑦 𝑛 +
11
12
𝛻4
𝑦0 + ⋯

𝑑3 𝑦
𝑑𝑥3 =
1
ℎ3 𝛻3 𝑦 𝑛 +
3
2
𝛻4 𝑦0+. .
NUMERICAL INTEGRATION
SINGLE (LINEAR) INTEGRATION
1. TRAPEZOIDAL RULE
2. SIMPSON’S
𝟏
𝟑
RULE
TRAPEZOIDAL RULE

𝑥0
𝑥1
𝑓(𝑥) 𝑑𝑥 =
ℎ
2
𝑦0 + 𝑦𝑛 + 2( 𝑦1 + 𝑦2 +
SIMPSON’S
𝟏
𝟑
𝒓𝒅 RULE

𝑥0
𝑥1
𝑓(𝑥) 𝑑𝑥 =
ℎ
3
𝑦0 + 𝑦𝑛 + 4 𝑦1 + 𝑦3 + 𝑦5 + ⋯ + 2(𝑦2 + 𝑦4 + 𝑦6+. . )
=
ℎ
3
𝑓𝑖𝑟𝑠𝑡 + 𝑙𝑎𝑠𝑡 + 4 𝑠𝑢𝑚 𝑜𝑓 𝑜𝑑𝑑 𝑡𝑒𝑟𝑚𝑠 +
2 𝑠𝑢𝑚 𝑜𝑓 𝑒𝑣𝑒𝑛 𝑡𝑒𝑟𝑚𝑠 ]
 ℎ =
𝑥1−𝑥0
𝑛
, 𝑛 − 𝑖𝑠 𝑡ℎ𝑒 𝒆𝒗𝒆𝒏 𝑛𝑜 𝑜𝑓 𝑠𝑢𝑏 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 𝑖𝑛 𝑥0 𝑥1
 Condition for applying the Simpson’s rule – Number
of subintervals must be even
NUMERICAL DOUBLE
INTEGRATION
 1. 𝐓𝐑𝐀𝐏𝐄𝐙𝐎𝐈𝐃𝐀𝐋 𝐑𝐔𝐋𝐄
 2. 𝐒𝐈𝐌𝐏𝐒𝐎𝐍’𝐒 𝐑𝐔𝐋𝐄
TRAPEZOIDAL RULE

𝑎
𝑏
𝑐
𝑑
𝑓 𝑥, 𝑦 𝑑𝑥𝑑𝑦 =
ℎ𝑘
4
𝑓1 + 𝑓3 + 𝑓7 + 𝑓9 +
2 𝑓2 + 𝑓4 + 𝑓6 + 𝑓8 + 4𝑓5]
 =
ℎ𝑘
4
𝑆𝑢𝑚 𝑜𝑓 𝑐𝑜𝑟𝑛𝑒𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓 𝑥, 𝑦 +
2 𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓 𝑥, 𝑦 +
4(𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓(𝑥, 𝑦)]
y x 𝑥0 𝑥1 𝑥2 𝑥3
𝑦0 𝑓(𝑥0, 𝑦0) 𝑓(𝑥1, 𝑦0) 𝑓(𝑥2, 𝑦0) 𝑓(𝑥3, 𝑦0)
𝑦1 𝑓(𝑥0, 𝑦1) 𝑓(𝑥1, 𝑦1) 𝑓(𝑥2, 𝑦1) 𝑓(𝑥3, 𝑦1)
𝑦2 𝑓(𝑥0, 𝑦2) 𝑓(𝑥1, 𝑦2) 𝑓(𝑥2, 𝑦2) 𝑓(𝑥3, 𝑦2)
𝑦3 𝑓(𝑥0, 𝑦3) 𝑓(𝑥1, 𝑦3) 𝑓(𝑥2, 𝑦3) 𝑓(𝑥3, 𝑦3)
For example, if x takes the values 𝑥0, 𝑥1, 𝑥2, 𝑥3 and y takes values
𝑦0, 𝑦1, 𝑦2, 𝑦3
Red indicates – corner values
Blue indicates – boundary values
Black indicates – interior values
𝑺𝑰𝑴𝑷𝑺𝑶𝑵’𝑺 𝑹𝑼𝑳𝑬

𝑎
𝑏
𝑐
𝑑
𝑓 𝑥, 𝑦 𝑑𝑥𝑑𝑦 =
ℎ𝑘
9
𝑓1 + 𝑓3 + 𝑓7 + 𝑓9 +
2 𝑓2 + 𝑓4 + 𝑓6 + 𝑓8 + 16𝑓5]
 =
ℎ𝑘
9
𝑆𝑢𝑚 𝑜𝑓 𝑐𝑜𝑟𝑛𝑒𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓 𝑥, 𝑦 +
4 𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓 𝑥, 𝑦 +
16(𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓(𝑥, 𝑦)]
Errors in Trapezoidal rule of numerical
integration.
 When evaluating 𝑎
𝑏
𝑓 𝑥 𝑑𝑥, the error
in the trapezoidal rule is
 <
𝑏−𝑎 2
12
ℎ2
𝑀, where ℎ =
𝑏−𝑎
𝑛
, n is the
number of subintervals of (a, b),
 And 𝑀 = 𝑚𝑎𝑥{|𝑦0
′′
|, |𝑦1
′′
|,· · ·
, |𝑦 𝑛−1
′′
|}, 𝑦𝑟′′ = 𝑓′′(𝑥 𝑟)
 Error in Trapezoidal rule is of order
𝒉 𝟐
Errors in Simpson’s rule of numerical
integration
 The error in Simpson’s rule is <
𝑏−𝑎
180
ℎ4
𝑀
 where ℎ =
𝑏−𝑎
2𝑛
, 2n is the number of
subintervals of (a, b),
 𝑀 = 𝑚𝑎𝑥 𝑦0
1
, 𝑦1
4
,· · ·

More Related Content

What's hot

Newton's Backward Interpolation Formula with Example
Newton's Backward Interpolation Formula with ExampleNewton's Backward Interpolation Formula with Example
Newton's Backward Interpolation Formula with ExampleMuhammadUsmanIkram2
 
Numerical Solution of Ordinary Differential Equations
Numerical Solution of Ordinary Differential EquationsNumerical Solution of Ordinary Differential Equations
Numerical Solution of Ordinary Differential EquationsMeenakshisundaram N
 
arijit ppt (1) (1).pptx
arijit ppt (1) (1).pptxarijit ppt (1) (1).pptx
arijit ppt (1) (1).pptxRadharamanRoy3
 
Solution of non-linear equations
Solution of non-linear equationsSolution of non-linear equations
Solution of non-linear equationsZunAib Ali
 
Numerical solution of system of linear equations
Numerical solution of system of linear equationsNumerical solution of system of linear equations
Numerical solution of system of linear equationsreach2arkaELECTRICAL
 
Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential EquationsAMINULISLAM439
 
trapezoidal and simpson's 1/3 and 3/8 rule
trapezoidal and simpson's 1/3 and 3/8 ruletrapezoidal and simpson's 1/3 and 3/8 rule
trapezoidal and simpson's 1/3 and 3/8 rulehitarth shah
 
MATLAB : Numerical Differention and Integration
MATLAB : Numerical Differention and IntegrationMATLAB : Numerical Differention and Integration
MATLAB : Numerical Differention and IntegrationAinul Islam
 
Newton backward interpolation
Newton backward interpolationNewton backward interpolation
Newton backward interpolationMUHAMMADUMAIR647
 
Polynomials and Curve Fitting in MATLAB
Polynomials and Curve Fitting in MATLABPolynomials and Curve Fitting in MATLAB
Polynomials and Curve Fitting in MATLABShameer Ahmed Koya
 
Applied numerical methods lec9
Applied numerical methods lec9Applied numerical methods lec9
Applied numerical methods lec9Yasser Ahmed
 
Newton's Forward/Backward Difference Interpolation
Newton's Forward/Backward  Difference InterpolationNewton's Forward/Backward  Difference Interpolation
Newton's Forward/Backward Difference InterpolationVARUN KUMAR
 
lagrange interpolation
lagrange interpolationlagrange interpolation
lagrange interpolationayush raj
 
Numerical Analysis and Its application to Boundary Value Problems
Numerical Analysis and Its application to Boundary Value ProblemsNumerical Analysis and Its application to Boundary Value Problems
Numerical Analysis and Its application to Boundary Value ProblemsGobinda Debnath
 
Newton-Raphson Method
Newton-Raphson MethodNewton-Raphson Method
Newton-Raphson MethodJigisha Dabhi
 

What's hot (20)

Interpolation
InterpolationInterpolation
Interpolation
 
Higher order differential equations
Higher order differential equationsHigher order differential equations
Higher order differential equations
 
Newton's Backward Interpolation Formula with Example
Newton's Backward Interpolation Formula with ExampleNewton's Backward Interpolation Formula with Example
Newton's Backward Interpolation Formula with Example
 
FPDE presentation
FPDE presentationFPDE presentation
FPDE presentation
 
Numerical Solution of Ordinary Differential Equations
Numerical Solution of Ordinary Differential EquationsNumerical Solution of Ordinary Differential Equations
Numerical Solution of Ordinary Differential Equations
 
arijit ppt (1) (1).pptx
arijit ppt (1) (1).pptxarijit ppt (1) (1).pptx
arijit ppt (1) (1).pptx
 
Solution of non-linear equations
Solution of non-linear equationsSolution of non-linear equations
Solution of non-linear equations
 
Numerical solution of system of linear equations
Numerical solution of system of linear equationsNumerical solution of system of linear equations
Numerical solution of system of linear equations
 
Euler and runge kutta method
Euler and runge kutta methodEuler and runge kutta method
Euler and runge kutta method
 
Power series
Power series Power series
Power series
 
Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential Equations
 
trapezoidal and simpson's 1/3 and 3/8 rule
trapezoidal and simpson's 1/3 and 3/8 ruletrapezoidal and simpson's 1/3 and 3/8 rule
trapezoidal and simpson's 1/3 and 3/8 rule
 
MATLAB : Numerical Differention and Integration
MATLAB : Numerical Differention and IntegrationMATLAB : Numerical Differention and Integration
MATLAB : Numerical Differention and Integration
 
Newton backward interpolation
Newton backward interpolationNewton backward interpolation
Newton backward interpolation
 
Polynomials and Curve Fitting in MATLAB
Polynomials and Curve Fitting in MATLABPolynomials and Curve Fitting in MATLAB
Polynomials and Curve Fitting in MATLAB
 
Applied numerical methods lec9
Applied numerical methods lec9Applied numerical methods lec9
Applied numerical methods lec9
 
Newton's Forward/Backward Difference Interpolation
Newton's Forward/Backward  Difference InterpolationNewton's Forward/Backward  Difference Interpolation
Newton's Forward/Backward Difference Interpolation
 
lagrange interpolation
lagrange interpolationlagrange interpolation
lagrange interpolation
 
Numerical Analysis and Its application to Boundary Value Problems
Numerical Analysis and Its application to Boundary Value ProblemsNumerical Analysis and Its application to Boundary Value Problems
Numerical Analysis and Its application to Boundary Value Problems
 
Newton-Raphson Method
Newton-Raphson MethodNewton-Raphson Method
Newton-Raphson Method
 

Similar to Interpolation

Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variablesSanthanam Krishnan
 
Study Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationStudy Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationMeenakshisundaram N
 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IRai University
 
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSRai University
 
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSRai University
 
Differential Calculus- differentiation
Differential Calculus- differentiationDifferential Calculus- differentiation
Differential Calculus- differentiationSanthanam Krishnan
 
Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method  Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method AMINULISLAM439
 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfAnuBajpai5
 
Lecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptxLecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptxPratik P Chougule
 
nth Derivatives.pptx
nth Derivatives.pptxnth Derivatives.pptx
nth Derivatives.pptxSoyaMathew1
 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...Lossian Barbosa Bacelar Miranda
 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationRai University
 
On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions iosrjce
 
Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Nurkhalifah Anwar
 
Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Март
 
INVERSE DIFFERENTIAL OPERATOR
INVERSE DIFFERENTIAL OPERATORINVERSE DIFFERENTIAL OPERATOR
INVERSE DIFFERENTIAL OPERATORsumanmathews
 

Similar to Interpolation (20)

HERMITE SERIES
HERMITE SERIESHERMITE SERIES
HERMITE SERIES
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
 
Study Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationStudy Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and Integration
 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-I
 
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
 
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel Problem
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
 
Differential Calculus- differentiation
Differential Calculus- differentiationDifferential Calculus- differentiation
Differential Calculus- differentiation
 
S1230109
S1230109S1230109
S1230109
 
Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method  Ordinary Differential Equations: Variable separation method
Ordinary Differential Equations: Variable separation method
 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdf
 
Lecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptxLecture 3 - Series Expansion III.pptx
Lecture 3 - Series Expansion III.pptx
 
nth Derivatives.pptx
nth Derivatives.pptxnth Derivatives.pptx
nth Derivatives.pptx
 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...
 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integration
 
On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions
 
Taller 1 parcial 3
Taller 1 parcial 3Taller 1 parcial 3
Taller 1 parcial 3
 
Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)
 
Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2Комплекс тоо цуврал хичээл-2
Комплекс тоо цуврал хичээл-2
 
INVERSE DIFFERENTIAL OPERATOR
INVERSE DIFFERENTIAL OPERATORINVERSE DIFFERENTIAL OPERATOR
INVERSE DIFFERENTIAL OPERATOR
 

More from Santhanam Krishnan (19)

Matrices
MatricesMatrices
Matrices
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Differential calculus maxima minima
Differential calculus  maxima minimaDifferential calculus  maxima minima
Differential calculus maxima minima
 
Differential calculus
Differential calculus  Differential calculus
Differential calculus
 
Fourier transforms
Fourier transformsFourier transforms
Fourier transforms
 
Fourier series
Fourier series Fourier series
Fourier series
 
Solution to second order pde
Solution to second order pdeSolution to second order pde
Solution to second order pde
 
Solution to pde
Solution to pdeSolution to pde
Solution to pde
 
Pde lagrangian
Pde lagrangianPde lagrangian
Pde lagrangian
 
Laplace transformation
Laplace transformationLaplace transformation
Laplace transformation
 
Complex integration
Complex integrationComplex integration
Complex integration
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Analytic function
Analytic functionAnalytic function
Analytic function
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
Design of experiments
Design of experimentsDesign of experiments
Design of experiments
 
Numerical solution of ordinary differential equations
Numerical solution of ordinary differential equationsNumerical solution of ordinary differential equations
Numerical solution of ordinary differential equations
 
Solution of equations and eigenvalue problems
Solution of equations and eigenvalue problemsSolution of equations and eigenvalue problems
Solution of equations and eigenvalue problems
 
Testing of hypothesis
Testing of hypothesisTesting of hypothesis
Testing of hypothesis
 

Recently uploaded

Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesShubhangi Sonawane
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docxPoojaSen20
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701bronxfugly43
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Shubhangi Sonawane
 

Recently uploaded (20)

Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 

Interpolation

  • 2. INTERPOLATION FOR UNEQUAL INTERVALS  LAGRANGE’S INTERPOLATING FORMULA  Let y = f(x) be the given function  Let 𝑦0, 𝑦1, … 𝑦𝑛 be the (𝑛 + 1) points of the given function corresponding to 𝑥0, 𝑥1, … 𝑥 𝑛  The polynomial 𝑦 = 𝑓 𝑥 can be written as  𝑓 𝑥 = 𝑥−𝑥1 𝑥−𝑥2 ··· 𝑥−𝑥 𝑛 𝑥0−𝑥1 𝑥0−𝑥2 ··· 𝑥0−𝑥 𝑛 𝑦0 + 𝑥 − 𝑥0 𝑥 − 𝑥2 ··· 𝑥 − 𝑥 𝑛 𝑥1 − 𝑥0 𝑥1 − 𝑥2 ··· 𝑥1 − 𝑥 𝑛 𝑦1 + 𝑥 − 𝑥0 𝑥 − 𝑥1 ··· 𝑥 − 𝑥 𝑛 𝑥2 − 𝑥0 𝑥2 − 𝑥1 ··· 𝑥2 − 𝑥 𝑛 𝑦2 + ⋯ + 𝑥−𝑥0 𝑥−𝑥1 ··· 𝑥−𝑥 𝑛−1 𝑥 𝑛−𝑥0 𝑥 𝑛−𝑥1 ··· 𝑥 𝑛−𝑥 𝑛−1 𝑦 𝑛
  • 3. INVERSE INTERPOLATION  It is the process of finding a value of x for the corresponding value of y and we use Lagrange’s interpolation formula by taking the independent variable as y and the dependent variable as x. It is the inverse process of direct interpolation in which we find the values of y corresponding to a value of x, not present in the table.
  • 4. INVERSE INTERPOLATION BY LAGRANGE’S  𝑥 = 𝑦−𝑦1 𝑦−𝑦2 ··· 𝑦−𝑦 𝑛 𝑦0−𝑦1 𝑦0−𝑦2 ··· 𝑦0−𝑦 𝑛 𝑥0 + 𝑦−𝑦0 𝑦−𝑦2 ··· 𝑦−𝑦 𝑛 𝑦1−𝑦0 𝑦1−𝑦2 ··· 𝑦1−𝑦 𝑛 𝑥1 + ⋯ + 𝑦−𝑦0 𝑦−𝑦1 ··· 𝑦−𝑦 𝑛−1 𝑦 𝑛−𝑦 𝑦 𝑛−𝑦1 ··· 𝑦 𝑛−𝑦 𝑛−1 𝑥 𝑛
  • 5. USE OF LAGRANGIAN INTERPOLATION  It is a process of computing intermediate values of a function from a given set of tabular values of the function.
  • 6. DIVIDED DIFFERENCE  Let 𝑦 = 𝑓(𝑥) be the given function which takes the values f(𝑥0), 𝑓(𝑥1) … 𝑓(𝑥 𝑛) corresponding to the arguments 𝑥0, 𝑥1, … 𝑥 𝑛 respectively, where the intervals 𝑥1 – 𝑥0 , 𝑥2 − 𝑥1 , … 𝑥 𝑛 – 𝑥 𝑛−1 need not equal
  • 7. REPRESENTATION BY DIVIDED DIFFERENCE TABLE 𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡 𝑥 𝐸𝑛𝑡𝑟𝑦 𝑓(𝑥) 𝐹𝑖𝑟𝑠𝑡 𝐷. 𝐷 Δ1 𝑓(𝑥) 𝑆𝑒𝑐𝑜𝑛𝑑 𝐷. 𝐷 Δ1 2 𝑓(𝑥) 𝑇ℎ𝑖𝑟𝑑 𝐷. 𝐷 Δ1 3 𝑓(𝑥) 𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑓(𝑥0) 𝑓 𝑥1 𝑓 𝑥2 𝑓 𝑥3 𝑓(𝑥4) 𝑓 𝑥1 –𝑓 𝑥0 𝑥1 –𝑥0 = 𝑓 𝑥0, 𝑥1 𝑓 𝑥2 –𝑓 𝑥1 𝑥2 –𝑥1 = 𝑓 𝑥1, 𝑥2 𝑓 𝑥3 –𝑓 𝑥2 𝑥3 –𝑥2 = 𝑓 𝑥2, 𝑥3 𝑓 𝑥4 –𝑓 𝑥3 𝑥4 –𝑥3 = 𝑓 𝑥3, 𝑥4 𝑓 𝑥1,𝑥2 −𝑓 𝑥0,𝑥1 𝑥2−𝑥0 = 𝑓(𝑥0, 𝑥1, 𝑥2) 𝑓 𝑥2,𝑥3 −𝑓 𝑥1,𝑥2 𝑥3−𝑥1 = 𝑓(𝑥1, 𝑥2, 𝑥3) 𝑓 𝑥3,𝑥4 −𝑓 𝑥2,𝑥3 𝑥4−𝑥2 = 𝑓(𝑥2, 𝑥3, 𝑥4) 𝑓 𝑥1,𝑥2,𝑥3 −𝑓 𝑥0,𝑥1,𝑥2 x3−𝑥0 = 𝑓(𝑥0, 𝑥1, 𝑥2, 𝑥3) 𝑓 𝑥2,𝑥3,𝑥4 −𝑓 𝑥1,𝑥2,𝑥3 𝑥4−𝑥1 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)
  • 8. PROPERTIES OF DIVIDED DIFFERENCES  1. The divided differences are symmetrical in all their arguments, that is, the value of any difference is independent of the order of the arguments.  2. The divided difference of the product of a constant and a function is equal to the product of the constant and the divided difference of the function.  3. The operator Δ1 is linear  4. The 𝑛 𝑡ℎ divided difference of a polynomial of degree 𝑛 is a constant
  • 9. NEWTON DIVIDED DIFFERENCE INTERPOLATION  If 𝑓(𝑥) is a polynomial of degree𝑛, and 𝑓(𝑥0), 𝑓(𝑥1), … 𝑓(𝑥 𝑛) are the corresponding values of arguments 𝑥0, 𝑥1, … . 𝑥 𝑛 respectively, not necessarly equally spaced.  Then 𝑓 𝑥 = 𝑓 𝑥0 + ( 𝑥 −
  • 10. INTERPOLATION WITH EQUAL INTERVALS  FORWARD DIFFERENCE  If 𝑦0, 𝑦1, … 𝑦𝑛 are the values of 𝑦 = 𝑓(𝑥) corresponding to the arguments 𝑥0, 𝑥1, … 𝑥 𝑛 , where 𝑥1 − 𝑥0 , 𝑥2 − 𝑥1, … 𝑥 𝑛 − 𝑥 𝑛−1 are equal  𝑖. 𝑒 𝑥𝑖 = 𝑥0 + 𝑖ℎ, 𝑖 = 0,1,2 … 𝑛  Define Δ𝑦0 = 𝑦1 − 𝑦0 , Δ𝑦1 = 𝑦2 − 𝑦1 … . Δ𝑦 𝑛−1 = 𝑦𝑛 − 𝑦 𝑛−1  And Δ2 𝑦0 = Δ𝑦1 − Δ𝑦0 , Δ2 𝑦1 = Δ𝑦2 − Δ𝑦1 … . Δ2 𝑦 𝑛−1 = Δ𝑦𝑛 − Δ𝑦 𝑛−1  And so on  Here Δ is called Newton’s forward difference operator
  • 11.  NEWTON’S FORWARD DIFFERENCE FORMULA  If 𝑦0, 𝑦1, … 𝑦𝑛 are the values of 𝑦 = 𝑓(𝑥) corresponding to the arguments 𝑥0, 𝑥1, … 𝑥 𝑛  Then y = 𝑦0 + 𝑝∆𝑦0 + 𝑝 𝑝−1 2! ∆2 𝑦0 + 𝑝 𝑝−1 𝑝−2 3! ∆3 𝑦0 + ⋯  Where 𝑝 = 𝑥−𝑥0 ℎ .
  • 12. FORWARD DIFFERENCE TABLE 𝑥 𝑦 Δ Δ2 Δ3 Δ4 Δ5 𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑦0 𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 Δ𝑦0 Δ𝑦1 Δ𝑦2 Δ𝑦3 Δ𝑦4 Δ2 𝑦0 Δ2 𝑦1 Δ2 𝑦2 Δ2 𝑦3 Δ3 𝑦0 Δ3 𝑦1 Δ3 𝑦2 Δ4 𝑦0 Δ4 𝑦1 Δ5 𝑦0
  • 13. BACKWARD DIFFERENCE  The differences 𝑦1 − 𝑦0, 𝑦2 − 𝑦1, … . 𝑦𝑛 − 𝑦 𝑛−1 are called first backward differences and denoted by  𝛻𝑦1 = 𝑦1 − 𝑦0, 𝛻𝑦2 = 𝑦2 − 𝑦1, … . 𝛻𝑦𝑛 = 𝑦𝑛 − 𝑦 𝑛−1  And 𝛻2 𝑦1 = 𝛻𝑦1 − 𝛻𝑦0, 𝛻2 𝑦2 = 𝛻𝑦2 − 𝛻𝑦1, … . 𝛻2 𝑦𝑛 = 𝛻𝑦𝑛 − 𝛻𝑦 𝑛−1 and so on
  • 14. NEWTON’S BACKWARD DIFFERENCE FORMULA  If 𝑦0, 𝑦1, … 𝑦𝑛 are the values of 𝑦 = 𝑓(𝑥) corresponding to the arguments 𝑥0, 𝑥1, … 𝑥 𝑛  Then 𝑦 = 𝑦𝑛 + 𝑝𝛻𝑦𝑛 + 𝑝 𝑝+1 2! 𝛻2 𝑦𝑛 + 𝑝 𝑝+1 𝑝+2 3! 𝛻3 𝑦𝑛 + ⋯  Where 𝑝 = 𝑥−𝑥 𝑛 ℎ .
  • 15. BACKWARD DIFFERENCE TABLE 𝑥 𝑦 𝛻 𝛻2 𝛻3 𝛻4 𝛻5 𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑦0 𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝛻𝑦1 𝛻𝑦2 𝛻𝑦3 𝛻𝑦4 𝛻𝑦5 𝛻2 𝑦2 𝛻2 𝑦3 𝛻2 𝑦4 𝛻2 𝑦5 𝛻3 𝑦3 𝛻3 𝑦4 𝛻3 𝑦5 𝛻4 𝑦4 𝛻4 𝑦5 𝛻5 𝑦5
  • 17. DERIVATIVES USING DIVIDED DIFFERENCE  Procedure  Step 1. By using Newton’s divided difference formula find 𝑓(𝑥) in terms of x  Step 2. Find the derivatives of 𝑓(𝑥)
  • 18. DERIVATIVE - USING NEWTON’S FORWARD DIFFERENCE FORMULA  The first derivative of y at 𝑥 = 𝑥0 + 𝑝ℎ (near beginning of the data) is 𝑑𝑦 𝑑𝑥 = 𝑑𝑦 𝑑𝑝 𝑑𝑝 𝑑𝑥  𝑑𝑦 𝑑𝑥 = 1 ℎ ∆𝑦0 + 2𝑝−1 2! ∆2 𝑦0 + 3𝑝2−6𝑝+2 3! ∆3 𝑦0 + ⋯  The second derivative of y at 𝑥 = 𝑥0 + 𝑝ℎ is 𝑑2 𝑦 𝑑𝑥2 = 𝑑2 𝑦 𝑑𝑝2 𝑑𝑝 𝑑𝑥 2  𝑑2 𝑦 𝑑𝑥2 = 1 ℎ2 ∆2 𝑦0 + (𝑝 − 1)∆3 𝑦0 + 6𝑝2−18𝑝+11 12 ∆4 𝑦0 + ⋯  The third derivative y at 𝑥 = 𝑥0 + 𝑝ℎ  𝑑3 𝑦 𝑑𝑥3 = 1 ℎ3 ∆3 𝑦0 + 12𝑝−18 12 ∆4 𝑦0+. .  For tabular values, at 𝑥 = 𝑥0, (𝑝 = 0)  𝑑𝑦 𝑑𝑥 = 1 ℎ ∆𝑦0 − ∆2 𝑦0 2 + ∆3 𝑦0 3 − ∆4 𝑦0 4 + ⋯  𝑑2 𝑦 𝑑𝑥2 = 1 ℎ2 ∆2 𝑦0 − ∆3 𝑦0 + 11 12 ∆4 𝑦0 − ⋯  𝑑3 𝑦 𝑑𝑥3 = 1 ℎ3 ∆3 𝑦0 − 3 2 ∆4 𝑦0+. .
  • 19. DERIVATIVE - USING NEWTON’S BACKWARD DIFFERENCE FORMULA  The first derivative of y at 𝑥 = 𝑥 𝑛 + 𝑝ℎ (near end of the data) is 𝑑𝑦 𝑑𝑥 = 𝑑𝑦 𝑑𝑝 𝑑𝑝 𝑑𝑥  𝑑𝑦 𝑑𝑥 = 1 ℎ 𝛻𝑦 𝑛 + 2𝑝+1 2! 𝛻2 𝑦 𝑛 + 3𝑝2+6𝑝+2 3! 𝛻3 𝑦 𝑛 + ⋯  The second derivative of y at 𝑥 = 𝑥 𝑛 + 𝑝ℎ is 𝑑2 𝑦 𝑑𝑥2 = 𝑑2 𝑦 𝑑𝑝2 𝑑𝑝 𝑑𝑥 2  𝑑2 𝑦 𝑑𝑥2 = 1 ℎ2 𝛻2 𝑦 𝑛 + (𝑝 + 1)𝛻3 𝑦 𝑛 + 6𝑝2+18𝑝+11 12 𝛻4 𝑦0 + ⋯  The third derivative of y at 𝑥 = 𝑥 𝑛 + 𝑝ℎ  𝑑3 𝑦 𝑑𝑥3 = 1 ℎ3 𝛻3 𝑦 𝑛 + 12𝑝+18 12 𝛻4 𝑦0+. .  For tabular values, at 𝑥 = 𝑥 𝑛, (𝑝 = 0)  𝑑𝑦 𝑑𝑥 = 1 ℎ 𝛻𝑦 𝑛 + 𝛻2 𝑦 𝑛 2 + 𝛻3 𝑦 𝑛 3 + ⋯  𝑑2 𝑦 𝑑𝑥2 = 1 ℎ2 𝛻2 𝑦 𝑛 + 𝛻3 𝑦 𝑛 + 11 12 𝛻4 𝑦0 + ⋯  𝑑3 𝑦 𝑑𝑥3 = 1 ℎ3 𝛻3 𝑦 𝑛 + 3 2 𝛻4 𝑦0+. .
  • 20. NUMERICAL INTEGRATION SINGLE (LINEAR) INTEGRATION 1. TRAPEZOIDAL RULE 2. SIMPSON’S 𝟏 𝟑 RULE
  • 21. TRAPEZOIDAL RULE  𝑥0 𝑥1 𝑓(𝑥) 𝑑𝑥 = ℎ 2 𝑦0 + 𝑦𝑛 + 2( 𝑦1 + 𝑦2 +
  • 22. SIMPSON’S 𝟏 𝟑 𝒓𝒅 RULE  𝑥0 𝑥1 𝑓(𝑥) 𝑑𝑥 = ℎ 3 𝑦0 + 𝑦𝑛 + 4 𝑦1 + 𝑦3 + 𝑦5 + ⋯ + 2(𝑦2 + 𝑦4 + 𝑦6+. . ) = ℎ 3 𝑓𝑖𝑟𝑠𝑡 + 𝑙𝑎𝑠𝑡 + 4 𝑠𝑢𝑚 𝑜𝑓 𝑜𝑑𝑑 𝑡𝑒𝑟𝑚𝑠 + 2 𝑠𝑢𝑚 𝑜𝑓 𝑒𝑣𝑒𝑛 𝑡𝑒𝑟𝑚𝑠 ]  ℎ = 𝑥1−𝑥0 𝑛 , 𝑛 − 𝑖𝑠 𝑡ℎ𝑒 𝒆𝒗𝒆𝒏 𝑛𝑜 𝑜𝑓 𝑠𝑢𝑏 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 𝑖𝑛 𝑥0 𝑥1  Condition for applying the Simpson’s rule – Number of subintervals must be even
  • 23. NUMERICAL DOUBLE INTEGRATION  1. 𝐓𝐑𝐀𝐏𝐄𝐙𝐎𝐈𝐃𝐀𝐋 𝐑𝐔𝐋𝐄  2. 𝐒𝐈𝐌𝐏𝐒𝐎𝐍’𝐒 𝐑𝐔𝐋𝐄
  • 24. TRAPEZOIDAL RULE  𝑎 𝑏 𝑐 𝑑 𝑓 𝑥, 𝑦 𝑑𝑥𝑑𝑦 = ℎ𝑘 4 𝑓1 + 𝑓3 + 𝑓7 + 𝑓9 + 2 𝑓2 + 𝑓4 + 𝑓6 + 𝑓8 + 4𝑓5]  = ℎ𝑘 4 𝑆𝑢𝑚 𝑜𝑓 𝑐𝑜𝑟𝑛𝑒𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓 𝑥, 𝑦 + 2 𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓 𝑥, 𝑦 + 4(𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓(𝑥, 𝑦)]
  • 25. y x 𝑥0 𝑥1 𝑥2 𝑥3 𝑦0 𝑓(𝑥0, 𝑦0) 𝑓(𝑥1, 𝑦0) 𝑓(𝑥2, 𝑦0) 𝑓(𝑥3, 𝑦0) 𝑦1 𝑓(𝑥0, 𝑦1) 𝑓(𝑥1, 𝑦1) 𝑓(𝑥2, 𝑦1) 𝑓(𝑥3, 𝑦1) 𝑦2 𝑓(𝑥0, 𝑦2) 𝑓(𝑥1, 𝑦2) 𝑓(𝑥2, 𝑦2) 𝑓(𝑥3, 𝑦2) 𝑦3 𝑓(𝑥0, 𝑦3) 𝑓(𝑥1, 𝑦3) 𝑓(𝑥2, 𝑦3) 𝑓(𝑥3, 𝑦3) For example, if x takes the values 𝑥0, 𝑥1, 𝑥2, 𝑥3 and y takes values 𝑦0, 𝑦1, 𝑦2, 𝑦3 Red indicates – corner values Blue indicates – boundary values Black indicates – interior values
  • 26. 𝑺𝑰𝑴𝑷𝑺𝑶𝑵’𝑺 𝑹𝑼𝑳𝑬  𝑎 𝑏 𝑐 𝑑 𝑓 𝑥, 𝑦 𝑑𝑥𝑑𝑦 = ℎ𝑘 9 𝑓1 + 𝑓3 + 𝑓7 + 𝑓9 + 2 𝑓2 + 𝑓4 + 𝑓6 + 𝑓8 + 16𝑓5]  = ℎ𝑘 9 𝑆𝑢𝑚 𝑜𝑓 𝑐𝑜𝑟𝑛𝑒𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓 𝑥, 𝑦 + 4 𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓 𝑥, 𝑦 + 16(𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑓(𝑥, 𝑦)]
  • 27. Errors in Trapezoidal rule of numerical integration.  When evaluating 𝑎 𝑏 𝑓 𝑥 𝑑𝑥, the error in the trapezoidal rule is  < 𝑏−𝑎 2 12 ℎ2 𝑀, where ℎ = 𝑏−𝑎 𝑛 , n is the number of subintervals of (a, b),  And 𝑀 = 𝑚𝑎𝑥{|𝑦0 ′′ |, |𝑦1 ′′ |,· · · , |𝑦 𝑛−1 ′′ |}, 𝑦𝑟′′ = 𝑓′′(𝑥 𝑟)  Error in Trapezoidal rule is of order 𝒉 𝟐
  • 28. Errors in Simpson’s rule of numerical integration  The error in Simpson’s rule is < 𝑏−𝑎 180 ℎ4 𝑀  where ℎ = 𝑏−𝑎 2𝑛 , 2n is the number of subintervals of (a, b),  𝑀 = 𝑚𝑎𝑥 𝑦0 1 , 𝑦1 4 ,· · ·