Anzeige
Anzeige

Más contenido relacionado

Presentaciones para ti(20)

Similar a 自然方策勾配法の基礎と応用(20)

Anzeige

自然方策勾配法の基礎と応用

  1. • – • – ‣ ‣ – ‣ ‣
  2. • – – – 4
  3. difficult and engaging for human players. We used the same network architecture, hyperparameter values (see Extended Data Table 1) and learningprocedurethroughout—takinghigh-dimensionaldata(210|160 colour video at 60 Hz) as input—to demonstrate that our approach robustly learns successful policies over a variety of games based solely onsensoryinputswithonlyveryminimalpriorknowledge(thatis,merely the input data were visual images, and the number of actions available in each game, but not their correspondences; see Methods). Notably, our method was able to train large neural networks using a reinforce- mentlearningsignalandstochasticgradientdescentinastablemanner— illustrated by the temporal evolution of two indices of learning (the agent’s average score-per-episode and average predicted Q-values; see Fig. 2 and Supplementary Discussion for details). We compared DQN with the best performing methods from the reinforcement learning literature on the 49 games where results were available12,15 . In addition to the learned agents, we alsoreport scores for aprofessionalhumangamestesterplayingundercontrolledconditions and a policy that selects actions uniformly at random (Extended Data Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y axis; see Methods). Our DQN method outperforms the best existing reinforcement learning methods on 43 of the games without incorpo- rating any of the additional prior knowledge about Atari 2600 games used by other approaches (for example, refs 12, 15). Furthermore, our DQN agent performed at a level that was comparable to that of a pro- fessionalhumangamestesteracrossthesetof49games,achievingmore than75%ofthe humanscore onmorethanhalfofthegames(29 games; Convolution Convolution Fully connected Fully connected No input Figure 1 | Schematic illustration of the convolutional neural network. The details of the architecture are explained in the Methods. The input to the neural network consists of an 843 843 4 image produced by the preprocessing map w, followed by three convolutional layers (note: snaking blue line symbolizes sliding of each filter across input image) and two fully connected layers with a single output for each valid action. Each hidden layer is followed by a rectifier nonlinearity (that is, max 0,xð Þ). a b c d 0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 0 20 40 60 80 100 120 140 160 180 200 Averagescoreperepisode Training epochs 8 9 10 11 alue(Q) 0 1,000 2,000 3,000 4,000 5,000 6,000 0 20 40 60 80 100 120 140 160 180 200 Averagescoreperepisode Training epochs 7 8 9 10 alue(Q) RESEARCH LETTER IEEE ROBOTICS & AUTOMATION MAGAZINE MARCH 2016104 regression [2]. With a function approximator, the sampled data from the approximated model can be generated by inap- propriate interpolation or extrapolation that improperly up- dates the policy parameters. In addition, if we aggressively derive the analytical gradi- ent of the approximated model to update the poli- cy, the approximated gra- dient might be far from the true gradient of the objective function due to the model approximation error. If we consider using these function approxima- tion methods for high-di- mensional systems like humanoid robots, this problem becomes more serious due to the difficul- ty of approximating high- dimensional dynamics models with a limited amount of data sampled from real systems. On the other hand, if the environ- ment is extremely stochastic, a limited amount of previously acquired data might not be able to capture the real environ- ment’s property and could lead to inappropriate policy up- dates. However, rigid dynamics models, such as a humanoid robot model, do not usually include large stochasticity. There- fore, our approach is suitable for a real robot learning for high- dimensional systems like humanoid robots. Moreover, applying RL to actual robot control is difficult, since it usually requires many learning trials that cannot be exe- cuted in real environments, and the real system’s durability is limited. Previous studies used prior knowledge or properly de- signed initial trajectories to apply RL to a real robot and im- proved the robot controller’s parameters [1], [4], [10], [19], [32]. We applied our proposed learning method to our human- oid robot [7] (Figure 13) and show that it can accomplish two different movement-learning tasks without any prior knowl- edge for the cart-pole swing-up task or with a very simple nominal trajectory for the basketball-shooting task. The proposed recursive use of previously sampled data to improve policies for real robots would also be useful for other policy search algorithms, such as reward weighted re- gression [11] or information theoretic approaches [12], and it might be interesting to investigate how these combinations work as a future study. Conclusions In this article, we proposed reusing the previous experienc- es of a humanoid robot to efficiently improve its task per- formance. We proposed recursively using the off-policy PGPE method to improve the policies and applied our ap- proach to cart-pole swing-up and basketball-shooting tasks. In the former, we introduced a real-virtual hybrid task environment composed of a motion controller and vir- tually simulated cart-pole dynamics. By using the hybrid environment, we can potentially design a wide variety of different task environments. Note that complicated arm movements of the humanoid robot need to be learned for the cart-pole swing-up. Furthermore, by using our pro- posed method, the challenging basketball-shooting task was successfully accomplished. Future work will develop a method based on a transfer learning [28] approach to efficiently reuse the previous expe- riences acquired in different target tasks. Acknowledgment This work was supported by MEXT KAKENHI Grant 23120004, MIC-SCOPE, ``Development of BMI Technolo- gies for Clinical Application’’ carried out under SRPBS by AMED, and NEDO. Part of this study was supported by JSPS KAKENHI Grant 26730141. This work was also supported by NSFC 61502339. References [1] A. G. Kupcsik, M. P. Deisenroth, J. Peters, and G. Neumann, “Data-effi- cient contextual policy search for robot movement skills,” in Proc. National Conf. Artificial Intelligence, 2013. [2] C. E. Rasmussen and C. K. I. Williams Gaussian Processes for Machine Learning. Cambridge, MA: MIT Press, 2006. [3] C. G. Atkeson and S. Schaal, “Robot learning from demonstration,” in Proc. 14th Int. Conf. Machine Learning, 1997, pp. 12–20. [4] C. G. Atkeson and J. Morimoto, “Nonparametric representation of poli- cies and value functions: A trajectory-based approach,” in Proc. Neural Infor- mation Processing Systems, 2002, pp. 1643–1650. Efficiently reusing previous experiences is crucial to improve its behavioral policies without actually interacting with real environments. Figure 13. The humanoid robot CB-i [7]. (Photo courtesy of ATR.) Learning Dexterous In-Hand Manipulation OpenAI⇤ ON FOR A REAL ROBOT 281 (b) A picture of the radio-controlled vehi- cle. meters such as the focal length and tilt angle, or the b) shows a picture of the real robot with a TV camera eriments. stem, we will briefly review the basics of Q-learning. We follow the explanation of Q-learning by Kaelbling
  4. ation as a Reinforcement Learning Problem learning framework we introduced above, where the goal is to find the update at minimizes the meta-loss. Intuitively, we think of the agent as an optimization and the environment as being characterized by the family of objective functions ike to learn an optimizer for. The state consists of the current iterate and some ong the optimization trajectory so far, which could be some statistic of the history s, iterates and objective values. The action is the step vector that is used to update formulation, the policy is essentially a procedure that computes the action, which vector, from the state, which depends on the current iterate and the history of iterates and objective values. In other words, a particular policy represents a update formula. Hence, learning the policy is equivalent to learning the update nd hence the optimization algorithm. The initial state probability distribution is stribution of the initial iterate, gradient and objective value. The state transition distribution characterizes what the next state is likely to be given the current action. Since the state contains the gradient and objective value, the state probability distribution captures how the gradient and objective value are likely to any given step vector. In other words, it encodes the likely local geometries of the unctions of interest. Crucially, the reinforcement learning algorithm does not access to this state transition probability distribution, and therefore the policy it ds overfitting to the geometry of the training objective functions. a cost function of a state to be the value of the objective function evaluated at the ate. Because reinforcement learning minimizes the cumulative cost over all time sentially minimizes the sum of objective values over all iterations, which is the e meta-loss. an optimization algorithm on the problem of training a neural net on MNIST, and n the problems of training di"erent neural nets on the Toronto Faces Dataset AR-10 and CIFAR-100. These datasets bear little similarity to each other: MNIST black-and-white images of handwritten digits, TFD consists of grayscale images aces, and CIFAR-10/100 consists of colour images of common objects in natural d using our approach on MNIST (shown in light FAR-100 and outperforms other optimization on algorithms learned using our approach, we dimensional logistic regression problems and rameters. It is worth noting that the behaviours s and high dimensions may be di"erent, and so ve of the behaviours of optimization algorithms e some useful intuitions about the kinds of ctories followed by various algorithms on two ms. Each arrow represents one iteration of an thm learned using our approach (shown in light IBM Research / Center for Business Optimization Modeling and Optimization Engine Actions Other System 1 System 2 System 3 Event Listener Event Notification Event Notification Event Notification < inserts > TP Profile Taxpayer State ( Current ) Modeler Optimizer < input to > State Generator < input to > Case Inventory < reads > < input to > Allocation Rules Resource Constraints < input to > < inserts , updates > Business Rules < input to > < generates > Segment Selector Action 1 Cnt Action 2 Cnt Action n Cnt 1 C 1 ^ C 2 V C 3 200 50 0 2 C 4 V C 1 ^ C 7 0 50 250 TP ID Feat 1 Feat 2 Feat n 123456789 00 5 A 1500 122334456 01 0 G 1600 122118811 03 9 G 1700 Rule Processor < input to > < input to > Recommended Actions < inserts , updates > TP ID Rec. Date Rec. Action Start Date 123456789 00 6/21/2006 A1 6/21/2006 122334456 01 6/20/2006 A2 6/20/2006 122118811 03 5/31/2006 A2 Action Handler < input to > New Case Case Extract Scheduler < starts > < updates > State Time Expired Event Notification < input to > Taxpayer State History State TP ID State Date Feat 1 Feat 2 Feat n 123456789 00 6/1/2006 5 A 1500 122334456 01 5/31/2006 0 G 1600 122118811 03 4/16/2006 4 R 922 122118811 03 4/20/2006 9 G 1700 < inserts > Feature Definitions (XML) (XSLT) (XML) (XML) (XSLT) Figure 2: Overall collections system architecture. 3.1 GENERATE MODEL DESCRIPTIONS WITH A CONTROLLER RECURRENT NEURAL NETWORK In Neural Architecture Search, we use a controller to generate architectural hyperparameters of neural networks. To be flexible, the controller is implemented as a recurrent neural network. Let’s suppose we would like to predict feedforward neural networks with only convolutional layers, we can use the controller to generate their hyperparameters as a sequence of tokens: Figure 2: How our controller recurrent neural network samples a simple convolutional network. It predicts filter height, filter width, stride height, stride width, and number of filters for one layer and repeats. Every prediction is carried out by a softmax classifier and then fed into the next time step as input. In our experiments, the process of generating an architecture stops if the number of layers exceeds a certain value. This value follows a schedule where we increase it as training progresses. Once the controller RNN finishes generating an architecture, a neural network with this architecture is built and trained. At convergence, the accuracy of the network on a held-out validation set is recorded. The parameters of the controller RNN, ✓c, are then optimized in order to maximize the expected validation accuracy of the proposed architectures. In the next section, we will describe a policy gradient method which we use to update parameters ✓c so that the controller RNN generates better architectures over time. 3.2 TRAINING WITH REINFORCE The list of tokens that the controller predicts can be viewed as a list of actions a1:T to design an architecture for a child network. At convergence, this child network will achieve an accuracy R on a held-out dataset. We can use this accuracy R as the reward signal and use reinforcement learning The last few years have seen much success of deep neural networks in m cations, such as speech recognition (Hinton et al., 2012), image recognitio Krizhevsky et al., 2012) and machine translation (Sutskever et al., 2014; Bah et al., 2016). Along with this success is a paradigm shift from feature de designing, i.e., from SIFT (Lowe, 1999), and HOG (Dalal & Triggs, 2005), to et al., 2012), VGGNet (Simonyan & Zisserman, 2014), GoogleNet (Szeg ResNet (He et al., 2016a). Although it has become easier, designing archit lot of expert knowledge and takes ample time. Figure 1: An overview of Neural Architecture Search. This paper presents Neural Architecture Search, a gradient-based method for tures (see Figure 1) . Our work is based on the observation that the structure ⇤ Work done as a member of the Google Brain Residency program (g.co/brain 1 arXiv:1611.0
  5. omplementary roles of basal ganglia and cerebellum in learning and motor control Doya 733 Thalamus Cerebral cortex Cerebellum Target Error OutputInput Supervised learning Reward OutputInput Reinforcement learning Unsupervised learning OutputInput Basal ganglia Current Opinion in Neurobiology Inferior olive + – Substantia nigra
  6. • • • • • V ⇡ , Q⇡ <latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> ⇡<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> r<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> a<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> s<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
  7. • • • • • • • – – (S, A, P, R, ⇢0, ) ⇡ : S ⇥ A ! [0, 1] ⇡ : S ! A<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> st 1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> st+1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> st+2<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> st<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> rt<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> rt 1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> rt+1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> at+1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> at 1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> at<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> S, A P : S ⇥ A ⇥ S ! [0, 1] R : S ⇥ A ! [ Rmax, Rmax] ⇢0 : S ! [0, 1] 2 [0, 1)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
  8. • • • st 1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> st+1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> st<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> rt<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> rt 1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> at 1<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> at<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> st 2<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> P(st+1|st, at, st 1, at 1, st 2, . . .) = P(st+1|st, at) E[rt|st, at, st 1, at 1, st 2, . . .] = E[rt|st, at] P(at|st, st 1, st 2, . . .) = P(at|st)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> P(s0 |s, a) = P(s0 |s, a) R(s, a) = E[r|s, a]<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> ⇡(a|s) = P(a|s)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
  9. • – – – V ⇡ (s) = E⇡,P " 1X t=0 t R(st, at) |s0 = s # Q⇡ (s, a) = E⇡,P " 1X t=0 t R(st, at) |s0 = s, a0 = a # <latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
  10. • • • V ⇤ = max ⇡ V ⇡ , Q⇤ = max ⇡ Q⇡ <latexit sha1_base64="0v33v5Je9NLzYntL8CHM8lep3rI=">AAAIx3icpVW9b9NQEL+0fJjw0QQWRJeIqBVCVfRcCgQkpAoW2JqWpJXqENnOS2rFsY0/QoJlJAYWdsTABBID4s9g4R9g6J+AOhaJhYF7LyaJk9S2hC377t27+93Pd2dbsXTNcQk5zCwsnjp95qxwLnv+wsVLS7n85ZpjerZKq6qpm/aeIjtU1wxadTVXp3uWTeWuotNdpfOI7e/2qO1opvHUHVi03pXbhtbSVNlFUyP3pvbMl1Tb8m8GQWH1QUHyjCa6U9eXTFs22tSXLC0IfKkr94PCqwJzn9zIrknPPbmZrUzAJKNUplAauSIpEX4UZhUxVIoQHltmfvEdSNAEE1TwoAsUDHBR10EGB899EIGAhbY6+GizUdP4PoUAshjroRdFDxmtHby3cbUfWg1cM0yHR6uYRcfLxsgCrJAf5As5Jt/JV/KT/DkRy+cYjMsApTKMpVZj6e3Vnd+JUV2ULhyMo2I5u9CCMueqIXeLW9hTqMP43sv3xzv3t1f8VfKJHCH/j+SQfMMnMHq/1M8Vuv0hho+CXIYVM3D9glejy/kZWH8f7Tbam+jDal7nFpa9z/vxr3L+yMuHIvoFCZgKxnm8V/GoY790uG3Og9UmCXnSM4rdRGuLV5pGItidZWqHfFTMPMBKMp3AGl4luI1SRDlcx3ON4sWznc6dhm+TvxedSA0nOYsh5ztcJvOdxYvnPC9/mh6qKJX/Rk+qynheo30swXqkh+nrku49mc2fhjV7522863Nnj81dOezmvdEspuEexY1nPs0hDW8ZtQP+zVP4BM/OYGnE9xZsjCaynIL7LHY8/3lc0jzDsFNJHSCRqZmUSdPOUNN9XU/oAP5dxel/6axSWy+JpCRWNoqbD8P/rADLcB1uIMpd2ITHsAVVzHqUyWeuZZaFJ4Ip9IT+0HUhE8ZcgcghvP4Lf8DdKg==</latexit><latexit sha1_base64="0v33v5Je9NLzYntL8CHM8lep3rI=">AAAIx3icpVW9b9NQEL+0fJjw0QQWRJeIqBVCVfRcCgQkpAoW2JqWpJXqENnOS2rFsY0/QoJlJAYWdsTABBID4s9g4R9g6J+AOhaJhYF7LyaJk9S2hC377t27+93Pd2dbsXTNcQk5zCwsnjp95qxwLnv+wsVLS7n85ZpjerZKq6qpm/aeIjtU1wxadTVXp3uWTeWuotNdpfOI7e/2qO1opvHUHVi03pXbhtbSVNlFUyP3pvbMl1Tb8m8GQWH1QUHyjCa6U9eXTFs22tSXLC0IfKkr94PCqwJzn9zIrknPPbmZrUzAJKNUplAauSIpEX4UZhUxVIoQHltmfvEdSNAEE1TwoAsUDHBR10EGB899EIGAhbY6+GizUdP4PoUAshjroRdFDxmtHby3cbUfWg1cM0yHR6uYRcfLxsgCrJAf5As5Jt/JV/KT/DkRy+cYjMsApTKMpVZj6e3Vnd+JUV2ULhyMo2I5u9CCMueqIXeLW9hTqMP43sv3xzv3t1f8VfKJHCH/j+SQfMMnMHq/1M8Vuv0hho+CXIYVM3D9glejy/kZWH8f7Tbam+jDal7nFpa9z/vxr3L+yMuHIvoFCZgKxnm8V/GoY790uG3Og9UmCXnSM4rdRGuLV5pGItidZWqHfFTMPMBKMp3AGl4luI1SRDlcx3ON4sWznc6dhm+TvxedSA0nOYsh5ztcJvOdxYvnPC9/mh6qKJX/Rk+qynheo30swXqkh+nrku49mc2fhjV7522863Nnj81dOezmvdEspuEexY1nPs0hDW8ZtQP+zVP4BM/OYGnE9xZsjCaynIL7LHY8/3lc0jzDsFNJHSCRqZmUSdPOUNN9XU/oAP5dxel/6axSWy+JpCRWNoqbD8P/rADLcB1uIMpd2ITHsAVVzHqUyWeuZZaFJ4Ip9IT+0HUhE8ZcgcghvP4Lf8DdKg==</latexit><latexit sha1_base64="0v33v5Je9NLzYntL8CHM8lep3rI=">AAAIx3icpVW9b9NQEL+0fJjw0QQWRJeIqBVCVfRcCgQkpAoW2JqWpJXqENnOS2rFsY0/QoJlJAYWdsTABBID4s9g4R9g6J+AOhaJhYF7LyaJk9S2hC377t27+93Pd2dbsXTNcQk5zCwsnjp95qxwLnv+wsVLS7n85ZpjerZKq6qpm/aeIjtU1wxadTVXp3uWTeWuotNdpfOI7e/2qO1opvHUHVi03pXbhtbSVNlFUyP3pvbMl1Tb8m8GQWH1QUHyjCa6U9eXTFs22tSXLC0IfKkr94PCqwJzn9zIrknPPbmZrUzAJKNUplAauSIpEX4UZhUxVIoQHltmfvEdSNAEE1TwoAsUDHBR10EGB899EIGAhbY6+GizUdP4PoUAshjroRdFDxmtHby3cbUfWg1cM0yHR6uYRcfLxsgCrJAf5As5Jt/JV/KT/DkRy+cYjMsApTKMpVZj6e3Vnd+JUV2ULhyMo2I5u9CCMueqIXeLW9hTqMP43sv3xzv3t1f8VfKJHCH/j+SQfMMnMHq/1M8Vuv0hho+CXIYVM3D9glejy/kZWH8f7Tbam+jDal7nFpa9z/vxr3L+yMuHIvoFCZgKxnm8V/GoY790uG3Og9UmCXnSM4rdRGuLV5pGItidZWqHfFTMPMBKMp3AGl4luI1SRDlcx3ON4sWznc6dhm+TvxedSA0nOYsh5ztcJvOdxYvnPC9/mh6qKJX/Rk+qynheo30swXqkh+nrku49mc2fhjV7522863Nnj81dOezmvdEspuEexY1nPs0hDW8ZtQP+zVP4BM/OYGnE9xZsjCaynIL7LHY8/3lc0jzDsFNJHSCRqZmUSdPOUNN9XU/oAP5dxel/6axSWy+JpCRWNoqbD8P/rADLcB1uIMpd2ITHsAVVzHqUyWeuZZaFJ4Ip9IT+0HUhE8ZcgcghvP4Lf8DdKg==</latexit><latexit sha1_base64="+yUFvErgRhyN9ZPsRpgMcGD0ZDQ=">AAAIMnicpVXNbtNAEJ62FJdQaHtD4lIRFXFA1rj8BU5IvXDsD2krlaiynU1qxX+ynUCw+gK9VogDJ5A4IJ4CceEFOPQJEEJCSEXiwoHZtZvEcWqvhKN4Zscz33yemfUavm2FEeLJ1PTMhdmLytylyuX5ypWrC4vz26HXDUxWNz3bC3YNPWS25bJ6ZEU22/UDpjuGzXaMzhp/vtNjQWh57tOo77OGo7ddq2WZekSm9f3FKqooruW8oqVKFdLLW5p5Bc+gCR6Y0AUHGLgQkW6DDiH99kADBJ9sDYjJFpBmiecMDqFCsV3yYuShk7VD9zat9lKrS2uOGYpok7LY9A8ochlW8Ct+wFP8gh/xO/49FysWGJxLn6SRxDJ/f+Ho2taf0iiHZAQHw6hCzhG0oCa4WsTdFxb+FmYS33v5+nTr0eZKfBPf4Q/i/xZP8DO9gdv7bb7fYJtvCvgYxCWpmEvr56IajuDnUv1jsgdkb5IPr3lDWHj2F6IfZ5WLB14xVMnvsATToLiu6FUx6tBPDrctePDalCGPemaxm2RtiUqzTAS/80ztlI9JmftUSa4j3Ka/CvdIaiSTdTHXLF4x2/HcMnybYl90MjUc5aylnO8LWc43j1fMeVJ+mR6aJI3/Ri+rynBes31UYTXTQ/m6yO2TfH4Z1nzPB3S3J84en7ta2s2Hg1mU4Z7FLWY+zkGGt07agfjmGWKC8zOoDvjegbuDiaxJcM9jF/OfxEXmHZJOlXUAM1MzKsumnaPKfV3P6QAdrtr4UZpXtldVDVVtA2EOrsMNuEXBD+AxPIF1qItNdwTHyiflm/IzOYSnp9LTeAkyl/LrHw59qUs=</latexit><latexit sha1_base64="8+EXbOQXyVjN0rL5PuUUZddx8EE=">AAAIvHicpVVLb9NAEJ60PEwoNOGE6CUiaoVQFa3LKyAhIXGBW9OStFIdIj82qRW/cOyQYJkbF+6IAyeQOCB+Bhf+AIf+BNRjkbhwYHZjkjhJbUvYsmd2PPPN55mxV3EMvecRcpRbWj5z9tx54UL+4sqly6uF4kqjZ/uuSuuqbdjuviL3qKFbtO7pnkH3HZfKpmLQPaX7mD3f61O3p9vWM2/o0KYpdyy9rauyh6ZW4U3jeSCprhPcDMPSxsOS5FsaulMvkGxXtjo0kBw9DAPJlAdh6XWJuU8/yG9KL3xZy9emYNJRajMorUKZVAg/SvOKGClliI5tu7j8DiTQwAYVfDCBggUe6gbI0MPzAEQg4KCtCQHaXNR0/pxCCHmM9dGLooeM1i7eO7g6iKwWrhlmj0ermMXAy8XIEqyTH+QLOSHfyVfyk/w5FSvgGIzLEKUyiqVOa/Xt1d3fqVEmSg8OJ1GJnD1oQ5Vz1ZG7wy3sLdRRfP/V+5PdBzvrwQb5RI6R/0dyRL7hG1j9X+rnGt35kMBHQS6jilm4fsmrYXJ+FtY/QLuLdg19WM2b3MKyD3g//lUuGHsFUEa/MAVTwTif9yoZdeKXDbfDebDapCFPe8axNbS2eaVpLILdWaZOxEfFzEOsJNMJbOJVgTsoRZSjdTLXOF4y29ncWfhq/Lvoxmo4zVmMON/lMp3vPF4y50X5s/RQRan8N3paVSbzGu9jBbZiPcxel2zfyXz+LKzZN+/i3Vg4e2zuqlE3749nMQv3OG4y81kOWXjLqB3yf57CJ3h+Bitjvrfg9ngiqxm4z2Mn81/EJcs7jDqV1gESm5ppmTbtDDXb3/WUDuDuKs7upfNKY6sikopYIyDAGlyHGxh8Dx7BE9iGOiY7zhVz13JrwlPBFvqjfXgpF23IVyB2CIO/xfbb8Q==</latexit><latexit sha1_base64="8+EXbOQXyVjN0rL5PuUUZddx8EE=">AAAIvHicpVVLb9NAEJ60PEwoNOGE6CUiaoVQFa3LKyAhIXGBW9OStFIdIj82qRW/cOyQYJkbF+6IAyeQOCB+Bhf+AIf+BNRjkbhwYHZjkjhJbUvYsmd2PPPN55mxV3EMvecRcpRbWj5z9tx54UL+4sqly6uF4kqjZ/uuSuuqbdjuviL3qKFbtO7pnkH3HZfKpmLQPaX7mD3f61O3p9vWM2/o0KYpdyy9rauyh6ZW4U3jeSCprhPcDMPSxsOS5FsaulMvkGxXtjo0kBw9DAPJlAdh6XWJuU8/yG9KL3xZy9emYNJRajMorUKZVAg/SvOKGClliI5tu7j8DiTQwAYVfDCBggUe6gbI0MPzAEQg4KCtCQHaXNR0/pxCCHmM9dGLooeM1i7eO7g6iKwWrhlmj0ermMXAy8XIEqyTH+QLOSHfyVfyk/w5FSvgGIzLEKUyiqVOa/Xt1d3fqVEmSg8OJ1GJnD1oQ5Vz1ZG7wy3sLdRRfP/V+5PdBzvrwQb5RI6R/0dyRL7hG1j9X+rnGt35kMBHQS6jilm4fsmrYXJ+FtY/QLuLdg19WM2b3MKyD3g//lUuGHsFUEa/MAVTwTif9yoZdeKXDbfDebDapCFPe8axNbS2eaVpLILdWaZOxEfFzEOsJNMJbOJVgTsoRZSjdTLXOF4y29ncWfhq/Lvoxmo4zVmMON/lMp3vPF4y50X5s/RQRan8N3paVSbzGu9jBbZiPcxel2zfyXz+LKzZN+/i3Vg4e2zuqlE3749nMQv3OG4y81kOWXjLqB3yf57CJ3h+Bitjvrfg9ngiqxm4z2Mn81/EJcs7jDqV1gESm5ppmTbtDDXb3/WUDuDuKs7upfNKY6sikopYIyDAGlyHGxh8Dx7BE9iGOiY7zhVz13JrwlPBFvqjfXgpF23IVyB2CIO/xfbb8Q==</latexit><latexit sha1_base64="xmWIwGjZ4NJtPuqIJmTZSszXHz0=">AAAIx3icpVW9b9NQEL+0fJjw0QQWRBeLqBVCVfRcvgISUgULbE1L0kp1iGznJbXi2MZ2QoJlJAYWdsTABBID4s9g4R9g6J+AOhaJhYF7LyaJk9S2VFv23bt397uf7862ahu66xFykFlYPHX6zFnhXPb8hYuXlnL5y1XX6joarWiWYTm7quJSQzdpxdM9g+7aDlU6qkF31PZjtr/To46rW+Yzb2DTWkdpmXpT1xQPTfXc2+pzX9Yc278ZBOLqQ1Humg10p54vW45itqgv23oQ+HJH6Qfia5G5T25k1+QXXaWRLU/AJKOUp1DquQIpEn6Is4oUKgUIj00rv/geZGiABRp0oQMUTPBQN0ABF889kICAjbYa+GhzUNP5PoUAshjbRS+KHgpa23hv4WovtJq4Zpguj9Ywi4GXg5EirJCf5Cs5Ij/IN/KL/D0Wy+cYjMsApTqMpXZ96d3V7T+JUR2UHuyPo2I5e9CEEueqI3ebW9hTaMP43qsPR9sPtlb8VfKZHCL/T+SAfMcnMHu/tS9luvUxho+KXIYVM3H9klejw/mZWH8f7Q7aG+jDal7jFpa9z/vxv3L+yMuHAvoFCZgqxnV5r+JRx37pcFucB6tNEvKkZxS7gdYmrzSNRLA7y9QK+WiYeYCVZDqBNbyKcAelhHK4jucaxYtnO507Dd8Gfy/akRpOcpZCzne5TOY7ixfPeV7+ND3UUKonRk+qynheo30swnqkh+nrku49mc2fhjV75x28G3Nnj81dKezm/dEspuEexY1nPs0hDW8FtX3+zVP5BM/OYHHE9xbcHk1kKQX3Wex4/vO4pHmGYaeSOkAiUzMpk6adoab7uh7TAfy7StP/0lmlul6USFEqk8LGo/A/K8AyXIcbiHIPNuAJbEIFsx5m8plrmWXhqWAJPaE/dF3IhDFXIHIIb/4BfoDdJg==</latexit><latexit sha1_base64="0v33v5Je9NLzYntL8CHM8lep3rI=">AAAIx3icpVW9b9NQEL+0fJjw0QQWRJeIqBVCVfRcCgQkpAoW2JqWpJXqENnOS2rFsY0/QoJlJAYWdsTABBID4s9g4R9g6J+AOhaJhYF7LyaJk9S2hC377t27+93Pd2dbsXTNcQk5zCwsnjp95qxwLnv+wsVLS7n85ZpjerZKq6qpm/aeIjtU1wxadTVXp3uWTeWuotNdpfOI7e/2qO1opvHUHVi03pXbhtbSVNlFUyP3pvbMl1Tb8m8GQWH1QUHyjCa6U9eXTFs22tSXLC0IfKkr94PCqwJzn9zIrknPPbmZrUzAJKNUplAauSIpEX4UZhUxVIoQHltmfvEdSNAEE1TwoAsUDHBR10EGB899EIGAhbY6+GizUdP4PoUAshjroRdFDxmtHby3cbUfWg1cM0yHR6uYRcfLxsgCrJAf5As5Jt/JV/KT/DkRy+cYjMsApTKMpVZj6e3Vnd+JUV2ULhyMo2I5u9CCMueqIXeLW9hTqMP43sv3xzv3t1f8VfKJHCH/j+SQfMMnMHq/1M8Vuv0hho+CXIYVM3D9glejy/kZWH8f7Tbam+jDal7nFpa9z/vxr3L+yMuHIvoFCZgKxnm8V/GoY790uG3Og9UmCXnSM4rdRGuLV5pGItidZWqHfFTMPMBKMp3AGl4luI1SRDlcx3ON4sWznc6dhm+TvxedSA0nOYsh5ztcJvOdxYvnPC9/mh6qKJX/Rk+qynheo30swXqkh+nrku49mc2fhjV7522863Nnj81dOezmvdEspuEexY1nPs0hDW8ZtQP+zVP4BM/OYGnE9xZsjCaynIL7LHY8/3lc0jzDsFNJHSCRqZmUSdPOUNN9XU/oAP5dxel/6axSWy+JpCRWNoqbD8P/rADLcB1uIMpd2ITHsAVVzHqUyWeuZZaFJ4Ip9IT+0HUhE8ZcgcghvP4Lf8DdKg==</latexit><latexit sha1_base64="0v33v5Je9NLzYntL8CHM8lep3rI=">AAAIx3icpVW9b9NQEL+0fJjw0QQWRJeIqBVCVfRcCgQkpAoW2JqWpJXqENnOS2rFsY0/QoJlJAYWdsTABBID4s9g4R9g6J+AOhaJhYF7LyaJk9S2hC377t27+93Pd2dbsXTNcQk5zCwsnjp95qxwLnv+wsVLS7n85ZpjerZKq6qpm/aeIjtU1wxadTVXp3uWTeWuotNdpfOI7e/2qO1opvHUHVi03pXbhtbSVNlFUyP3pvbMl1Tb8m8GQWH1QUHyjCa6U9eXTFs22tSXLC0IfKkr94PCqwJzn9zIrknPPbmZrUzAJKNUplAauSIpEX4UZhUxVIoQHltmfvEdSNAEE1TwoAsUDHBR10EGB899EIGAhbY6+GizUdP4PoUAshjroRdFDxmtHby3cbUfWg1cM0yHR6uYRcfLxsgCrJAf5As5Jt/JV/KT/DkRy+cYjMsApTKMpVZj6e3Vnd+JUV2ULhyMo2I5u9CCMueqIXeLW9hTqMP43sv3xzv3t1f8VfKJHCH/j+SQfMMnMHq/1M8Vuv0hho+CXIYVM3D9glejy/kZWH8f7Tbam+jDal7nFpa9z/vxr3L+yMuHIvoFCZgKxnm8V/GoY790uG3Og9UmCXnSM4rdRGuLV5pGItidZWqHfFTMPMBKMp3AGl4luI1SRDlcx3ON4sWznc6dhm+TvxedSA0nOYsh5ztcJvOdxYvnPC9/mh6qKJX/Rk+qynheo30swXqkh+nrku49mc2fhjV7522863Nnj81dOezmvdEspuEexY1nPs0hDW8ZtQP+zVP4BM/OYGnE9xZsjCaynIL7LHY8/3lc0jzDsFNJHSCRqZmUSdPOUNN9XU/oAP5dxel/6axSWy+JpCRWNoqbD8P/rADLcB1uIMpd2ITHsAVVzHqUyWeuZZaFJ4Ip9IT+0HUhE8ZcgcghvP4Lf8DdKg==</latexit><latexit sha1_base64="0v33v5Je9NLzYntL8CHM8lep3rI=">AAAIx3icpVW9b9NQEL+0fJjw0QQWRJeIqBVCVfRcCgQkpAoW2JqWpJXqENnOS2rFsY0/QoJlJAYWdsTABBID4s9g4R9g6J+AOhaJhYF7LyaJk9S2hC377t27+93Pd2dbsXTNcQk5zCwsnjp95qxwLnv+wsVLS7n85ZpjerZKq6qpm/aeIjtU1wxadTVXp3uWTeWuotNdpfOI7e/2qO1opvHUHVi03pXbhtbSVNlFUyP3pvbMl1Tb8m8GQWH1QUHyjCa6U9eXTFs22tSXLC0IfKkr94PCqwJzn9zIrknPPbmZrUzAJKNUplAauSIpEX4UZhUxVIoQHltmfvEdSNAEE1TwoAsUDHBR10EGB899EIGAhbY6+GizUdP4PoUAshjroRdFDxmtHby3cbUfWg1cM0yHR6uYRcfLxsgCrJAf5As5Jt/JV/KT/DkRy+cYjMsApTKMpVZj6e3Vnd+JUV2ULhyMo2I5u9CCMueqIXeLW9hTqMP43sv3xzv3t1f8VfKJHCH/j+SQfMMnMHq/1M8Vuv0hho+CXIYVM3D9glejy/kZWH8f7Tbam+jDal7nFpa9z/vxr3L+yMuHIvoFCZgKxnm8V/GoY790uG3Og9UmCXnSM4rdRGuLV5pGItidZWqHfFTMPMBKMp3AGl4luI1SRDlcx3ON4sWznc6dhm+TvxedSA0nOYsh5ztcJvOdxYvnPC9/mh6qKJX/Rk+qynheo30swXqkh+nrku49mc2fhjV7522863Nnj81dOezmvdEspuEexY1nPs0hDW8ZtQP+zVP4BM/OYGnE9xZsjCaynIL7LHY8/3lc0jzDsFNJHSCRqZmUSdPOUNN9XU/oAP5dxel/6axSWy+JpCRWNoqbD8P/rADLcB1uIMpd2ITHsAVVzHqUyWeuZZaFJ4Ip9IT+0HUhE8ZcgcghvP4Lf8DdKg==</latexit><latexit sha1_base64="0v33v5Je9NLzYntL8CHM8lep3rI=">AAAIx3icpVW9b9NQEL+0fJjw0QQWRJeIqBVCVfRcCgQkpAoW2JqWpJXqENnOS2rFsY0/QoJlJAYWdsTABBID4s9g4R9g6J+AOhaJhYF7LyaJk9S2hC377t27+93Pd2dbsXTNcQk5zCwsnjp95qxwLnv+wsVLS7n85ZpjerZKq6qpm/aeIjtU1wxadTVXp3uWTeWuotNdpfOI7e/2qO1opvHUHVi03pXbhtbSVNlFUyP3pvbMl1Tb8m8GQWH1QUHyjCa6U9eXTFs22tSXLC0IfKkr94PCqwJzn9zIrknPPbmZrUzAJKNUplAauSIpEX4UZhUxVIoQHltmfvEdSNAEE1TwoAsUDHBR10EGB899EIGAhbY6+GizUdP4PoUAshjroRdFDxmtHby3cbUfWg1cM0yHR6uYRcfLxsgCrJAf5As5Jt/JV/KT/DkRy+cYjMsApTKMpVZj6e3Vnd+JUV2ULhyMo2I5u9CCMueqIXeLW9hTqMP43sv3xzv3t1f8VfKJHCH/j+SQfMMnMHq/1M8Vuv0hho+CXIYVM3D9glejy/kZWH8f7Tbam+jDal7nFpa9z/vxr3L+yMuHIvoFCZgKxnm8V/GoY790uG3Og9UmCXnSM4rdRGuLV5pGItidZWqHfFTMPMBKMp3AGl4luI1SRDlcx3ON4sWznc6dhm+TvxedSA0nOYsh5ztcJvOdxYvnPC9/mh6qKJX/Rk+qynheo30swXqkh+nrku49mc2fhjV7522863Nnj81dOezmvdEspuEexY1nPs0hDW8ZtQP+zVP4BM/OYGnE9xZsjCaynIL7LHY8/3lc0jzDsFNJHSCRqZmUSdPOUNN9XU/oAP5dxel/6axSWy+JpCRWNoqbD8P/rADLcB1uIMpd2ITHsAVVzHqUyWeuZZaFJ4Ip9IT+0HUhE8ZcgcghvP4Lf8DdKg==</latexit><latexit sha1_base64="0v33v5Je9NLzYntL8CHM8lep3rI=">AAAIx3icpVW9b9NQEL+0fJjw0QQWRJeIqBVCVfRcCgQkpAoW2JqWpJXqENnOS2rFsY0/QoJlJAYWdsTABBID4s9g4R9g6J+AOhaJhYF7LyaJk9S2hC377t27+93Pd2dbsXTNcQk5zCwsnjp95qxwLnv+wsVLS7n85ZpjerZKq6qpm/aeIjtU1wxadTVXp3uWTeWuotNdpfOI7e/2qO1opvHUHVi03pXbhtbSVNlFUyP3pvbMl1Tb8m8GQWH1QUHyjCa6U9eXTFs22tSXLC0IfKkr94PCqwJzn9zIrknPPbmZrUzAJKNUplAauSIpEX4UZhUxVIoQHltmfvEdSNAEE1TwoAsUDHBR10EGB899EIGAhbY6+GizUdP4PoUAshjroRdFDxmtHby3cbUfWg1cM0yHR6uYRcfLxsgCrJAf5As5Jt/JV/KT/DkRy+cYjMsApTKMpVZj6e3Vnd+JUV2ULhyMo2I5u9CCMueqIXeLW9hTqMP43sv3xzv3t1f8VfKJHCH/j+SQfMMnMHq/1M8Vuv0hho+CXIYVM3D9glejy/kZWH8f7Tbam+jDal7nFpa9z/vxr3L+yMuHIvoFCZgKxnm8V/GoY790uG3Og9UmCXnSM4rdRGuLV5pGItidZWqHfFTMPMBKMp3AGl4luI1SRDlcx3ON4sWznc6dhm+TvxedSA0nOYsh5ztcJvOdxYvnPC9/mh6qKJX/Rk+qynheo30swXqkh+nrku49mc2fhjV7522863Nnj81dOezmvdEspuEexY1nPs0hDW8ZtQP+zVP4BM/OYGnE9xZsjCaynIL7LHY8/3lc0jzDsFNJHSCRqZmUSdPOUNN9XU/oAP5dxel/6axSWy+JpCRWNoqbD8P/rADLcB1uIMpd2ITHsAVVzHqUyWeuZZaFJ4Ip9IT+0HUhE8ZcgcghvP4Lf8DdKg==</latexit><latexit sha1_base64="0v33v5Je9NLzYntL8CHM8lep3rI=">AAAIx3icpVW9b9NQEL+0fJjw0QQWRJeIqBVCVfRcCgQkpAoW2JqWpJXqENnOS2rFsY0/QoJlJAYWdsTABBID4s9g4R9g6J+AOhaJhYF7LyaJk9S2hC377t27+93Pd2dbsXTNcQk5zCwsnjp95qxwLnv+wsVLS7n85ZpjerZKq6qpm/aeIjtU1wxadTVXp3uWTeWuotNdpfOI7e/2qO1opvHUHVi03pXbhtbSVNlFUyP3pvbMl1Tb8m8GQWH1QUHyjCa6U9eXTFs22tSXLC0IfKkr94PCqwJzn9zIrknPPbmZrUzAJKNUplAauSIpEX4UZhUxVIoQHltmfvEdSNAEE1TwoAsUDHBR10EGB899EIGAhbY6+GizUdP4PoUAshjroRdFDxmtHby3cbUfWg1cM0yHR6uYRcfLxsgCrJAf5As5Jt/JV/KT/DkRy+cYjMsApTKMpVZj6e3Vnd+JUV2ULhyMo2I5u9CCMueqIXeLW9hTqMP43sv3xzv3t1f8VfKJHCH/j+SQfMMnMHq/1M8Vuv0hho+CXIYVM3D9glejy/kZWH8f7Tbam+jDal7nFpa9z/vxr3L+yMuHIvoFCZgKxnm8V/GoY790uG3Og9UmCXnSM4rdRGuLV5pGItidZWqHfFTMPMBKMp3AGl4luI1SRDlcx3ON4sWznc6dhm+TvxedSA0nOYsh5ztcJvOdxYvnPC9/mh6qKJX/Rk+qynheo30swXqkh+nrku49mc2fhjV7522863Nnj81dOezmvdEspuEexY1nPs0hDW8ZtQP+zVP4BM/OYGnE9xZsjCaynIL7LHY8/3lc0jzDsFNJHSCRqZmUSdPOUNN9XU/oAP5dxel/6axSWy+JpCRWNoqbD8P/rADLcB1uIMpd2ITHsAVVzHqUyWeuZZaFJ4Ip9IT+0HUhE8ZcgcghvP4Lf8DdKg==</latexit> V ⇤ = V ⇡⇤ , Q⇤ = Q⇡⇤ <latexit sha1_base64="oXdA2MhrfetmrVgD8WBSpAu34Ik=">AAAIiXicpVU/b9NQEL+2/DEp0BQWJJaIqBVClfVc2hIqVaroAGPTkrRSk0a285JacWxjO4Fg5QuwIwYmkBgQ4lOwsCOGSvABEGORWBi49+wmcZzalmrLvnvnu9/9fHfPVixdc1xCjqemZy5cvHRZuJKZvXrt+lx2/kbZMTu2SkuqqZv2viI7VNcMWnI1V6f7lk3ltqLTPaW1xZ7vdantaKbx1O1ZtNqWm4bW0FTZRVMt+7h86FVU2/Lu9fu5xY3c6bJiaYfM1s8sVZ515HqmOOK3kSuOu9WyeSISfuSiihQoeQiObXN+5jVUoA4mqNCBNlAwwEVdBxkcPA9AAgIW2qrgoc1GTePPKfQhg7Ed9KLoIaO1hfcmrg4Cq4FrhunwaBWz6HjZGJmDBfKdfCQn5Cv5RH6Rf2dieRyDcemhVPxYatXmXt3a/ZsY1UbpwtEwKpazCw0ocK4acre4hb2F6sd3X7452V3fWfAWyXvyG/m/I8fkC76B0f2jfijSnbcxfBTk4lfMwPVzXo0252dg/T2022ivow+reZVbWPYXvB+nlfMGXh7k0a+fgKlgXIf3Kh516JcOt8l5sNokIY96hrHraG3wStNQBLuzTM2Aj4qZe1hJphNYwkuEVZQSSn8dzzWMF892PHcavnW+L1qhGo5ylgLOa1wm843ixXOelD9ND1WUyrnRk6oynNdwH0VYDvUwfV3S7ZNo/jSs2Z638a5PnD02d4Wgmw8Hs5iGexg3nvk4hzS8ZdSO+DdP4RMcnUFxwPc+rAwmspCCexQ7nv8kLmnewe9UUgdIaGpGZdK0M9R0X9czOoB/V2n8XxpVysuiRESpuJLffBT8ZwW4DXfgLqI8gE14AttQwqyf4Rv8gJ/CrCAJBWHdd52eCmJuQugQtv4D+LXEFw==</latexit><latexit sha1_base64="oXdA2MhrfetmrVgD8WBSpAu34Ik=">AAAIiXicpVU/b9NQEL+2/DEp0BQWJJaIqBVClfVc2hIqVaroAGPTkrRSk0a285JacWxjO4Fg5QuwIwYmkBgQ4lOwsCOGSvABEGORWBi49+wmcZzalmrLvnvnu9/9fHfPVixdc1xCjqemZy5cvHRZuJKZvXrt+lx2/kbZMTu2SkuqqZv2viI7VNcMWnI1V6f7lk3ltqLTPaW1xZ7vdantaKbx1O1ZtNqWm4bW0FTZRVMt+7h86FVU2/Lu9fu5xY3c6bJiaYfM1s8sVZ515HqmOOK3kSuOu9WyeSISfuSiihQoeQiObXN+5jVUoA4mqNCBNlAwwEVdBxkcPA9AAgIW2qrgoc1GTePPKfQhg7Ed9KLoIaO1hfcmrg4Cq4FrhunwaBWz6HjZGJmDBfKdfCQn5Cv5RH6Rf2dieRyDcemhVPxYatXmXt3a/ZsY1UbpwtEwKpazCw0ocK4acre4hb2F6sd3X7452V3fWfAWyXvyG/m/I8fkC76B0f2jfijSnbcxfBTk4lfMwPVzXo0252dg/T2022ivow+reZVbWPYXvB+nlfMGXh7k0a+fgKlgXIf3Kh516JcOt8l5sNokIY96hrHraG3wStNQBLuzTM2Aj4qZe1hJphNYwkuEVZQSSn8dzzWMF892PHcavnW+L1qhGo5ylgLOa1wm843ixXOelD9ND1WUyrnRk6oynNdwH0VYDvUwfV3S7ZNo/jSs2Z638a5PnD02d4Wgmw8Hs5iGexg3nvk4hzS8ZdSO+DdP4RMcnUFxwPc+rAwmspCCexQ7nv8kLmnewe9UUgdIaGpGZdK0M9R0X9czOoB/V2n8XxpVysuiRESpuJLffBT8ZwW4DXfgLqI8gE14AttQwqyf4Rv8gJ/CrCAJBWHdd52eCmJuQugQtv4D+LXEFw==</latexit><latexit sha1_base64="oXdA2MhrfetmrVgD8WBSpAu34Ik=">AAAIiXicpVU/b9NQEL+2/DEp0BQWJJaIqBVClfVc2hIqVaroAGPTkrRSk0a285JacWxjO4Fg5QuwIwYmkBgQ4lOwsCOGSvABEGORWBi49+wmcZzalmrLvnvnu9/9fHfPVixdc1xCjqemZy5cvHRZuJKZvXrt+lx2/kbZMTu2SkuqqZv2viI7VNcMWnI1V6f7lk3ltqLTPaW1xZ7vdantaKbx1O1ZtNqWm4bW0FTZRVMt+7h86FVU2/Lu9fu5xY3c6bJiaYfM1s8sVZ515HqmOOK3kSuOu9WyeSISfuSiihQoeQiObXN+5jVUoA4mqNCBNlAwwEVdBxkcPA9AAgIW2qrgoc1GTePPKfQhg7Ed9KLoIaO1hfcmrg4Cq4FrhunwaBWz6HjZGJmDBfKdfCQn5Cv5RH6Rf2dieRyDcemhVPxYatXmXt3a/ZsY1UbpwtEwKpazCw0ocK4acre4hb2F6sd3X7452V3fWfAWyXvyG/m/I8fkC76B0f2jfijSnbcxfBTk4lfMwPVzXo0252dg/T2022ivow+reZVbWPYXvB+nlfMGXh7k0a+fgKlgXIf3Kh516JcOt8l5sNokIY96hrHraG3wStNQBLuzTM2Aj4qZe1hJphNYwkuEVZQSSn8dzzWMF892PHcavnW+L1qhGo5ylgLOa1wm843ixXOelD9ND1WUyrnRk6oynNdwH0VYDvUwfV3S7ZNo/jSs2Z638a5PnD02d4Wgmw8Hs5iGexg3nvk4hzS8ZdSO+DdP4RMcnUFxwPc+rAwmspCCexQ7nv8kLmnewe9UUgdIaGpGZdK0M9R0X9czOoB/V2n8XxpVysuiRESpuJLffBT8ZwW4DXfgLqI8gE14AttQwqyf4Rv8gJ/CrCAJBWHdd52eCmJuQugQtv4D+LXEFw==</latexit><latexit sha1_base64="+yUFvErgRhyN9ZPsRpgMcGD0ZDQ=">AAAIMnicpVXNbtNAEJ62FJdQaHtD4lIRFXFA1rj8BU5IvXDsD2krlaiynU1qxX+ynUCw+gK9VogDJ5A4IJ4CceEFOPQJEEJCSEXiwoHZtZvEcWqvhKN4Zscz33yemfUavm2FEeLJ1PTMhdmLytylyuX5ypWrC4vz26HXDUxWNz3bC3YNPWS25bJ6ZEU22/UDpjuGzXaMzhp/vtNjQWh57tOo77OGo7ddq2WZekSm9f3FKqooruW8oqVKFdLLW5p5Bc+gCR6Y0AUHGLgQkW6DDiH99kADBJ9sDYjJFpBmiecMDqFCsV3yYuShk7VD9zat9lKrS2uOGYpok7LY9A8ochlW8Ct+wFP8gh/xO/49FysWGJxLn6SRxDJ/f+Ho2taf0iiHZAQHw6hCzhG0oCa4WsTdFxb+FmYS33v5+nTr0eZKfBPf4Q/i/xZP8DO9gdv7bb7fYJtvCvgYxCWpmEvr56IajuDnUv1jsgdkb5IPr3lDWHj2F6IfZ5WLB14xVMnvsATToLiu6FUx6tBPDrctePDalCGPemaxm2RtiUqzTAS/80ztlI9JmftUSa4j3Ka/CvdIaiSTdTHXLF4x2/HcMnybYl90MjUc5aylnO8LWc43j1fMeVJ+mR6aJI3/Ri+rynBes31UYTXTQ/m6yO2TfH4Z1nzPB3S3J84en7ta2s2Hg1mU4Z7FLWY+zkGGt07agfjmGWKC8zOoDvjegbuDiaxJcM9jF/OfxEXmHZJOlXUAM1MzKsumnaPKfV3P6QAdrtr4UZpXtldVDVVtA2EOrsMNuEXBD+AxPIF1qItNdwTHyiflm/IzOYSnp9LTeAkyl/LrHw59qUs=</latexit><latexit sha1_base64="LHI4JcDRtY7pidJUWgnbr14p4tY=">AAAIfnicpVXNbtNAEJ62/Ji00JQTEpeIqBVClbUuf6FSJSQOcGxaklZq0sh2NqkVxza2EwhWXoA74sAJJA4I8RRcuCMOleABEMciceHA7NpN4ri1V6ote2bHM998nhl7Ncc0PJ+Qw5nZuXPnL1yULuXmFy5fWcwvLVQ9u+fqtKLbpu3uaqpHTcOiFd/wTbrruFTtaibd0TqP2POdPnU9w7ae+gOH1rtq2zJahq76aGrkH1f3g5ruOsGt4bCwslE4XtYcY5/ZhrnV2rOe2syVJ/w2CuVpt0a+SGTCj0JSUSKlCNGxaS/NvYYaNMEGHXrQBQoW+KiboIKH5x4oQMBBWx0CtLmoGfw5hSHkMLaHXhQ9VLR28N7G1V5ktXDNMD0erWMWEy8XIwuwTL6Tj+SIfCWfyC/y71SsgGMwLgOUWhhLncbiq2vbfzOjuih9OBhHpXL2oQUlztVA7g63sLfQw/j+yzdH2+tby8EKeU9+I/935JB8wTew+n/0D2W69TaFj4ZcwopZuH7Oq9Hl/Cysf4B2F+1N9GE1r3MLy/6C9+O4csHIK4Ai+g0zMDWM6/FepaOO/cRw25wHq00W8qRnHLuJ1havNI1FsDvL1I746Jh5gJVkOoFVvGS4i1JBGa7Tucbx0tlO5xbh2+TfRSdWw0nOSsT5HpfZfJN46ZxPyi/SQx2ldmb0rKqM5zXeRxnWYj0Ur4vYd5LML8KaffMu3s0TZ4/NXSnq5oPRLIpwj+OmM5/mIMJbRe2A//M0PsHJGZRHfG/DndFElgS4J7HT+Z/EReQdwk5ldYDEpmZSZk07QxX7u57SAdxdlem9NKlU12SFyEqZgATX4QbcxOD78BCewCZUMNln+AY/4Kc0LylSKdyHZ2eiDfkqxA5p/T9im8Mc</latexit><latexit sha1_base64="LHI4JcDRtY7pidJUWgnbr14p4tY=">AAAIfnicpVXNbtNAEJ62/Ji00JQTEpeIqBVClbUuf6FSJSQOcGxaklZq0sh2NqkVxza2EwhWXoA74sAJJA4I8RRcuCMOleABEMciceHA7NpN4ri1V6ote2bHM998nhl7Ncc0PJ+Qw5nZuXPnL1yULuXmFy5fWcwvLVQ9u+fqtKLbpu3uaqpHTcOiFd/wTbrruFTtaibd0TqP2POdPnU9w7ae+gOH1rtq2zJahq76aGrkH1f3g5ruOsGt4bCwslE4XtYcY5/ZhrnV2rOe2syVJ/w2CuVpt0a+SGTCj0JSUSKlCNGxaS/NvYYaNMEGHXrQBQoW+KiboIKH5x4oQMBBWx0CtLmoGfw5hSHkMLaHXhQ9VLR28N7G1V5ktXDNMD0erWMWEy8XIwuwTL6Tj+SIfCWfyC/y71SsgGMwLgOUWhhLncbiq2vbfzOjuih9OBhHpXL2oQUlztVA7g63sLfQw/j+yzdH2+tby8EKeU9+I/935JB8wTew+n/0D2W69TaFj4ZcwopZuH7Oq9Hl/Cysf4B2F+1N9GE1r3MLy/6C9+O4csHIK4Ai+g0zMDWM6/FepaOO/cRw25wHq00W8qRnHLuJ1havNI1FsDvL1I746Jh5gJVkOoFVvGS4i1JBGa7Tucbx0tlO5xbh2+TfRSdWw0nOSsT5HpfZfJN46ZxPyi/SQx2ldmb0rKqM5zXeRxnWYj0Ur4vYd5LML8KaffMu3s0TZ4/NXSnq5oPRLIpwj+OmM5/mIMJbRe2A//M0PsHJGZRHfG/DndFElgS4J7HT+Z/EReQdwk5ldYDEpmZSZk07QxX7u57SAdxdlem9NKlU12SFyEqZgATX4QbcxOD78BCewCZUMNln+AY/4Kc0LylSKdyHZ2eiDfkqxA5p/T9im8Mc</latexit><latexit sha1_base64="OtdeQzzRuKsJSoU8UthZrp+d0aY=">AAAIiXicpVVLb9NAEJ62PEwKNIULEpeIqBVClbUur1CpUkUPcGxaklZq0siPTWrFsY3tBIKVP8AdceAEEgeE+BVcuCMOleAHII5F4sKB2bWbxHFqW8KWPbPjmW8+z8zaim3orkfI0czs3Jmz584LF3LzFy9dXsgvXqm6VtdRaUW1DMvZU2SXGrpJK57uGXTPdqjcUQy6q7Q32fPdHnVc3TKfeH2b1jtyy9Sbuip7aGrkH1UP/Jrq2P6twaCwvF44WdZs/YDZBrmV2tOurOXKY37rhfKkWyNfJCLhRyGuSKFShPDYshbnXkENNLBAhS50gIIJHuoGyODiuQ8SELDRVgcfbQ5qOn9OYQA5jO2iF0UPGa1tvLdwtR9aTVwzTJdHq5jFwMvByAIskW/kAzkmX8hH8pP8PRXL5xiMSx+lEsRSu7Hw8trOn9SoDkoPDkdRiZw9aEKJc9WRu80t7C3UIL734vXxztr2kr9M3pFfyP8tOSKf8Q3M3m/1fZluv0ngoyCXoGImrp/xanQ4PxPr76PdQbuGPqzmdW5h2Z/zfpxUzh96+VBEv0EKpoJxXd6rZNSRXzbcFufBapOGPO4ZxdbQ2uSVppEIdmeZWiEfFTP3sZJMJ7CClwh3UUoog3Uy1yheMtvJ3Fn4anxftCM1HOcshZzvcZnON46XzHla/iw9VFEq/42eVpXRvEb7KMJqpIfZ65Jtn8TzZ2HN9ryDd2Pq7LG5K4XdfDCcxSzco7jJzCc5ZOEto3bIv3kKn+D4DIpDvrfhznAiSxm4x7GT+U/jkuUdgk6ldYBEpmZcpk07Q832dT2lA/h3lSb/pXGluipKRJTKpLjxMPzPCnAdbsBNRLkPG/AYtqCCWT/BV/gOP4R5QRJKwlrgOjsTxlyFyCFs/gP3dcQT</latexit><latexit sha1_base64="oXdA2MhrfetmrVgD8WBSpAu34Ik=">AAAIiXicpVU/b9NQEL+2/DEp0BQWJJaIqBVClfVc2hIqVaroAGPTkrRSk0a285JacWxjO4Fg5QuwIwYmkBgQ4lOwsCOGSvABEGORWBi49+wmcZzalmrLvnvnu9/9fHfPVixdc1xCjqemZy5cvHRZuJKZvXrt+lx2/kbZMTu2SkuqqZv2viI7VNcMWnI1V6f7lk3ltqLTPaW1xZ7vdantaKbx1O1ZtNqWm4bW0FTZRVMt+7h86FVU2/Lu9fu5xY3c6bJiaYfM1s8sVZ515HqmOOK3kSuOu9WyeSISfuSiihQoeQiObXN+5jVUoA4mqNCBNlAwwEVdBxkcPA9AAgIW2qrgoc1GTePPKfQhg7Ed9KLoIaO1hfcmrg4Cq4FrhunwaBWz6HjZGJmDBfKdfCQn5Cv5RH6Rf2dieRyDcemhVPxYatXmXt3a/ZsY1UbpwtEwKpazCw0ocK4acre4hb2F6sd3X7452V3fWfAWyXvyG/m/I8fkC76B0f2jfijSnbcxfBTk4lfMwPVzXo0252dg/T2022ivow+reZVbWPYXvB+nlfMGXh7k0a+fgKlgXIf3Kh516JcOt8l5sNokIY96hrHraG3wStNQBLuzTM2Aj4qZe1hJphNYwkuEVZQSSn8dzzWMF892PHcavnW+L1qhGo5ylgLOa1wm843ixXOelD9ND1WUyrnRk6oynNdwH0VYDvUwfV3S7ZNo/jSs2Z638a5PnD02d4Wgmw8Hs5iGexg3nvk4hzS8ZdSO+DdP4RMcnUFxwPc+rAwmspCCexQ7nv8kLmnewe9UUgdIaGpGZdK0M9R0X9czOoB/V2n8XxpVysuiRESpuJLffBT8ZwW4DXfgLqI8gE14AttQwqyf4Rv8gJ/CrCAJBWHdd52eCmJuQugQtv4D+LXEFw==</latexit><latexit sha1_base64="oXdA2MhrfetmrVgD8WBSpAu34Ik=">AAAIiXicpVU/b9NQEL+2/DEp0BQWJJaIqBVClfVc2hIqVaroAGPTkrRSk0a285JacWxjO4Fg5QuwIwYmkBgQ4lOwsCOGSvABEGORWBi49+wmcZzalmrLvnvnu9/9fHfPVixdc1xCjqemZy5cvHRZuJKZvXrt+lx2/kbZMTu2SkuqqZv2viI7VNcMWnI1V6f7lk3ltqLTPaW1xZ7vdantaKbx1O1ZtNqWm4bW0FTZRVMt+7h86FVU2/Lu9fu5xY3c6bJiaYfM1s8sVZ515HqmOOK3kSuOu9WyeSISfuSiihQoeQiObXN+5jVUoA4mqNCBNlAwwEVdBxkcPA9AAgIW2qrgoc1GTePPKfQhg7Ed9KLoIaO1hfcmrg4Cq4FrhunwaBWz6HjZGJmDBfKdfCQn5Cv5RH6Rf2dieRyDcemhVPxYatXmXt3a/ZsY1UbpwtEwKpazCw0ocK4acre4hb2F6sd3X7452V3fWfAWyXvyG/m/I8fkC76B0f2jfijSnbcxfBTk4lfMwPVzXo0252dg/T2022ivow+reZVbWPYXvB+nlfMGXh7k0a+fgKlgXIf3Kh516JcOt8l5sNokIY96hrHraG3wStNQBLuzTM2Aj4qZe1hJphNYwkuEVZQSSn8dzzWMF892PHcavnW+L1qhGo5ylgLOa1wm843ixXOelD9ND1WUyrnRk6oynNdwH0VYDvUwfV3S7ZNo/jSs2Z638a5PnD02d4Wgmw8Hs5iGexg3nvk4hzS8ZdSO+DdP4RMcnUFxwPc+rAwmspCCexQ7nv8kLmnewe9UUgdIaGpGZdK0M9R0X9czOoB/V2n8XxpVysuiRESpuJLffBT8ZwW4DXfgLqI8gE14AttQwqyf4Rv8gJ/CrCAJBWHdd52eCmJuQugQtv4D+LXEFw==</latexit><latexit sha1_base64="oXdA2MhrfetmrVgD8WBSpAu34Ik=">AAAIiXicpVU/b9NQEL+2/DEp0BQWJJaIqBVClfVc2hIqVaroAGPTkrRSk0a285JacWxjO4Fg5QuwIwYmkBgQ4lOwsCOGSvABEGORWBi49+wmcZzalmrLvnvnu9/9fHfPVixdc1xCjqemZy5cvHRZuJKZvXrt+lx2/kbZMTu2SkuqqZv2viI7VNcMWnI1V6f7lk3ltqLTPaW1xZ7vdantaKbx1O1ZtNqWm4bW0FTZRVMt+7h86FVU2/Lu9fu5xY3c6bJiaYfM1s8sVZ515HqmOOK3kSuOu9WyeSISfuSiihQoeQiObXN+5jVUoA4mqNCBNlAwwEVdBxkcPA9AAgIW2qrgoc1GTePPKfQhg7Ed9KLoIaO1hfcmrg4Cq4FrhunwaBWz6HjZGJmDBfKdfCQn5Cv5RH6Rf2dieRyDcemhVPxYatXmXt3a/ZsY1UbpwtEwKpazCw0ocK4acre4hb2F6sd3X7452V3fWfAWyXvyG/m/I8fkC76B0f2jfijSnbcxfBTk4lfMwPVzXo0252dg/T2022ivow+reZVbWPYXvB+nlfMGXh7k0a+fgKlgXIf3Kh516JcOt8l5sNokIY96hrHraG3wStNQBLuzTM2Aj4qZe1hJphNYwkuEVZQSSn8dzzWMF892PHcavnW+L1qhGo5ylgLOa1wm843ixXOelD9ND1WUyrnRk6oynNdwH0VYDvUwfV3S7ZNo/jSs2Z638a5PnD02d4Wgmw8Hs5iGexg3nvk4hzS8ZdSO+DdP4RMcnUFxwPc+rAwmspCCexQ7nv8kLmnewe9UUgdIaGpGZdK0M9R0X9czOoB/V2n8XxpVysuiRESpuJLffBT8ZwW4DXfgLqI8gE14AttQwqyf4Rv8gJ/CrCAJBWHdd52eCmJuQugQtv4D+LXEFw==</latexit><latexit sha1_base64="oXdA2MhrfetmrVgD8WBSpAu34Ik=">AAAIiXicpVU/b9NQEL+2/DEp0BQWJJaIqBVClfVc2hIqVaroAGPTkrRSk0a285JacWxjO4Fg5QuwIwYmkBgQ4lOwsCOGSvABEGORWBi49+wmcZzalmrLvnvnu9/9fHfPVixdc1xCjqemZy5cvHRZuJKZvXrt+lx2/kbZMTu2SkuqqZv2viI7VNcMWnI1V6f7lk3ltqLTPaW1xZ7vdantaKbx1O1ZtNqWm4bW0FTZRVMt+7h86FVU2/Lu9fu5xY3c6bJiaYfM1s8sVZ515HqmOOK3kSuOu9WyeSISfuSiihQoeQiObXN+5jVUoA4mqNCBNlAwwEVdBxkcPA9AAgIW2qrgoc1GTePPKfQhg7Ed9KLoIaO1hfcmrg4Cq4FrhunwaBWz6HjZGJmDBfKdfCQn5Cv5RH6Rf2dieRyDcemhVPxYatXmXt3a/ZsY1UbpwtEwKpazCw0ocK4acre4hb2F6sd3X7452V3fWfAWyXvyG/m/I8fkC76B0f2jfijSnbcxfBTk4lfMwPVzXo0252dg/T2022ivow+reZVbWPYXvB+nlfMGXh7k0a+fgKlgXIf3Kh516JcOt8l5sNokIY96hrHraG3wStNQBLuzTM2Aj4qZe1hJphNYwkuEVZQSSn8dzzWMF892PHcavnW+L1qhGo5ylgLOa1wm843ixXOelD9ND1WUyrnRk6oynNdwH0VYDvUwfV3S7ZNo/jSs2Z638a5PnD02d4Wgmw8Hs5iGexg3nvk4hzS8ZdSO+DdP4RMcnUFxwPc+rAwmspCCexQ7nv8kLmnewe9UUgdIaGpGZdK0M9R0X9czOoB/V2n8XxpVysuiRESpuJLffBT8ZwW4DXfgLqI8gE14AttQwqyf4Rv8gJ/CrCAJBWHdd52eCmJuQugQtv4D+LXEFw==</latexit><latexit sha1_base64="oXdA2MhrfetmrVgD8WBSpAu34Ik=">AAAIiXicpVU/b9NQEL+2/DEp0BQWJJaIqBVClfVc2hIqVaroAGPTkrRSk0a285JacWxjO4Fg5QuwIwYmkBgQ4lOwsCOGSvABEGORWBi49+wmcZzalmrLvnvnu9/9fHfPVixdc1xCjqemZy5cvHRZuJKZvXrt+lx2/kbZMTu2SkuqqZv2viI7VNcMWnI1V6f7lk3ltqLTPaW1xZ7vdantaKbx1O1ZtNqWm4bW0FTZRVMt+7h86FVU2/Lu9fu5xY3c6bJiaYfM1s8sVZ515HqmOOK3kSuOu9WyeSISfuSiihQoeQiObXN+5jVUoA4mqNCBNlAwwEVdBxkcPA9AAgIW2qrgoc1GTePPKfQhg7Ed9KLoIaO1hfcmrg4Cq4FrhunwaBWz6HjZGJmDBfKdfCQn5Cv5RH6Rf2dieRyDcemhVPxYatXmXt3a/ZsY1UbpwtEwKpazCw0ocK4acre4hb2F6sd3X7452V3fWfAWyXvyG/m/I8fkC76B0f2jfijSnbcxfBTk4lfMwPVzXo0252dg/T2022ivow+reZVbWPYXvB+nlfMGXh7k0a+fgKlgXIf3Kh516JcOt8l5sNokIY96hrHraG3wStNQBLuzTM2Aj4qZe1hJphNYwkuEVZQSSn8dzzWMF892PHcavnW+L1qhGo5ylgLOa1wm843ixXOelD9ND1WUyrnRk6oynNdwH0VYDvUwfV3S7ZNo/jSs2Z638a5PnD02d4Wgmw8Hs5iGexg3nvk4hzS8ZdSO+DdP4RMcnUFxwPc+rAwmspCCexQ7nv8kLmnewe9UUgdIaGpGZdK0M9R0X9czOoB/V2n8XxpVysuiRESpuJLffBT8ZwW4DXfgLqI8gE14AttQwqyf4Rv8gJ/CrCAJBWHdd52eCmJuQugQtv4D+LXEFw==</latexit><latexit sha1_base64="oXdA2MhrfetmrVgD8WBSpAu34Ik=">AAAIiXicpVU/b9NQEL+2/DEp0BQWJJaIqBVClfVc2hIqVaroAGPTkrRSk0a285JacWxjO4Fg5QuwIwYmkBgQ4lOwsCOGSvABEGORWBi49+wmcZzalmrLvnvnu9/9fHfPVixdc1xCjqemZy5cvHRZuJKZvXrt+lx2/kbZMTu2SkuqqZv2viI7VNcMWnI1V6f7lk3ltqLTPaW1xZ7vdantaKbx1O1ZtNqWm4bW0FTZRVMt+7h86FVU2/Lu9fu5xY3c6bJiaYfM1s8sVZ515HqmOOK3kSuOu9WyeSISfuSiihQoeQiObXN+5jVUoA4mqNCBNlAwwEVdBxkcPA9AAgIW2qrgoc1GTePPKfQhg7Ed9KLoIaO1hfcmrg4Cq4FrhunwaBWz6HjZGJmDBfKdfCQn5Cv5RH6Rf2dieRyDcemhVPxYatXmXt3a/ZsY1UbpwtEwKpazCw0ocK4acre4hb2F6sd3X7452V3fWfAWyXvyG/m/I8fkC76B0f2jfijSnbcxfBTk4lfMwPVzXo0252dg/T2022ivow+reZVbWPYXvB+nlfMGXh7k0a+fgKlgXIf3Kh516JcOt8l5sNokIY96hrHraG3wStNQBLuzTM2Aj4qZe1hJphNYwkuEVZQSSn8dzzWMF892PHcavnW+L1qhGo5ylgLOa1wm843ixXOelD9ND1WUyrnRk6oynNdwH0VYDvUwfV3S7ZNo/jSs2Z638a5PnD02d4Wgmw8Hs5iGexg3nvk4hzS8ZdSO+DdP4RMcnUFxwPc+rAwmspCCexQ7nv8kLmnewe9UUgdIaGpGZdK0M9R0X9czOoB/V2n8XxpVysuiRESpuJLffBT8ZwW4DXfgLqI8gE14AttQwqyf4Rv8gJ/CrCAJBWHdd52eCmJuQugQtv4D+LXEFw==</latexit>
  11. • ! – – – • ! – – – difficult and engaging for human players. We used the same network architecture, hyperparameter values (see Extended Data Table 1) and learningprocedurethroughout—takinghigh-dimensionaldata(210|160 colour video at 60 Hz) as input—to demonstrate that our approach robustly learns successful policies over a variety of games based solely onsensoryinputswithonlyveryminimalpriorknowledge(thatis,merely the input data were visual images, and the number of actions available in each game, but not their correspondences; see Methods). Notably, our method was able to train large neural networks using a reinforce- mentlearningsignalandstochasticgradientdescentinastablemanner— illustrated by the temporal evolution of two indices of learning (the agent’s average score-per-episode and average predicted Q-values; see Fig. 2 and Supplementary Discussion for details). We compared DQN with the best performing meth reinforcement learning literature on the 49 games wher available12,15 . In addition to the learned agents, we alsorep aprofessionalhumangamestesterplayingundercontroll and a policy that selects actions uniformly at random (E Table 2 and Fig. 3, denoted by 100% (human) and 0% ( axis; see Methods). Our DQN method outperforms the reinforcement learning methods on 43 of the games with rating any of the additional prior knowledge about Atar used by other approaches (for example, refs 12, 15). Furt DQN agent performed at a level that was comparable to fessionalhumangamestesteracrossthesetof49games,ac than75%ofthe humanscore onmorethanhalfofthegam Convolution Convolution Fully connected Fully connected No input Figure 1 | Schematic illustration of the convolutional neural network. The details of the architecture are explained in the Methods. The input to the neural network consists of an 843 843 4 image produced by the preprocessing map w, followed by three convolutional layers (note: snaking blue line symbolizes sliding of each filter across input image) and two fu layers with a single output for each valid action. Each hidden l by a rectifier nonlinearity (that is, max 0,xð Þ). a b c d 0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 0 20 40 60 80 100 120 140 160 180 200 Averagescoreperepisode Training epochs 10 11 ) 0 1,000 2,000 3,000 4,000 5,000 6,000 0 20 40 60 80 100 120 140 160 180 200 Averagescoreperepisode Training epochs 9 10 ) RESEARCH LETTER ARTICLE RESEARCH Regression Classification Classification SelfPlay Policy gradient a b Human expert positions Self-play positions NeuralnetworkData Rollout policy p p p (a⎪s) (s′)p SL policy network RL policy network Value network Policy network Value network s s′
  12. • – V ⇡ <latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> (s, a, s0 , r)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
  13. V ⇡ (s) = E⇡,P ⇥ R(s0, a0) + R(s1, a1) + 2 R(s2, a2) + 3 R(s3, a3) · · · |s0 = s ⇤ = Ea0⇠⇡ [R(s0, a0) |s0 = s] + Ea0⇠⇡,s1⇠P,a1⇠⇡ [R(s1, a1) |s0 = s] + 2 Ea0⇠⇡,s1⇠P,a1⇠⇡,s2⇠P,a2⇠⇡ [R(s2, a2) |s0 = s] + 3 Ea0⇠⇡,s1⇠P,a1⇠⇡,s2⇠P,a2⇠⇡,s3⇠P,a3⇠⇡ [R(s3, a3) |s0 = s] + · · · = X a02A ⇡(a0|s0 = s)R(s0, a0) + X a02A ⇡(a0|s0 = s) X s12S P(s1|s0 = s, a0) X a12A ⇡(a1|s1)R(s1, a1) + 2 X a02A ⇡(a0|s0 = s) X s12S P(s1|s0 = s, a0) X a12A ⇡(a1|s1) X s22S P(s2|s1, a1) X a22A ⇡(a2|s2)R(s2, a2) + 3 X a02A ⇡(a0|s0 = s) X s12S P(s1|s0 = s, a0) X a12A ⇡(a1|s1) X s22S P(s2|s1, a1) X a22A ⇡(a2|s2) X s32S P(s3|s2, + · · ·<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
  14. V ⇡ (s) = E⇡,P ⇥ R(s0, a0) + R(s1, a1) + 2 R(s2, a2) + 3 R(s3, a3) · · · |s0 = s ⇤ = Ea0⇠⇡ [R(s0, a0) |s0 = s] + Ea0⇠⇡,s1⇠P,a1⇠⇡ [R(s1, a1) |s0 = s] + 2 Ea0⇠⇡,s1⇠P,a1⇠⇡,s2⇠P,a2⇠⇡ [R(s2, a2) |s0 = s] + 3 Ea0⇠⇡,s1⇠P,a1⇠⇡,s2⇠P,a2⇠⇡,s3⇠P,a3⇠⇡ [R(s3, a3) |s0 = s] + · · · = X a02A ⇡(a0|s0 = s)R(s0, a0) + X a02A ⇡(a0|s0 = s) X s12S P(s1|s0 = s, a0) X a12A ⇡(a1|s1)R(s1, a1) + 2 X a02A ⇡(a0|s0 = s) X s12S P(s1|s0 = s, a0) X a12A ⇡(a1|s1) X s22S P(s2|s1, a1) X a22A ⇡(a2|s2)R(s2, a2) + 3 X a02A ⇡(a0|s0 = s) X s12S P(s1|s0 = s, a0) X a12A ⇡(a1|s1) X s22S P(s2|s1, a1) X a22A ⇡(a2|s2) X s32S P(s3|s2, + · · ·<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
  15. V ⇡ (s) = E⇡,P ⇥ R(s0, a0) + R(s1, a1) + 2 R(s2, a2) + 3 R(s3, a3) · · · |s0 = s ⇤ = Ea0⇠⇡ [R(s0, a0) |s0 = s] + Ea0⇠⇡,s1⇠P,a1⇠⇡ [R(s1, a1) |s0 = s] + 2 Ea0⇠⇡,s1⇠P,a1⇠⇡,s2⇠P,a2⇠⇡ [R(s2, a2) |s0 = s] + 3 Ea0⇠⇡,s1⇠P,a1⇠⇡,s2⇠P,a2⇠⇡,s3⇠P,a3⇠⇡ [R(s3, a3) |s0 = s] + · · · = X a02A ⇡(a0|s0 = s)R(s0, a0) + X a02A ⇡(a0|s0 = s) X s12S P(s1|s0 = s, a0) X a12A ⇡(a1|s1)R(s1, a1) + 2 X a02A ⇡(a0|s0 = s) X s12S P(s1|s0 = s, a0) X a12A ⇡(a1|s1) X s22S P(s2|s1, a1) X a22A ⇡(a2|s2)R(s2, a2) + 3 X a02A ⇡(a0|s0 = s) X s12S P(s1|s0 = s, a0) X a12A ⇡(a1|s1) X s22S P(s2|s1, a1) X a22A ⇡(a2|s2) X s32S P(s3|s2, + · · ·<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
  16. V ⇡ (s) = E⇡,P ⇥ R(s0, a0) + R(s1, a1) + 2 R(s2, a2) + 3 R(s3, a3) · · · |s0 = s ⇤ = Ea0⇠⇡ [R(s0, a0) |s0 = s] + Ea0⇠⇡,s1⇠P,a1⇠⇡ [R(s1, a1) |s0 = s] + 2 Ea0⇠⇡,s1⇠P,a1⇠⇡,s2⇠P,a2⇠⇡ [R(s2, a2) |s0 = s] + 3 Ea0⇠⇡,s1⇠P,a1⇠⇡,s2⇠P,a2⇠⇡,s3⇠P,a3⇠⇡ [R(s3, a3) |s0 = s] + · · · = X a02A ⇡(a0|s0 = s)R(s0, a0) + X a02A ⇡(a0|s0 = s) X s12S P(s1|s0 = s, a0) X a12A ⇡(a1|s1)R(s1, a1) + 2 X a02A ⇡(a0|s0 = s) X s12S P(s1|s0 = s, a0) X a12A ⇡(a1|s1) X s22S P(s2|s1, a1) X a22A ⇡(a2|s2)R(s2, a2) + 3 X a02A ⇡(a0|s0 = s) X s12S P(s1|s0 = s, a0) X a12A ⇡(a1|s1) X s22S P(s2|s1, a1) X a22A ⇡(a2|s2) X s32S P(s3|s2, + · · ·<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
  17. • V ⇡ (s) = E⇡,P ⇥ R(s0, a0) + R(s1, a1) + 2 R(s2, a2) + 3 R(s3, a3) · · · |s0 = s ⇤ = Ea0⇠⇡ [R(s0, a0) |s0 = s] + Ea0⇠⇡,s1⇠P,a1⇠⇡ [R(s1, a1) |s0 = s] + 2 Ea0⇠⇡,s1⇠P,a1⇠⇡,s2⇠P,a2⇠⇡ [R(s2, a2) |s0 = s] + 3 Ea0⇠⇡,s1⇠P,a1⇠⇡,s2⇠P,a2⇠⇡,s3⇠P,a3⇠⇡ [R(s3, a3) |s0 = s] + · · · = X a02A ⇡(a0|s0 = s)R(s0, a0) + X a02A ⇡(a0|s0 = s) X s12S P(s1|s0 = s, a0) X a12A ⇡(a1|s1)R(s1, a1) + 2 X a02A ⇡(a0|s0 = s) X s12S P(s1|s0 = s, a0) X a12A ⇡(a1|s1) X s22S P(s2|s1, a1) X a22A ⇡(a2|s2)R(s2, a2) + 3 X a02A ⇡(a0|s0 = s) X s12S P(s1|s0 = s, a0) X a12A ⇡(a1|s1) X s22S P(s2|s1, a1) X a22A ⇡(a2|s2) X s32S P(s3|s2, + · · ·<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> ···<latexitsha1_base64="(null)">(null)</latexit><latexitsha1_base64="(null)">(null)</latexit><latexitsha1_base64="(null)">(null)</latexit><latexitsha1_base64="(null)">(null)</latexit><latexitsha1_base64="(null)">(null)</latexit><latexitsha1_base64="(null)">(null)</latexit><latexitsha1_base64="(null)">(null)</latexit><latexitsha1_base64="(null)">(null)</latexit><latexitsha1_base64="(null)">(null)</latexit><latexitsha1_base64="(null)">(null)</latexit><latexitsha1_base64="(null)">(null)</latexit><latexitsha1_base64="(null)">(null)</latexit><latexitsha1_base64="(null)">(null)</latexit>
  18. • – – • • s s0 a0 a P(s0 |s, a)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> ⇡(a|s)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> ⇡(a0 |s0 )<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> s s0 a0 a P(s0 |s, a)<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> V ⇡ (s) = X a2A ⇡(a|s) R(s, a) + X s02S P(s0 |s, a)V ⇡ (s0 ) ! Q⇡ (s, a) = R(s, a) + X s02S P(s0 |s, a) X a02A ⇡(a0 |s0 )Q⇡ (s0 , a0 ) <latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> V ⇤ (s) = max a2A R(s, a) + X s02S P(s0 |s, a)V ⇤ (s0 ) ! Q⇤ (s, a) = R(s, a) + X s02S P(s0 |s, a) max a02A Q⇤ (s0 , a0 ) <latexit sha1_base64="c5ZSkobZG4C9vNVv4C62odwFpdE=">AAAJiXicrVVLb9NAEB63PJoUaAsXJC4WUZsWomhdCoRKSIVKiGMf9CHVJVo7m8Sq7Vi2U1qM/wB3xIETSBwQ4ldw4Y44VIIfgDgWiQsHZjcmiZPUsQSO4p2dne/bb2fGtuaYhucTciSNjJ46febsWCY7fu78hYnJqYubXqPp6mxDb5gNd1ujHjMNm234hm+ybcdl1NJMtqXtLfP1rX3mekbDfuQfOmzXojXbqBo69dFVnpIeqLrrBJuPg2thOOvNZWVZnrnL77JYUAuqRQ/KAVUNGy2/rlMzuBeGaiGUVZNV/Vm57V5DggIVFPJ1Wa1Ry6Ky6jWtcuDlu/HrYdhBrSAq/4wD5ZiUPM5do1b3OaGqZsXiarTIo9tS/5sAAew5d37Qwbul5As0P5ctT+ZIkYhL7jeUyMhBdK00pkZfgAoVaIAOTbCAgQ0+2iZQ8PC3AwoQcNC3CwH6XLQMsc4ghCximxjFMIKidw/vNZztRF4b55zTE2gddzHx7yJShmnyhbwjx+QTeU++k98ncgWCg2s5xFFrYZlTnnh+ef3XUJSFow/1DipRsw9VKAmtBmp3hIefQm/h95++PF5fXJsOZsgb8gP1vyZH5COewN7/qb9dZWuvEvRoqKWVMRvnT0Q2LKHPxvwH6HfRX8EYnvNd4eG7H4h6/M1c0I4KIIdx4RBODXFNUatk1k5cOt6a0MFzM4y5OzLOXUFvVWSaxRD8zneqRXp03PkQM8ltAgX8F+EmjgqOrXmy1jhfstrevdPorYjnYi+Ww27NSqT5lhiH6+3nS9Y8aP80NdRx1P6ZfVhWOv0ar2MR5mM1TJ+XdM9J//5pVPNn3sW7ObD3eN+VomreafdiGu1x3mTlvRrS6KZo1cU7TxMd3N+DxbbeG7DQ7shSCu393Mn6B2lJc4ZWpYZVgMS6pnsc1u2cNd3b9YQK4NdV6f2W9hub80WFFJXVhdzS/eg7OwZX4CrMIsttWIKHsAIboEsfpM/SV+lbZjyjZEqZxVboiBRhLkHsyiz/AUKBFoM=</latexit><latexit sha1_base64="c5ZSkobZG4C9vNVv4C62odwFpdE=">AAAJiXicrVVLb9NAEB63PJoUaAsXJC4WUZsWomhdCoRKSIVKiGMf9CHVJVo7m8Sq7Vi2U1qM/wB3xIETSBwQ4ldw4Y44VIIfgDgWiQsHZjcmiZPUsQSO4p2dne/bb2fGtuaYhucTciSNjJ46febsWCY7fu78hYnJqYubXqPp6mxDb5gNd1ujHjMNm234hm+ybcdl1NJMtqXtLfP1rX3mekbDfuQfOmzXojXbqBo69dFVnpIeqLrrBJuPg2thOOvNZWVZnrnL77JYUAuqRQ/KAVUNGy2/rlMzuBeGaiGUVZNV/Vm57V5DggIVFPJ1Wa1Ry6Ky6jWtcuDlu/HrYdhBrSAq/4wD5ZiUPM5do1b3OaGqZsXiarTIo9tS/5sAAew5d37Qwbul5As0P5ctT+ZIkYhL7jeUyMhBdK00pkZfgAoVaIAOTbCAgQ0+2iZQ8PC3AwoQcNC3CwH6XLQMsc4ghCximxjFMIKidw/vNZztRF4b55zTE2gddzHx7yJShmnyhbwjx+QTeU++k98ncgWCg2s5xFFrYZlTnnh+ef3XUJSFow/1DipRsw9VKAmtBmp3hIefQm/h95++PF5fXJsOZsgb8gP1vyZH5COewN7/qb9dZWuvEvRoqKWVMRvnT0Q2LKHPxvwH6HfRX8EYnvNd4eG7H4h6/M1c0I4KIIdx4RBODXFNUatk1k5cOt6a0MFzM4y5OzLOXUFvVWSaxRD8zneqRXp03PkQM8ltAgX8F+EmjgqOrXmy1jhfstrevdPorYjnYi+Ww27NSqT5lhiH6+3nS9Y8aP80NdRx1P6ZfVhWOv0ar2MR5mM1TJ+XdM9J//5pVPNn3sW7ObD3eN+VomreafdiGu1x3mTlvRrS6KZo1cU7TxMd3N+DxbbeG7DQ7shSCu393Mn6B2lJc4ZWpYZVgMS6pnsc1u2cNd3b9YQK4NdV6f2W9hub80WFFJXVhdzS/eg7OwZX4CrMIsttWIKHsAIboEsfpM/SV+lbZjyjZEqZxVboiBRhLkHsyiz/AUKBFoM=</latexit><latexit sha1_base64="c5ZSkobZG4C9vNVv4C62odwFpdE=">AAAJiXicrVVLb9NAEB63PJoUaAsXJC4WUZsWomhdCoRKSIVKiGMf9CHVJVo7m8Sq7Vi2U1qM/wB3xIETSBwQ4ldw4Y44VIIfgDgWiQsHZjcmiZPUsQSO4p2dne/bb2fGtuaYhucTciSNjJ46febsWCY7fu78hYnJqYubXqPp6mxDb5gNd1ujHjMNm234hm+ybcdl1NJMtqXtLfP1rX3mekbDfuQfOmzXojXbqBo69dFVnpIeqLrrBJuPg2thOOvNZWVZnrnL77JYUAuqRQ/KAVUNGy2/rlMzuBeGaiGUVZNV/Vm57V5DggIVFPJ1Wa1Ry6Ky6jWtcuDlu/HrYdhBrSAq/4wD5ZiUPM5do1b3OaGqZsXiarTIo9tS/5sAAew5d37Qwbul5As0P5ctT+ZIkYhL7jeUyMhBdK00pkZfgAoVaIAOTbCAgQ0+2iZQ8PC3AwoQcNC3CwH6XLQMsc4ghCximxjFMIKidw/vNZztRF4b55zTE2gddzHx7yJShmnyhbwjx+QTeU++k98ncgWCg2s5xFFrYZlTnnh+ef3XUJSFow/1DipRsw9VKAmtBmp3hIefQm/h95++PF5fXJsOZsgb8gP1vyZH5COewN7/qb9dZWuvEvRoqKWVMRvnT0Q2LKHPxvwH6HfRX8EYnvNd4eG7H4h6/M1c0I4KIIdx4RBODXFNUatk1k5cOt6a0MFzM4y5OzLOXUFvVWSaxRD8zneqRXp03PkQM8ltAgX8F+EmjgqOrXmy1jhfstrevdPorYjnYi+Ww27NSqT5lhiH6+3nS9Y8aP80NdRx1P6ZfVhWOv0ar2MR5mM1TJ+XdM9J//5pVPNn3sW7ObD3eN+VomreafdiGu1x3mTlvRrS6KZo1cU7TxMd3N+DxbbeG7DQ7shSCu393Mn6B2lJc4ZWpYZVgMS6pnsc1u2cNd3b9YQK4NdV6f2W9hub80WFFJXVhdzS/eg7OwZX4CrMIsttWIKHsAIboEsfpM/SV+lbZjyjZEqZxVboiBRhLkHsyiz/AUKBFoM=</latexit><latexit sha1_base64="+yUFvErgRhyN9ZPsRpgMcGD0ZDQ=">AAAIMnicpVXNbtNAEJ62FJdQaHtD4lIRFXFA1rj8BU5IvXDsD2krlaiynU1qxX+ynUCw+gK9VogDJ5A4IJ4CceEFOPQJEEJCSEXiwoHZtZvEcWqvhKN4Zscz33yemfUavm2FEeLJ1PTMhdmLytylyuX5ypWrC4vz26HXDUxWNz3bC3YNPWS25bJ6ZEU22/UDpjuGzXaMzhp/vtNjQWh57tOo77OGo7ddq2WZekSm9f3FKqooruW8oqVKFdLLW5p5Bc+gCR6Y0AUHGLgQkW6DDiH99kADBJ9sDYjJFpBmiecMDqFCsV3yYuShk7VD9zat9lKrS2uOGYpok7LY9A8ochlW8Ct+wFP8gh/xO/49FysWGJxLn6SRxDJ/f+Ho2taf0iiHZAQHw6hCzhG0oCa4WsTdFxb+FmYS33v5+nTr0eZKfBPf4Q/i/xZP8DO9gdv7bb7fYJtvCvgYxCWpmEvr56IajuDnUv1jsgdkb5IPr3lDWHj2F6IfZ5WLB14xVMnvsATToLiu6FUx6tBPDrctePDalCGPemaxm2RtiUqzTAS/80ztlI9JmftUSa4j3Ka/CvdIaiSTdTHXLF4x2/HcMnybYl90MjUc5aylnO8LWc43j1fMeVJ+mR6aJI3/Ri+rynBes31UYTXTQ/m6yO2TfH4Z1nzPB3S3J84en7ta2s2Hg1mU4Z7FLWY+zkGGt07agfjmGWKC8zOoDvjegbuDiaxJcM9jF/OfxEXmHZJOlXUAM1MzKsumnaPKfV3P6QAdrtr4UZpXtldVDVVtA2EOrsMNuEXBD+AxPIF1qItNdwTHyiflm/IzOYSnp9LTeAkyl/LrHw59qUs=</latexit><latexit sha1_base64="gemDnQ2czLc9SQQkVf/HJLtsNNI=">AAAJfnicrVVLb9NAEB63PJq00JYTEheLqk0LUbQur1AJCYSEOLYNfUh1idbOJrFqO5btlBbjP8AdceAEEgeE+BVcuCMOleAHII5F4sKB2Y1J4iS1LYGj7M7Oznzz7czYqzmm4fmEHElj46dOnzk7kctPTp07Pz0zO7Xptdquzjb0ltlytzXqMdOw2YZv+CbbdlxGLc1kW9refb6/tc9cz2jZj/xDh+1atGEbdUOnPqqqs9IDVXedYPNxcCUMF72lvCzLC3f4KIsNtaha9KAaUNWwUfKbOjWDe2GoFkNZNVndX5S76nUEKFIBIV+V1Qa1LCqrXtuqBl6h378Shj2vVfQqPOOOcoxKAdeu0Wj6HFBV82JzLdrk1l2q/42AcBw4d2HUwfupFIq0sJSvzsyREhGPPCwokTAH0bPamh1/ASrUoAU6tMECBjb4KJtAwcPfDihAwEHdLgSoc1EyxD6DEPLo20YrhhYUtXs4NnC1E2ltXHNMT3jrGMXEv4ueMsyTL+QdOSafyHvynfw+ESsQGJzLIc5ax5c51ennFyu/Ur0snH1o9rwSOftQh7LgaiB3R2j4KfSO//7Tl8eVlfX5YIG8IT+Q/2tyRD7iCez9n/rbNbb+KoGPhlw6GbNx/URkwxL8bMx/gHoX9TW04TnfFRoe/UDU42/mgq5VAHNoF6ZgaujXFrVKRu3ZZcNtCB48N2nI/ZZx7Bpq6yLTLObBRx6pEfHRMfIhZpLLBIr4L8ENnBWcO+tkrnG8ZLaDsbPwrYn3Yi+Ww37OSsT5ppjT+Q7jJXMeFT9LDXWctX9GT8tKr1/jdSzBcqyG2fOS7T0Zjp+FNX/nXRzNkb3H+64cVfN2txezcI/jJjMf5JCFN0WpKb55mujg4R4sdfleg+vdjixn4D6Mncx/FJcsZ+hUKq0CJNY1/XNat3PUbF/XEyqAt6syeJcOC5vLJYWUlDUCE3AJLsMiOt+Cu/AQVmEDdOmD9Fn6Kn3LTeaUXLlzD49J0YV8AWJPbuUPHF8Vhw==</latexit><latexit sha1_base64="gemDnQ2czLc9SQQkVf/HJLtsNNI=">AAAJfnicrVVLb9NAEB63PJq00JYTEheLqk0LUbQur1AJCYSEOLYNfUh1idbOJrFqO5btlBbjP8AdceAEEgeE+BVcuCMOleAHII5F4sKB2Y1J4iS1LYGj7M7Oznzz7czYqzmm4fmEHElj46dOnzk7kctPTp07Pz0zO7Xptdquzjb0ltlytzXqMdOw2YZv+CbbdlxGLc1kW9refb6/tc9cz2jZj/xDh+1atGEbdUOnPqqqs9IDVXedYPNxcCUMF72lvCzLC3f4KIsNtaha9KAaUNWwUfKbOjWDe2GoFkNZNVndX5S76nUEKFIBIV+V1Qa1LCqrXtuqBl6h378Shj2vVfQqPOOOcoxKAdeu0Wj6HFBV82JzLdrk1l2q/42AcBw4d2HUwfupFIq0sJSvzsyREhGPPCwokTAH0bPamh1/ASrUoAU6tMECBjb4KJtAwcPfDihAwEHdLgSoc1EyxD6DEPLo20YrhhYUtXs4NnC1E2ltXHNMT3jrGMXEv4ueMsyTL+QdOSafyHvynfw+ESsQGJzLIc5ax5c51ennFyu/Ur0snH1o9rwSOftQh7LgaiB3R2j4KfSO//7Tl8eVlfX5YIG8IT+Q/2tyRD7iCez9n/rbNbb+KoGPhlw6GbNx/URkwxL8bMx/gHoX9TW04TnfFRoe/UDU42/mgq5VAHNoF6ZgaujXFrVKRu3ZZcNtCB48N2nI/ZZx7Bpq6yLTLObBRx6pEfHRMfIhZpLLBIr4L8ENnBWcO+tkrnG8ZLaDsbPwrYn3Yi+Ww37OSsT5ppjT+Q7jJXMeFT9LDXWctX9GT8tKr1/jdSzBcqyG2fOS7T0Zjp+FNX/nXRzNkb3H+64cVfN2txezcI/jJjMf5JCFN0WpKb55mujg4R4sdfleg+vdjixn4D6Mncx/FJcsZ+hUKq0CJNY1/XNat3PUbF/XEyqAt6syeJcOC5vLJYWUlDUCE3AJLsMiOt+Cu/AQVmEDdOmD9Fn6Kn3LTeaUXLlzD49J0YV8AWJPbuUPHF8Vhw==</latexit><latexit sha1_base64="MCg4wHu1ZH5eV2eQa96+mfFlq38=">AAAJiXicrVVLb9NAEJ60PJoUaAsXJC4WUZsWomhdXqESUqES4tgHfUh1G62dTWLVdizbKS3Gf4A74sAJJA4I8Su4cEccKsEPQByLxIUDsxuTxElqWwJH8c7OzvfttzNjW7UN3fUIOcqMjJ46febsWDY3fu78hYnJqYsbbrPlaGxdaxpNZ0ulLjN0i617umewLdth1FQNtqnuLfH1zX3muHrTeuwd2mzHpHVLr+ka9dBVmco8VDTH9jd2/WtBMOvO5SRJmrnH75JYUIqKSQ8qPlV0Cy2voVHDvx8ESjGQFIPVvFmp415FgiIVFNJ1SalT06SS4rbMiu8WevFrQdBFLSOq8IwDpYiUAs4dvd7wOKGi5MTiSrjIoztS/5sAAew7d2HYwXulFIq0MJerTOZJiYhLGjTk0MhDeC03p0ZfgAJVaIIGLTCBgQUe2gZQcPG3DTIQsNG3Az76HLR0sc4ggBxiWxjFMIKidw/vdZxth14L55zTFWgNdzHw7yBSgmnyhbwjx+QTeU++k98ncvmCg2s5xFFtY5ldmXh+ee1XIsrE0YNGFxWr2YMalIVWHbXbwsNPobXx+09fHq8trE77M+QN+YH6X5Mj8hFPYO3/1N6usNVXMXpU1NLOmIXzJyIbptBnYf599Dvor2IMz/mO8PDdD0Q9/mbO70T5kMe4IIFTRVxL1CqetRuXjrcudPDcJDH3Rka5q+itiUyzCILf+U71UI+GOx9iJrlNoIj/EtzCUcaxPY/XGuWLV9u/dxq9VfFc7EVy2KtZDjXfFmOy3kG+eM3D9k9TQw1H9Z/Zk7LS7ddoHUswH6lh+ryke04G90+jmj/zDt6Nob3H+64cVvNupxfTaI/yxivv15BGN0WrId55qujgwR4sdfTegJudjiyn0D7IHa9/mJY0Z2hXKqkCJNI1vWNSt3PWdG/XEyqAX1e5/1s6aGzMl2RSkldIfvFB+J0dgytwFWaR5Q4swiNYhnXQMh8ynzNfM9+y41k5W84utENHMiHmEkSu7NIfQUEWfw==</latexit><latexit sha1_base64="c5ZSkobZG4C9vNVv4C62odwFpdE=">AAAJiXicrVVLb9NAEB63PJoUaAsXJC4WUZsWomhdCoRKSIVKiGMf9CHVJVo7m8Sq7Vi2U1qM/wB3xIETSBwQ4ldw4Y44VIIfgDgWiQsHZjcmiZPUsQSO4p2dne/bb2fGtuaYhucTciSNjJ46febsWCY7fu78hYnJqYubXqPp6mxDb5gNd1ujHjMNm234hm+ybcdl1NJMtqXtLfP1rX3mekbDfuQfOmzXojXbqBo69dFVnpIeqLrrBJuPg2thOOvNZWVZnrnL77JYUAuqRQ/KAVUNGy2/rlMzuBeGaiGUVZNV/Vm57V5DggIVFPJ1Wa1Ry6Ky6jWtcuDlu/HrYdhBrSAq/4wD5ZiUPM5do1b3OaGqZsXiarTIo9tS/5sAAew5d37Qwbul5As0P5ctT+ZIkYhL7jeUyMhBdK00pkZfgAoVaIAOTbCAgQ0+2iZQ8PC3AwoQcNC3CwH6XLQMsc4ghCximxjFMIKidw/vNZztRF4b55zTE2gddzHx7yJShmnyhbwjx+QTeU++k98ncgWCg2s5xFFrYZlTnnh+ef3XUJSFow/1DipRsw9VKAmtBmp3hIefQm/h95++PF5fXJsOZsgb8gP1vyZH5COewN7/qb9dZWuvEvRoqKWVMRvnT0Q2LKHPxvwH6HfRX8EYnvNd4eG7H4h6/M1c0I4KIIdx4RBODXFNUatk1k5cOt6a0MFzM4y5OzLOXUFvVWSaxRD8zneqRXp03PkQM8ltAgX8F+EmjgqOrXmy1jhfstrevdPorYjnYi+Ww27NSqT5lhiH6+3nS9Y8aP80NdRx1P6ZfVhWOv0ar2MR5mM1TJ+XdM9J//5pVPNn3sW7ObD3eN+VomreafdiGu1x3mTlvRrS6KZo1cU7TxMd3N+DxbbeG7DQ7shSCu393Mn6B2lJc4ZWpYZVgMS6pnsc1u2cNd3b9YQK4NdV6f2W9hub80WFFJXVhdzS/eg7OwZX4CrMIsttWIKHsAIboEsfpM/SV+lbZjyjZEqZxVboiBRhLkHsyiz/AUKBFoM=</latexit><latexit sha1_base64="c5ZSkobZG4C9vNVv4C62odwFpdE=">AAAJiXicrVVLb9NAEB63PJoUaAsXJC4WUZsWomhdCoRKSIVKiGMf9CHVJVo7m8Sq7Vi2U1qM/wB3xIETSBwQ4ldw4Y44VIIfgDgWiQsHZjcmiZPUsQSO4p2dne/bb2fGtuaYhucTciSNjJ46febsWCY7fu78hYnJqYubXqPp6mxDb5gNd1ujHjMNm234hm+ybcdl1NJMtqXtLfP1rX3mekbDfuQfOmzXojXbqBo69dFVnpIeqLrrBJuPg2thOOvNZWVZnrnL77JYUAuqRQ/KAVUNGy2/rlMzuBeGaiGUVZNV/Vm57V5DggIVFPJ1Wa1Ry6Ky6jWtcuDlu/HrYdhBrSAq/4wD5ZiUPM5do1b3OaGqZsXiarTIo9tS/5sAAew5d37Qwbul5As0P5ctT+ZIkYhL7jeUyMhBdK00pkZfgAoVaIAOTbCAgQ0+2iZQ8PC3AwoQcNC3CwH6XLQMsc4ghCximxjFMIKidw/vNZztRF4b55zTE2gddzHx7yJShmnyhbwjx+QTeU++k98ncgWCg2s5xFFrYZlTnnh+ef3XUJSFow/1DipRsw9VKAmtBmp3hIefQm/h95++PF5fXJsOZsgb8gP1vyZH5COewN7/qb9dZWuvEvRoqKWVMRvnT0Q2LKHPxvwH6HfRX8EYnvNd4eG7H4h6/M1c0I4KIIdx4RBODXFNUatk1k5cOt6a0MFzM4y5OzLOXUFvVWSaxRD8zneqRXp03PkQM8ltAgX8F+EmjgqOrXmy1jhfstrevdPorYjnYi+Ww27NSqT5lhiH6+3nS9Y8aP80NdRx1P6ZfVhWOv0ar2MR5mM1TJ+XdM9J//5pVPNn3sW7ObD3eN+VomreafdiGu1x3mTlvRrS6KZo1cU7TxMd3N+DxbbeG7DQ7shSCu393Mn6B2lJc4ZWpYZVgMS6pnsc1u2cNd3b9YQK4NdV6f2W9hub80WFFJXVhdzS/eg7OwZX4CrMIsttWIKHsAIboEsfpM/SV+lbZjyjZEqZxVboiBRhLkHsyiz/AUKBFoM=</latexit><latexit sha1_base64="c5ZSkobZG4C9vNVv4C62odwFpdE=">AAAJiXicrVVLb9NAEB63PJoUaAsXJC4WUZsWomhdCoRKSIVKiGMf9CHVJVo7m8Sq7Vi2U1qM/wB3xIETSBwQ4ldw4Y44VIIfgDgWiQsHZjcmiZPUsQSO4p2dne/bb2fGtuaYhucTciSNjJ46febsWCY7fu78hYnJqYubXqPp6mxDb5gNd1ujHjMNm234hm+ybcdl1NJMtqXtLfP1rX3mekbDfuQfOmzXojXbqBo69dFVnpIeqLrrBJuPg2thOOvNZWVZnrnL77JYUAuqRQ/KAVUNGy2/rlMzuBeGaiGUVZNV/Vm57V5DggIVFPJ1Wa1Ry6Ky6jWtcuDlu/HrYdhBrSAq/4wD5ZiUPM5do1b3OaGqZsXiarTIo9tS/5sAAew5d37Qwbul5As0P5ctT+ZIkYhL7jeUyMhBdK00pkZfgAoVaIAOTbCAgQ0+2iZQ8PC3AwoQcNC3CwH6XLQMsc4ghCximxjFMIKidw/vNZztRF4b55zTE2gddzHx7yJShmnyhbwjx+QTeU++k98ncgWCg2s5xFFrYZlTnnh+ef3XUJSFow/1DipRsw9VKAmtBmp3hIefQm/h95++PF5fXJsOZsgb8gP1vyZH5COewN7/qb9dZWuvEvRoqKWVMRvnT0Q2LKHPxvwH6HfRX8EYnvNd4eG7H4h6/M1c0I4KIIdx4RBODXFNUatk1k5cOt6a0MFzM4y5OzLOXUFvVWSaxRD8zneqRXp03PkQM8ltAgX8F+EmjgqOrXmy1jhfstrevdPorYjnYi+Ww27NSqT5lhiH6+3nS9Y8aP80NdRx1P6ZfVhWOv0ar2MR5mM1TJ+XdM9J//5pVPNn3sW7ObD3eN+VomreafdiGu1x3mTlvRrS6KZo1cU7TxMd3N+DxbbeG7DQ7shSCu393Mn6B2lJc4ZWpYZVgMS6pnsc1u2cNd3b9YQK4NdV6f2W9hub80WFFJXVhdzS/eg7OwZX4CrMIsttWIKHsAIboEsfpM/SV+lbZjyjZEqZxVboiBRhLkHsyiz/AUKBFoM=</latexit><latexit sha1_base64="c5ZSkobZG4C9vNVv4C62odwFpdE=">AAAJiXicrVVLb9NAEB63PJoUaAsXJC4WUZsWomhdCoRKSIVKiGMf9CHVJVo7m8Sq7Vi2U1qM/wB3xIETSBwQ4ldw4Y44VIIfgDgWiQsHZjcmiZPUsQSO4p2dne/bb2fGtuaYhucTciSNjJ46febsWCY7fu78hYnJqYubXqPp6mxDb5gNd1ujHjMNm234hm+ybcdl1NJMtqXtLfP1rX3mekbDfuQfOmzXojXbqBo69dFVnpIeqLrrBJuPg2thOOvNZWVZnrnL77JYUAuqRQ/KAVUNGy2/rlMzuBeGaiGUVZNV/Vm57V5DggIVFPJ1Wa1Ry6Ky6jWtcuDlu/HrYdhBrSAq/4wD5ZiUPM5do1b3OaGqZsXiarTIo9tS/5sAAew5d37Qwbul5As0P5ctT+ZIkYhL7jeUyMhBdK00pkZfgAoVaIAOTbCAgQ0+2iZQ8PC3AwoQcNC3CwH6XLQMsc4ghCximxjFMIKidw/vNZztRF4b55zTE2gddzHx7yJShmnyhbwjx+QTeU++k98ncgWCg2s5xFFrYZlTnnh+ef3XUJSFow/1DipRsw9VKAmtBmp3hIefQm/h95++PF5fXJsOZsgb8gP1vyZH5COewN7/qb9dZWuvEvRoqKWVMRvnT0Q2LKHPxvwH6HfRX8EYnvNd4eG7H4h6/M1c0I4KIIdx4RBODXFNUatk1k5cOt6a0MFzM4y5OzLOXUFvVWSaxRD8zneqRXp03PkQM8ltAgX8F+EmjgqOrXmy1jhfstrevdPorYjnYi+Ww27NSqT5lhiH6+3nS9Y8aP80NdRx1P6ZfVhWOv0ar2MR5mM1TJ+XdM9J//5pVPNn3sW7ObD3eN+VomreafdiGu1x3mTlvRrS6KZo1cU7TxMd3N+DxbbeG7DQ7shSCu393Mn6B2lJc4ZWpYZVgMS6pnsc1u2cNd3b9YQK4NdV6f2W9hub80WFFJXVhdzS/eg7OwZX4CrMIsttWIKHsAIboEsfpM/SV+lbZjyjZEqZxVboiBRhLkHsyiz/AUKBFoM=</latexit><latexit sha1_base64="c5ZSkobZG4C9vNVv4C62odwFpdE=">AAAJiXicrVVLb9NAEB63PJoUaAsXJC4WUZsWomhdCoRKSIVKiGMf9CHVJVo7m8Sq7Vi2U1qM/wB3xIETSBwQ4ldw4Y44VIIfgDgWiQsHZjcmiZPUsQSO4p2dne/bb2fGtuaYhucTciSNjJ46febsWCY7fu78hYnJqYubXqPp6mxDb5gNd1ujHjMNm234hm+ybcdl1NJMtqXtLfP1rX3mekbDfuQfOmzXojXbqBo69dFVnpIeqLrrBJuPg2thOOvNZWVZnrnL77JYUAuqRQ/KAVUNGy2/rlMzuBeGaiGUVZNV/Vm57V5DggIVFPJ1Wa1Ry6Ky6jWtcuDlu/HrYdhBrSAq/4wD5ZiUPM5do1b3OaGqZsXiarTIo9tS/5sAAew5d37Qwbul5As0P5ctT+ZIkYhL7jeUyMhBdK00pkZfgAoVaIAOTbCAgQ0+2iZQ8PC3AwoQcNC3CwH6XLQMsc4ghCximxjFMIKidw/vNZztRF4b55zTE2gddzHx7yJShmnyhbwjx+QTeU++k98ncgWCg2s5xFFrYZlTnnh+ef3XUJSFow/1DipRsw9VKAmtBmp3hIefQm/h95++PF5fXJsOZsgb8gP1vyZH5COewN7/qb9dZWuvEvRoqKWVMRvnT0Q2LKHPxvwH6HfRX8EYnvNd4eG7H4h6/M1c0I4KIIdx4RBODXFNUatk1k5cOt6a0MFzM4y5OzLOXUFvVWSaxRD8zneqRXp03PkQM8ltAgX8F+EmjgqOrXmy1jhfstrevdPorYjnYi+Ww27NSqT5lhiH6+3nS9Y8aP80NdRx1P6ZfVhWOv0ar2MR5mM1TJ+XdM9J//5pVPNn3sW7ObD3eN+VomreafdiGu1x3mTlvRrS6KZo1cU7TxMd3N+DxbbeG7DQ7shSCu393Mn6B2lJc4ZWpYZVgMS6pnsc1u2cNd3b9YQK4NdV6f2W9hub80WFFJXVhdzS/eg7OwZX4CrMIsttWIKHsAIboEsfpM/SV+lbZjyjZEqZxVboiBRhLkHsyiz/AUKBFoM=</latexit><latexit sha1_base64="c5ZSkobZG4C9vNVv4C62odwFpdE=">AAAJiXicrVVLb9NAEB63PJoUaAsXJC4WUZsWomhdCoRKSIVKiGMf9CHVJVo7m8Sq7Vi2U1qM/wB3xIETSBwQ4ldw4Y44VIIfgDgWiQsHZjcmiZPUsQSO4p2dne/bb2fGtuaYhucTciSNjJ46febsWCY7fu78hYnJqYubXqPp6mxDb5gNd1ujHjMNm234hm+ybcdl1NJMtqXtLfP1rX3mekbDfuQfOmzXojXbqBo69dFVnpIeqLrrBJuPg2thOOvNZWVZnrnL77JYUAuqRQ/KAVUNGy2/rlMzuBeGaiGUVZNV/Vm57V5DggIVFPJ1Wa1Ry6Ky6jWtcuDlu/HrYdhBrSAq/4wD5ZiUPM5do1b3OaGqZsXiarTIo9tS/5sAAew5d37Qwbul5As0P5ctT+ZIkYhL7jeUyMhBdK00pkZfgAoVaIAOTbCAgQ0+2iZQ8PC3AwoQcNC3CwH6XLQMsc4ghCximxjFMIKidw/vNZztRF4b55zTE2gddzHx7yJShmnyhbwjx+QTeU++k98ncgWCg2s5xFFrYZlTnnh+ef3XUJSFow/1DipRsw9VKAmtBmp3hIefQm/h95++PF5fXJsOZsgb8gP1vyZH5COewN7/qb9dZWuvEvRoqKWVMRvnT0Q2LKHPxvwH6HfRX8EYnvNd4eG7H4h6/M1c0I4KIIdx4RBODXFNUatk1k5cOt6a0MFzM4y5OzLOXUFvVWSaxRD8zneqRXp03PkQM8ltAgX8F+EmjgqOrXmy1jhfstrevdPorYjnYi+Ww27NSqT5lhiH6+3nS9Y8aP80NdRx1P6ZfVhWOv0ar2MR5mM1TJ+XdM9J//5pVPNn3sW7ObD3eN+VomreafdiGu1x3mTlvRrS6KZo1cU7TxMd3N+DxbbeG7DQ7shSCu393Mn6B2lJc4ZWpYZVgMS6pnsc1u2cNd3b9YQK4NdV6f2W9hub80WFFJXVhdzS/eg7OwZX4CrMIsttWIKHsAIboEsfpM/SV+lbZjyjZEqZxVboiBRhLkHsyiz/AUKBFoM=</latexit>
Anzeige