Anzeige
Anzeige

Más contenido relacionado

Presentaciones para ti(20)

Similar a Flexible Aseptic Manufacturing(20)

Anzeige

Flexible Aseptic Manufacturing

  1. FLEXIBLE ASEPTIC MANUFACTURING TRADITIONAL VS. FLEXIBLE ASEPTIC MANUFACTURING Steven Walter, Process Systems Tech. Specialist Hargrove LS Josh Russell Principal Engineer AST
  2. Objective / Agenda Provide an overview and comparison between traditional and flexible aseptic manufacturing, the impact to facility, operations, and cost. • Industry Trends & General Requirements • Traditional Aseptic Processing Overview • Flexible Aseptic Processing Overview • Comparison Between Tradition and Flexible Approaches • Operational Differences • Cost & Savings
  3. Trends & General Requirements • Small scale, high value, patient focused • Fast turnaround time and clinic responsiveness becoming more critical • New products are highly potent at the filling stage • Leaner, modular, simpler • Superior flexibility – multi-format, multi-product, multiple dosing options
  4. CNC CNCCNC/Grade D Grade C Traditional Aseptic Processing DepyroWash Fill Comp Prep Capping VialsCartridge Comp Prep Wash Depyro Stopper LineSeal Capping Fill Insert Plunger Syringes Comp Prep De- Bag Tub Decon Lid/Liner Removal De-Tub Fill Insert Plunger Re-Tub
  5. Traditional Aseptic Processing • Dedicated fill-finish capabilities for a specific container type or “format” • Adding additional container filling capabilities is a significant investment in facilities, time and equipment • Processing challenges include glass on glass contact, machine jams, broken containers, etc. • Very efficient for high volume dedicated products where flexibility is not necessary
  6. Flexible Aseptic Processing • Integrates best in industry technologies • Simplifies the manufacturing process • Ability to fill multiple container formats & sizes • Common facility with reduced floor space and utilities • Increased asset utilization Flexibility is the antidote to uncertainty
  7. Enabling Technologies • Ready-To-Fill Containers • Vials, Syringes, Cartridges and Infusion Bags • WFI Washed, <1 EU/Container, EtO Sterilized • Cartridges have line seal & crimp cap placed, and oriented like a pre-filled syringe • No glass on glass contact • Ready-To-Use Components
  8. Enabling Technologies • Single-Use Product Pathway • Peristaltic & time-pressure • Minimal product holdup • Containment of potent compounds
  9. Enabling Technologies • Isolator Barrier Technology + Robotics • Provides full separation between the operator and the process • Compatible with VHP bio- decontamination • Recipe driven operation • Maximum flexibility and functionality • Negligible particle generation “Automation of other process steps, including the use of technologies such as robotics, can further reduce risk to the product.” Guidance for Industry: Sterile Drug Products Produced by Aseptic Processing — Current Good Manufacturing Practice (Pg.10)
  10. Flexible Aseptic Processing CNCGrade D or C • Consolidated manufacturing process that allows multiple container formats to be filled and finished on a single system. • Interchangeable robot tooling specific to container Capping Rapid Decon Chamber Comp Prep Lid/Liner Removal De-Tub Fill Stopper/ Plunger Re-Tub Ready-To- Fill Containers
  11. Physical Attributes Hard walls, interlocked  doors, glove ports, transfer  ports Stainless walls, sealed unit,  glove ports, transfer ports,  bio‐decon system Stainless walls, sealed unit,  minimal glove ports,  transfer ports, bio‐decon  system Room Classification ISO 7 Min ISO 8 ISO 8 Air Handling Room HVAC or Separate  AHU Separate AHU & HVAC, Leak  Tight, Outside Venting Separate AHU & HVAC or  Integrated , Leak Tight,  Outside Venting Bio‐Decon Manual, Glove Autoclaving Automatic  Duration depending on  components Environmental  Monitoring Portable or Built‐In Built‐In Built‐In / Automated Gowning Class 5 or 7 Gowns, Glove  Port Usage Class 8 Gowns, Glove Port  Usage Class 8 Gowns Glove Testing Visual, Automatic Visual, Automatic If Required ASEPTIC PROCESSING COMPARISON Criteria RABS Isolator              Robotic Isolator Comparison
  12. Material Transfer Mousehole, Load Lock,  RTPs, DRAWERS Mousehole, RTP, Transfer  Isolator RTP, Transfer Isolator,  Staging Isolator  Emphasis of Training  SOPs Gowning, Aseptic  Technique, Barrier Cleaning,  Transfer Methods, Glove  Inspection & Testing Barrier Control System,  Transfer Methods, Glove  Inspection & Testing, Bio‐ Decontamination Barrier Control System,  Transfer Methods,  Bio‐ Decontamination Capacity All Speeds All Speeds Limited / # Of Modules or  filling heads Floor Space Minimized: Minimal  gowning functions,  Component Prep Varies Minimized:  Gowning  functions, Minimal  Component Prep, Support  equipment: A/C, Depyro  and Wash not required Access for Change  Over Gowned with open doors Easy with Open Doors /  Manual Minimal:  Automatic ‐ Machine settings are stored  as recipe.  Some pieces of  tooling Operating Costs High  Medium Low Validation Complexity  Moderate ‐ Risk with  Airflows Medium ‐ Utilizing FAT/SAT  results Low ‐ Repeatability of  Robots and no  interventions  ASEPTIC PROCESSING COMPARISON Criteria RABS Isolator              Robotic Isolator Comparison
  13. Criteria Isolator Flexible Glove Testing Visual / Automatic (Qty) Visual / Automatic – (Qty - Minimal) Training / SOPs Aseptic Technique / Transfer Limited Operator interface during set up Component Prep Varies No Wash / Depyro Change Over Operator Set Up Programmed with integrated tooling Utilization Depends on Set Up, Change Out and Reduced process steps – Increased Up Time Product Path Cleaning / Steam In Place Single Use Assembly Operational Differences
  14. Criteria Isolator Flexible Receipt of Materials Packed Glass Tub / Tray RTU Component Prep Unwrap / Wash Unwrap / Stage Waste Packaging Discarded Trays / Tubs utilized through capping Sterilization / Decontamination Time Low Driven lower with smaller environment and isolated decontamination Operators Required for setup, changeover Automated – setup, changeover Operational Differences
  15. * Component prep area is included in the overall area of vial filling & capping. Area Isolator (SF/SM) Flexible (SF/SM) Vial Filling & Capping 2100 / 195 900 / 84 Gowning 120 / 11 120 / 11 Degowning 80 / 8 80 / 8 Material Air Lock (MAL) 100 / 9 100 / 9 Comp Prep / Material Staging Note * 300 / 28 Total Area 2400 / 223 1500 / 140 35 – 40% Decrease in required functional areas Impact to Layout
  16. Space /Area Gr $/SF (US / €) Isolator (SF/SM) $ Isolator (US / €) Flexible (SF/SM) $ Flex (US / €) Vial Filling & Capping C 425 / 316 2100 / 195 892,500 / 663,840 900 / 84 405,000 / 301,240 Gowning C 425 / 316 120 / 11 54,000 / 40,165 120 / 11 54,000 / 40,165 Degowning C 425 / 316 80 / 8 36,000 / 26,775 80 / 8 36,000 / 26,775 MAL C 425 / 316 100 / 9 45,000 / 33,475 100 / 9 45,000 / 33,475 Comp Prep / Matl Staging D 300 / 223 Note * 0 300 / 28 90,000 / 66,942 Totals 2400 / 223 1,027,500 / 764,254 1,500 / 140 630,000 / 468,594 Cost Impact - Facility * Component prep area is included in the overall area of vial filling & capping.
  17. Flexible, Multi-Format Facility
  18. Flexible, Multi-Format Facility Fill Suite Size: 3600 SF / 335 SM
  19. Size, Cost & Equipment • Facility Size • Reduce operating areas by 30-40% • Facility Cost • Reduced engineering / design & construction costs • Reduced construction / constructability challenges • Reduced capital equipment investment • Equipment Operations • Eliminate washing and depryogenation operations from the manufacturing site • Increase equipment utilization • Single fill line has the ability to process multiple container formats • Eliminates some of the most common routine interventions
  20. Conclusions • Flexible aseptic processing simplifies the traditional aseptic manufacturing process • Flexible aseptic processing leverages the strengths of best in industry technologies to: • Focus on core aseptic manufacturing processes • Provide an adaptable platform capable of multi- container format filling • Minimize routine operator interventions • Reduce facility size, utilities, cost, and validation • Increase operational efficiency
  21. Acknowledgements: Andrew Scherer, President, SmartFit Modular George Wiker, Principal, SmartFit Modular Chris Tyree, Ompi North America
  22. Thank You! Joshua Russell, Principle Engineer – Life Sciences Automated Systems of Tacoma (AST) 4110 South Washington St. Tacoma, WA 98409 (253) 475-0200 jrussell@ast-inc.com Steven Walter, Process Systems Tech. Specialist Hargrove Life Sciences 1880 JFK Blvd., Suite 700, Philadelphia, PA 19103 (215) 789-9665 swalter@hargrove-epc.com
Anzeige