Experiencia 7. 2do MATE. (1).pdf

Actividad de matematica.

I.E. “JORGE CHAVEZ CHAPARRO” – UGEL CUSCO – REGION CUSCO – PERU.
EXPERIENCIA DE APRENDIZAJE N° 07. AREA MATEMATICA SEGUNDO GRADO, AÑO 2021.
Título: “Reconocemos la creatividad de las familias peruanas” Prof. Luis Rondan Aybar.
SESIÓNES VIRTUALES: O1, 02, 03, 04 ,05 ,06. SEMANAS:21,22,23. Del 20 de setiembre al 08 de octubre de 2021
PROPOSITO DE APRENDIZAJE: COMPETENCIA, CAPACIDADES, ESTANDARES, DESEMPEÑOS, NECESIDADES, RETOS, PRODUCTOS, EVIDENCIAS
DE APRENDIZAJE E INTRUMENTOS DE EVALUACIÓN.
Competencias transversales/Capacidades.
Gestiona aprendizaje de manera
autónoma:
Organiza un conjunto de estrategias y procedimientos en función del tiempo y de los recursos de que dispone
para lograr las metas de Aprendizaje de acuerdo con sus posibilidades.
Enfoques transversales Valor /Actitud/ acciones observables
Enfoque orientación al bien común:
Empatía.
Los estudiantes reflexionan en torno a las dificultades en el acceso a información de calidad respecto al cuidado
de la salud y reconocen lo que otros ciudadanos experimentan debido a esa situación
Enfoque intercultural: Diálogo
intercultural.
Los estudiantes reconocen que el bienestar puede abordarse desde diversas perspectivas culturales y desde el saber
científico, enriqueciendo así sus propuestas de acciones en favor del bienestar individual y colectivo.
SEMANA 21. ACTIVIDAD 05. TITULO “Construimos formas geométricas en familia haciendo uso de normas”
Evidencia 1 (Resuelve problemas de forma, movimiento y localización) Modela objetos con forma geométricas, comunicando su comprensión de las
relaciones geométricas, usando estrategias. Asimismo, argumenta sus afirmaciones, sobre las características y atributos medibles de
objetos. Asocia estas relaciones y representa, con formas bidimensionales sus elementos y propiedades de volumen, área y perímetro
Situación significativa:
Nuestra Región de Cusco sigue en un periodo de emergencia sanitaria, el cual hace que muchas
familias opten por los mejores cuidados y evitar el contagio de la COVID-19. Sin embargo,
muchas familias han optado en buscar mejores procedimientos para cuidarse, respetando las
medidas por el Minsa y especificaciones, para ello realizan reuniones de intercambio de saberes
y prácticas dirigidas para aclarar sus principales dudas, expectativas y demandas vinculadas a
los cuidados que se debe tener presente frente a esta pandemia. Frente a la situación planteada
nos preguntamos: ¿De qué manera nuestras familias están respondiendo a las situaciones que
afectan su bienestar? ¿Qué procedimientos debemos seguir para respaldar mejora a nuestra
familia? ¿Podemos calcular los costos que requiere nuestro cuidado?
Recuerda:
En las sesiones
estamos
nivelando,
reforzando y
retroalimentan
do al mismo
tiempo. Sé
puntual y
cumplido.
COMPETENCIA Y
CAPACIDAD. Resuelve
problemas de forma,
movimiento localización.
1. Modela objetos con formas
geométricas y sus
transformaciones. 2.
Comunica su comprensión
sobre la forma y relaciones
geométricas.
PROPOSIT0 DE
APRENDIZAJE: permitirá que
los alumnos efectúen
representaciones gráficas de los
objetos planteados como
alternativas de solución para
mejorar la calidad de vida de su
familia. Además, podrán realizar
el cálculo de la cantidad de
materiales que necesitan para
implementarlos.
DESEMPEÑO Establece
relaciones entre las
características y los atributos
medibles de objetos Asocia
estas características y las
representa con formas
bidimensionales. Establece,
propiedades de formas
poligonales, volumen, área y
perímetro.
.
Evidencia de aprendizaje
Identifica y aplica cuadriláteros
en la vida diaria, organizando
datos y gráficos leyéndolos,
analizándolos, comparando,
representando e
interpretándolos y
proponiendo conclusiones;
sobre la mejora de calidad de
vida familiar.
ESTANDAR DE APRENDIZAJE Resuelve
problemas en los que modela
características de objetos mediante
polígonos, sus elementos y propiedades.
Expresa su comprensión de las formas,
la relación entre una forma geométrica y
sus diferentes perspectivas; usando
dibujos y construcciones
NECESIDADES DE APRENDIZAJE
1. Construir o dibujar, con instrumentos de
precisión (regla y compás), los cuadriláteros y
clasificarlos para comprender sus propiedades.
2. Aplicar diversas estrategias para calcular el
área de los cuadriláteros.
PRODUCTOS: Los alumnos recogen datos a
través de la información cuadriláteros y los
analiza, sistematiza e interpreta a partir de
gráficos situacionales y plantean conclusiones
relacionadas con mejoramiento de la calidad de
vida familiar
RETOS: Debes responder: ¿Por qué
nuestro cuidado de calidad de vida familiar,
debe ser bien estructurado?
¿Qué acciones propondrías para mejorar la
calidad de vida familiar?
Instrumentos y
técnica de
evaluación.
Lista de cotejo.
Recordamos:
El cuadrilátero: es una figura geométrica, específicamente un polígono
conformado por cuatro lados, cuatro ángulos y cuatro vértices.
Elementos del cuadrilátero
1. Vértice: A, B, C, D.
2. Lados: AB, BC, DC, AD.
3. Ángulos interiores: w,t,y,v. Suman 360.
4. Diagonales: Son segmentos de recta que unen vértices opuestos de la figura. Son AC y DB.
Clasificación de cuadriláteros. Área de figuras planas.
¡Ahora!, Aplicamos lo recordado en las situaciones propuestas.
1. El perímetro de un rectángulo es 28 cm, uno de los lados es
6 cm más que el otro lado. Halla el mayor lado del rectángulo.
2. La figura mostrada estpá formado por un cuadrado y un
trapecio recto. Halla el perímetro de la figura.
3. Encuentra el perímetro de la región colorada. 4. La figura que se muestra esta formada por dos cuadrados
congruentes y un triángulo equilátero. Halla el perímetro de
la figura, si AB = CD = 6
¡Ahora! Seguimos y reflexionamos.
Situación1
Responde a las siguientes preguntas.
1. ¿Qué están haciendo Helena y sus hermanos?, ¿por qué lo hacen?
2. ¿Qué se puede hacer con las piezas de mecano?
3. ¿Qué recuerdas de los cuadriláteros? Menciona todos los que tengas
en mente.
4. ¿Cómo construirías los cuadriláteros con las piezas de mecano?
5. ¿Cuánto mide cada una de las piezas de mecano? Para ello, utiliza el
mecano que está en la hoja “Piezas de mecano”, el cual se encuentra en
la sección “Recursos para mi aprendizaje", y que también lo puedes
encontrar en el Cuaderno de trabajo de Matemática “Resolvamos
problemas 1” (página 221).
6. ¿Qué te piden responder en la situación?
1. ¿Cuántos tipos de cuadriláteros se pueden formar con
las piezas de mecano de cada grupo? ¿Cuáles son los
nombres y las características de los cuadriláteros
formados?
2. ¿Cuál es el perímetro de cada tipo de cuadrilátero
construido con las piezas de mecano de cada grupo
Helena y sus hermanos cumplen las normas acordadas en la familia y se reúnen en la mesa
para realizar actividades lúdicas. Ellos van a construir piezas de mecano con tiras alargadas
de cartón o papel que poseen una serie de agujeros equidistantes. Las tiras son de
diferentes tamaños, y para unirlas usan hilos que les permiten alargar la longitud que
deseen. De este modo, pueden formar líneas abiertas, cerradas, rectas o quebradas; es
decir, figuras geométricas.
Anteriormente, aprendimos sobre la importancia de cumplir normas para el cuidado de
nuestra salud, tanto en la familia como en la sociedad. Ahora, es el momento de poner en
práctica los acuerdos de convivencia en el desarrollo de nuestras actividades, haciendo uso
de piezas de mecano.
5. la diagonal mayorde un rombo mide 12 cm y ladiagonal
menor mide la tercera parte de la mayor. Halla el área de
la región del rombo.
6. Encuentra el área de la región colorada.
7. Encuentra el área de la región sombreada. 8. Halle el área del cuadrado, si su diagonal mide
Autoevaluación Lista de cotejo
CRITERIOS DE EVALUACIÓN
LO
LOGRE
ESTOY EN
PROCESO
DE
LOGRARLO
¿QUE PUEDO
HACER PARA
MEJORAR?
Representé las características y los atributos medibles de objetos con cuadriláteros.
Clasifiqué cuadriláteros según sus propiedades.
SEMANA 22. ACTIVIDAD 05. TITULO “Construimos formas geométricas en familia haciendo uso de normas”
Evidencia 2 (Resuelve problemas de forma, movimiento y localización) Modela objetos con forma geométricas, comunicando su comprensión de las
relaciones geométricas, usando estrategias. Asimismo, argumenta sus afirmaciones, sobre las características y atributos medibles de
objetos. Asocia estas relaciones y representa, con formas bidimensionales sus elementos y propiedades de volumen, área y perím
Exploremos el material y construyamos figuras geométricas
1. Formamos grupos. Luego, acuerden algunas normas de convivencia durante la actividad.
2. Recortamos las piezas de mecano, asegurando que se observen los agujeros
3. Agrupamos las piezas de mecano en Grupo, como se indicó en la situación inicial. Cada equipo,
recibe sus piezas para realizar las actividades que se indican.
4. Formamos todos los tipos de cuadriláteros posibles con las piezas de mecano en cada grupo,
haciendo uso de hilos.
5. Observamos el video “Clasificación de cuadriláteros”, que se encuentra en la sección
“Recursos para mi aprendizaje” para que tengas más ideas. Reconoce cuál de las figuras que has
armado se consideran en el video. Luego, identifica los elementos y las características de los
cuadriláteros.
6. Observamos los cuadriláteros que hemos armado y los que se muestran en el video. A
continuación, los juntamos en tres grupos y graficamos en la tabla con sus respectivos nombres.
7. A continuación, respondemos lo siguiente:
• ¿Cuántos cuadriláteros has construido con el grupo A? ¿Y cuáles son sus nombres?
• ¿Cuántos cuadriláteros has construido con el grupo B? ¿Y cuáles son sus nombres?
8. Finalmente, anotamos las medidas de longitud de cada figura que hemos obtenido en la tabla. Luego, calculamos sus perímetros
y respondemos la segunda pregunta de la situación inicial: ¿Cuál es el perímetro de cada tipo de cuadrilátero construido con las
piezas de mecano de cada grupo?
Ahora, explicamos lo que hemos aprendido
1. Respondemos las siguientes preguntas con relación a las tres clases de cuadriláteros obtenidos en la tabla anterior.
• ¿Qué clase de cuadrilátero tiene como característica que sus dos pares de lados opuestos son paralelos y congruentes?
• ¿Qué clase de cuadrilátero tiene dos lados opuestos paralelos?
• ¿Qué cuadriláteros no tienen lados paralelos?
2. Graficamos cada uno de los cuadriláteros y escribimos sus
características. Toma en cuenta lo que has observado en las
piezas de mecano y en el video.
3. Comparamos dos de los cuadriláteros que se han construido
y señalamos las diferencias y semejanzas entre ellos.
Organizamos y aplicamos lo aprendido:
1. Elaboramos un organizador visual de lo que hemos aprendido. Para afianzar más nuestro aprendizaje, realizamos las actividades
que indica el texto “Comprobamos nuestro aprendizaje”, el cual se encuentra en la sección “Recursos para mi aprendizaje”.
Reflexionamos en familia:
1. ¿Ha sido útil establecer normas de convivencia para el desarrollo de la actividad?
2. ¿Qué importancia tiene cumplir las normas en la familia y sociedad
Situación significativa
formar un trapecio isósceles? Justifica tu respuesta.
COMPROBAMOS NUESTROS APRENDIZAJES
Propósito: Empleamos recursos o procedimientos para determinar la longitud, el perímetro y el área
de cuadriláteros, empleando unidades convencionales. Asimismo, justificamos con ejemplos y con nuestros
conocimientos geométricos las relaciones y propiedades que descubrimos entre las formas geométricas,y
corregimoserroressiloshubiera.
Resolución
Primero debemos conocer cuáles son las características
de un trapecio isósceles:
- Tiene dos lados paralelos y dos lados no paralelos.
- Sus dos lados no paralelos son iguales.
- Tiene cuatro ángulos, dos agudos y dos obtusos.
- Tiene cuatro lados.
- Sus lados paralelos se denominan bases y son de
diferente longitud.
Una vez descritas algunas de las características de
esta figura geométrica, se decide cuál de los grupos de
mecanos nos permite construir un trapecio isósceles.
Respuesta:
La respuesta es el grupo A, porque tiene dos varillas
iguales que serían los lados no paralelos y dos varillas
diferentes que serían las bases.
Describe tres características más, diferentes a las ya
mencionadas en la resolución.
¿Puedes formar otros trapecios con B y C? Justificatu
respuesta y representa gráficamente
Autoevaluación Lista de cotejo
CRITERIOS DE EVALUACIÓN
LO
LOGRE
ESTOY EN
PROCESO
DE
LOGRARLO
¿QUE PUEDO
HACER PARA
MEJORAR?
Representé las características y los atributos medibles de objetos con cuadriláteros.
Empleé estrategias, recursos o procedimientos para determinar perímetros o
áreas
SEMANA 23 ACTIVIDAD 09. TITULO “Calculamos áreas presentes en la cocina mejorada”
Evidencia 3 (Resuelve problemas de forma, movimiento y localización) Modela objetos con forma geométricas, comunicando su comprensión de las
relaciones geométricas, usando estrategias. Asimismo, argumenta sus afirmaciones, sobre las características y atributos medibles de
objetos. Asocia estas relaciones y representa, con formas bidimensionales sus elementos y propiedades de volumen, área y perímetro
Situación:
Comprendemos el problema. Diseñamos o seleccionamos una estrategia.
Ejecutamos la estrategia:
Propuesta 1. Estimamos la cantidad de ladrillos haciendo uso de gráficos.
6. Observamos las caras estructuradas e identificamos sus dimensiones.
7. Graficamos las 4 caras de la estructura base. En su interior, graficamos
una las caras del ladrillo hasta intentar cubrirla.
Respondemos:
¿Los ladrillos cubren toda la superficie?, ¿Por qué?
Aproximadamente, ¡Cuántos ladrillos se requieren para construir la estructura base!
Propuesta 2: Estimamos la cantidad de ladrillos haciendo uso de cosas. Identificamos las
4 superficies laterales de la estructura base y la cara del ladrillo, que será parte de la cara
lateral de la estructura base de la cocina. Luego, los dibujamos y anotamos sus
dimensiones.
2.Calculamos el área lateral total de la estructura base (A1) y el área de la cara
del ladrillo que se verá en la superficie lateral de la estructura base (A2)
1
2
.. .. .. .. .. ..
.. :
.. .. .. .. ..
A
Area lateral total de la estructura base
N de ladrillos
Área de la cara del ladrillo A
  
3.Para averiguar cuántos ladrillos entran, aproximadamente, en la cara lateral
de la estructura base, podríamos realizar lo siguiente:
4.Respondemos la pregunta de la situación inicial:
¿cuántos ladrillos pandereta necesitarán comprar Luis y su familia para
construir la estructura de la base de la cocina mejorada?
La familia de Luis está preocupada por el humo que se produce al cocinar con
fuego abierto. Luis decide investigar qué alternativas de solución existen para
no contaminarse en el interior de su vivienda, y encuentra un manual de
Foncodes que explica cómo instalar la cocina mejorada Caralia. En el manual
lee que se requiere construir una estructura para la base de la cocina, que
está compuesta por tres hileras de ladrillos pandereta de 9 × 11 × 23 cm.
Aproximadamente, ¿cuántos ladrillos pandereta necesitarán comprar Luis y
su familia para construir la estructura base de la cocina mejorada?
1. ¿Qué desean hacer Luis y su familia? ¿Por qué lo harán?
2. ¿Qué entiendes por cocina mejorada?
3. ¿Cuáles serán las características de la estructura base?
4. ¿Qué figuras geométricas observas en las caras laterales de la estructura
base de la cocina y en un ladrillo pandereta? Represéntalo con dibujos.
5. ¿Qué dimensiones tienen las caras laterales de la estructura base de la
cocina? ¿Qué dimensiones tienen las caras del ladrillo pandereta?
Represéntalo con dibujos.
Describe el procedimiento a
seguir:
Reflexionamos sobre el desarrollo 1.
1. ¿Cuál es la importancia de la cocina mejorada?
2. ¿De qué otra manera puedes estimar la cantidad de ladrillos que serán necesarios para construir la estructura base de
una cocina mejorada?
3. Observa nuevamente el video “Áreas de figuras planas”, que se encuentra en la sección “Recursos para mi
aprendizaje” y con lo que has trabajado responde:
• ¿Qué entiendes por unidad cuadrada? ¿Y qué unidades te permiten medirla?
• ¿Qué propiedades geométricas te permiten calcular las áreas de cuadriláteros?
• Explica cómo se obtiene la propiedad que permite calcular el área de un rombo, de un romboide (paralelogramo) y
de un rectángulo.
• ¿Qué importancia tiene conocer las características y elementos de las figuras geométricas para determinar su
perímetro y áreas? Sustenta con ejemplos.
CRITERIOS DE EVALUACIÓN
LO
LOGRE
ESTOY EN
PROCESO DE
LOGRARLO
¿QUE PUEDO
HACER PARA
MEJORAR?
Empleé estrategias, recursos o procedimientos para determinar perímetros o áreas.
Planteé afirmaciones sobre las relaciones y propiedades, haciendo uso de ejemplos y
conocimientos geométricos
Empleé estrategias, recursos o procedimientos para determinar perímetros o áreas.
Un pulmón limpio de COVID 19
Algunos gráficos, imágenes y ejercicios fueron tomados de Internet, por el cual se agradece.

Recomendados

Sesión metodos de resolución de sistema de ecuaciones sala innova. nicolas co... von
Sesión metodos de resolución de sistema de ecuaciones sala innova. nicolas co...Sesión metodos de resolución de sistema de ecuaciones sala innova. nicolas co...
Sesión metodos de resolución de sistema de ecuaciones sala innova. nicolas co...Wilian Jaime Quispe Mitma
1.7K views2 Folien
Sesion transformaciones von
Sesion transformacionesSesion transformaciones
Sesion transformacionesArturoShgreg
575 views2 Folien
Sesión de aprendizaje Sor Ana de los Ángeles von
Sesión de aprendizaje Sor Ana de los ÁngelesSesión de aprendizaje Sor Ana de los Ángeles
Sesión de aprendizaje Sor Ana de los ÁngeleskatherineYsmelda
2K views4 Folien
Sesión de poligonos von
Sesión de poligonosSesión de poligonos
Sesión de poligonosAlbert Paco Garcia
17K views7 Folien
Sesion de aprendizaje matematica-2015 von
Sesion de aprendizaje matematica-2015Sesion de aprendizaje matematica-2015
Sesion de aprendizaje matematica-2015Roberto Puma Apaza
14.7K views35 Folien
Sesiones von
SesionesSesiones
SesionesKevin Ojeda
192 views7 Folien

Más contenido relacionado

Was ist angesagt?

Sesión de Matemàtica de Progresiones Geométricas von
Sesión de Matemàtica de Progresiones GeométricasSesión de Matemàtica de Progresiones Geométricas
Sesión de Matemàtica de Progresiones GeométricasMaribel Chuye
19.5K views3 Folien
Sesion de aprendizaje de prismas von
Sesion de aprendizaje de prismasSesion de aprendizaje de prismas
Sesion de aprendizaje de prismasIsela Borja
17.1K views8 Folien
Mat5 u9-sesion 03 27 de nov. von
Mat5 u9-sesion 03 27 de nov.Mat5 u9-sesion 03 27 de nov.
Mat5 u9-sesion 03 27 de nov.Roxana Zapata Tito
1.1K views11 Folien
Sesión de aprendizaje de matemática para 2 año de secundaria von
Sesión de aprendizaje de matemática para 2 año de secundariaSesión de aprendizaje de matemática para 2 año de secundaria
Sesión de aprendizaje de matemática para 2 año de secundariaAlicia Cruz Ccahuana
9.2K views6 Folien
Sesión de aprendizaje 4 sistemas de medición de ángulos von
Sesión de aprendizaje 4   sistemas de medición de ángulosSesión de aprendizaje 4   sistemas de medición de ángulos
Sesión de aprendizaje 4 sistemas de medición de ángulosLuperdi1212
1.3K views1 Folie
Sesion de aprendizaje volumen de un prisma vp233 ccesa007 von
Sesion de aprendizaje volumen de un prisma vp233  ccesa007Sesion de aprendizaje volumen de un prisma vp233  ccesa007
Sesion de aprendizaje volumen de un prisma vp233 ccesa007Demetrio Ccesa Rayme
735 views35 Folien

Was ist angesagt?(20)

Sesión de Matemàtica de Progresiones Geométricas von Maribel Chuye
Sesión de Matemàtica de Progresiones GeométricasSesión de Matemàtica de Progresiones Geométricas
Sesión de Matemàtica de Progresiones Geométricas
Maribel Chuye19.5K views
Sesion de aprendizaje de prismas von Isela Borja
Sesion de aprendizaje de prismasSesion de aprendizaje de prismas
Sesion de aprendizaje de prismas
Isela Borja17.1K views
Sesión de aprendizaje de matemática para 2 año de secundaria von Alicia Cruz Ccahuana
Sesión de aprendizaje de matemática para 2 año de secundariaSesión de aprendizaje de matemática para 2 año de secundaria
Sesión de aprendizaje de matemática para 2 año de secundaria
Sesión de aprendizaje 4 sistemas de medición de ángulos von Luperdi1212
Sesión de aprendizaje 4   sistemas de medición de ángulosSesión de aprendizaje 4   sistemas de medición de ángulos
Sesión de aprendizaje 4 sistemas de medición de ángulos
Luperdi12121.3K views
Sesion de aprendizaje volumen de un prisma vp233 ccesa007 von Demetrio Ccesa Rayme
Sesion de aprendizaje volumen de un prisma vp233  ccesa007Sesion de aprendizaje volumen de un prisma vp233  ccesa007
Sesion de aprendizaje volumen de un prisma vp233 ccesa007
2° SESIÓN DE APRENDIZAJE SESIÓN1-SEM.2-EXP.2.docx von YulianaDiazLozada
2° SESIÓN DE APRENDIZAJE SESIÓN1-SEM.2-EXP.2.docx2° SESIÓN DE APRENDIZAJE SESIÓN1-SEM.2-EXP.2.docx
2° SESIÓN DE APRENDIZAJE SESIÓN1-SEM.2-EXP.2.docx
YulianaDiazLozada676 views
11 sesion razones y proporciones von Alonso Espinola
11 sesion razones y proporciones11 sesion razones y proporciones
11 sesion razones y proporciones
Alonso Espinola18.5K views
ACTIVIDAD DE APRENDIZAJE SOBRE PERÍMETROS Y ÁREAS DE POLÍGONOS. von Regi_SG
ACTIVIDAD DE APRENDIZAJE SOBRE PERÍMETROS Y ÁREAS DE POLÍGONOS.ACTIVIDAD DE APRENDIZAJE SOBRE PERÍMETROS Y ÁREAS DE POLÍGONOS.
ACTIVIDAD DE APRENDIZAJE SOBRE PERÍMETROS Y ÁREAS DE POLÍGONOS.
Regi_SG 591 views
Sesión interés simple von Vilma Bravo
Sesión interés simpleSesión interés simple
Sesión interés simple
Vilma Bravo12.4K views

Similar a Experiencia 7. 2do MATE. (1).pdf

exp7-secundaria-1y2-exploramosyaprendemos-act05.pdf von
exp7-secundaria-1y2-exploramosyaprendemos-act05.pdfexp7-secundaria-1y2-exploramosyaprendemos-act05.pdf
exp7-secundaria-1y2-exploramosyaprendemos-act05.pdfEdwinLlantoy1
24 views8 Folien
Imanol ayllon (matematica semana 26) von
Imanol ayllon (matematica   semana 26)Imanol ayllon (matematica   semana 26)
Imanol ayllon (matematica semana 26)Victor Huamani Nstra.SRA DEL CARMEN
93 views6 Folien
EDA 1 MAT 5°.docx von
EDA 1 MAT 5°.docxEDA 1 MAT 5°.docx
EDA 1 MAT 5°.docxLuisHuanca20
10 views2 Folien
EDA 1 MAT 2°.docx von
EDA 1 MAT 2°.docxEDA 1 MAT 2°.docx
EDA 1 MAT 2°.docxLuisHuanca20
4 views2 Folien
EDA 3 MAT 1°.docx von
EDA 3 MAT 1°.docxEDA 3 MAT 1°.docx
EDA 3 MAT 1°.docxLuisHuanca20
4 views2 Folien
S3_exp6.pdf von
S3_exp6.pdfS3_exp6.pdf
S3_exp6.pdfnorkamendozaparedes
2 views7 Folien

Similar a Experiencia 7. 2do MATE. (1).pdf(20)

exp7-secundaria-1y2-exploramosyaprendemos-act05.pdf von EdwinLlantoy1
exp7-secundaria-1y2-exploramosyaprendemos-act05.pdfexp7-secundaria-1y2-exploramosyaprendemos-act05.pdf
exp7-secundaria-1y2-exploramosyaprendemos-act05.pdf
EdwinLlantoy124 views
SESION DE APRENDIZAJE MATEMÁTICA - JUNTAMOS HASTA EL 10 - copia.pdf von ElmerRalCrdenasArmil
SESION DE APRENDIZAJE MATEMÁTICA - JUNTAMOS HASTA EL 10 - copia.pdfSESION DE APRENDIZAJE MATEMÁTICA - JUNTAMOS HASTA EL 10 - copia.pdf
SESION DE APRENDIZAJE MATEMÁTICA - JUNTAMOS HASTA EL 10 - copia.pdf

Más de RosaElviraJimnezJimn

TITULOS PARA EXPERIENCIAS (2).docx von
TITULOS PARA EXPERIENCIAS (2).docxTITULOS PARA EXPERIENCIAS (2).docx
TITULOS PARA EXPERIENCIAS (2).docxRosaElviraJimnezJimn
98 views1 Folie
MATEMATICA 5to ACTIVIDAD 7 - EXP 5 - NÚMEROS RACIONALES.pdf von
MATEMATICA 5to ACTIVIDAD 7 - EXP 5 - NÚMEROS RACIONALES.pdfMATEMATICA 5to ACTIVIDAD 7 - EXP 5 - NÚMEROS RACIONALES.pdf
MATEMATICA 5to ACTIVIDAD 7 - EXP 5 - NÚMEROS RACIONALES.pdfRosaElviraJimnezJimn
758 views20 Folien
MATEMATICA 5to ACTIVIDAD 6 - EXP 5 - MEDIDAS DE DISPERSIÓN-PARTE 1 CORREGIDO.pdf von
MATEMATICA 5to ACTIVIDAD 6 - EXP 5 - MEDIDAS DE DISPERSIÓN-PARTE 1 CORREGIDO.pdfMATEMATICA 5to ACTIVIDAD 6 - EXP 5 - MEDIDAS DE DISPERSIÓN-PARTE 1 CORREGIDO.pdf
MATEMATICA 5to ACTIVIDAD 6 - EXP 5 - MEDIDAS DE DISPERSIÓN-PARTE 1 CORREGIDO.pdfRosaElviraJimnezJimn
1K views17 Folien
SEMANA 23 - MATEMÁTICA 5°GRADO-Parte 2.pdf von
SEMANA 23 - MATEMÁTICA 5°GRADO-Parte 2.pdfSEMANA 23 - MATEMÁTICA 5°GRADO-Parte 2.pdf
SEMANA 23 - MATEMÁTICA 5°GRADO-Parte 2.pdfRosaElviraJimnezJimn
185 views4 Folien
PRACTICA CALIFICADA ACT. 6 PARTE 2.pdf von
PRACTICA CALIFICADA ACT. 6 PARTE 2.pdfPRACTICA CALIFICADA ACT. 6 PARTE 2.pdf
PRACTICA CALIFICADA ACT. 6 PARTE 2.pdfRosaElviraJimnezJimn
54 views1 Folie
ACT. COMPLE. 2 MAT 5º SEC..docx von
ACT. COMPLE. 2 MAT 5º SEC..docxACT. COMPLE. 2 MAT 5º SEC..docx
ACT. COMPLE. 2 MAT 5º SEC..docxRosaElviraJimnezJimn
105 views4 Folien

Más de RosaElviraJimnezJimn(16)

MATEMATICA 5to ACTIVIDAD 7 - EXP 5 - NÚMEROS RACIONALES.pdf von RosaElviraJimnezJimn
MATEMATICA 5to ACTIVIDAD 7 - EXP 5 - NÚMEROS RACIONALES.pdfMATEMATICA 5to ACTIVIDAD 7 - EXP 5 - NÚMEROS RACIONALES.pdf
MATEMATICA 5to ACTIVIDAD 7 - EXP 5 - NÚMEROS RACIONALES.pdf
MATEMATICA 5to ACTIVIDAD 6 - EXP 5 - MEDIDAS DE DISPERSIÓN-PARTE 1 CORREGIDO.pdf von RosaElviraJimnezJimn
MATEMATICA 5to ACTIVIDAD 6 - EXP 5 - MEDIDAS DE DISPERSIÓN-PARTE 1 CORREGIDO.pdfMATEMATICA 5to ACTIVIDAD 6 - EXP 5 - MEDIDAS DE DISPERSIÓN-PARTE 1 CORREGIDO.pdf
MATEMATICA 5to ACTIVIDAD 6 - EXP 5 - MEDIDAS DE DISPERSIÓN-PARTE 1 CORREGIDO.pdf
exp2-ebr-secundaria-1-y-2-exploramosyaprendemos-Act4..MMC.pdf von RosaElviraJimnezJimn
exp2-ebr-secundaria-1-y-2-exploramosyaprendemos-Act4..MMC.pdfexp2-ebr-secundaria-1-y-2-exploramosyaprendemos-Act4..MMC.pdf
exp2-ebr-secundaria-1-y-2-exploramosyaprendemos-Act4..MMC.pdf
0PROBLEMAS-PARA-RESOLVER-DE-NÚMEROS-DECIMALES-PRIMERO Y SEGUNDO-DE-SECUNDARIA... von RosaElviraJimnezJimn
0PROBLEMAS-PARA-RESOLVER-DE-NÚMEROS-DECIMALES-PRIMERO Y SEGUNDO-DE-SECUNDARIA...0PROBLEMAS-PARA-RESOLVER-DE-NÚMEROS-DECIMALES-PRIMERO Y SEGUNDO-DE-SECUNDARIA...
0PROBLEMAS-PARA-RESOLVER-DE-NÚMEROS-DECIMALES-PRIMERO Y SEGUNDO-DE-SECUNDARIA...
exp2-ebr-secundaria-1y2-exploramosyaprendemos-act06-analizamosunpresupuestoem... von RosaElviraJimnezJimn
exp2-ebr-secundaria-1y2-exploramosyaprendemos-act06-analizamosunpresupuestoem...exp2-ebr-secundaria-1y2-exploramosyaprendemos-act06-analizamosunpresupuestoem...
exp2-ebr-secundaria-1y2-exploramosyaprendemos-act06-analizamosunpresupuestoem...
ACTIVIDAD N° 6 MATEMATICA 1° y 2° - Experiencia 2 - actividad 6.pdf von RosaElviraJimnezJimn
ACTIVIDAD N° 6  MATEMATICA 1° y 2° - Experiencia 2 - actividad 6.pdfACTIVIDAD N° 6  MATEMATICA 1° y 2° - Experiencia 2 - actividad 6.pdf
ACTIVIDAD N° 6 MATEMATICA 1° y 2° - Experiencia 2 - actividad 6.pdf

Último

Sesión Misión en favor de los no alcanzados primera parte von
Sesión Misión en favor de los no alcanzados primera parteSesión Misión en favor de los no alcanzados primera parte
Sesión Misión en favor de los no alcanzados primera partehttps://gramadal.wordpress.com/
158 views4 Folien
ASCENSO AIP DICIEMBRE 2023 von
ASCENSO AIP DICIEMBRE 2023ASCENSO AIP DICIEMBRE 2023
ASCENSO AIP DICIEMBRE 2023Sandra Mariela Ballón Aguedo
24 views31 Folien
HISTORIA del café que se estableció .pdf von
HISTORIA del café que se estableció .pdfHISTORIA del café que se estableció .pdf
HISTORIA del café que se estableció .pdfcarmenhuallpa45
110 views1 Folie
Discurso conversacional von
Discurso conversacionalDiscurso conversacional
Discurso conversacionalAnthonyAguilera11
46 views42 Folien
Fase 4- Estudio de la geometría analítica.pptx von
Fase 4- Estudio de la geometría analítica.pptxFase 4- Estudio de la geometría analítica.pptx
Fase 4- Estudio de la geometría analítica.pptxblogdealgebraunad
39 views15 Folien
DEBER DE RESOLUCION DE PROBLEMAS DE FUERZA (3°).pdf von
DEBER DE RESOLUCION DE PROBLEMAS DE FUERZA (3°).pdfDEBER DE RESOLUCION DE PROBLEMAS DE FUERZA (3°).pdf
DEBER DE RESOLUCION DE PROBLEMAS DE FUERZA (3°).pdfVictor Hugo Caiza
79 views2 Folien

Último(20)

HISTORIA del café que se estableció .pdf von carmenhuallpa45
HISTORIA del café que se estableció .pdfHISTORIA del café que se estableció .pdf
HISTORIA del café que se estableció .pdf
carmenhuallpa45110 views
Fase 4- Estudio de la geometría analítica.pptx von blogdealgebraunad
Fase 4- Estudio de la geometría analítica.pptxFase 4- Estudio de la geometría analítica.pptx
Fase 4- Estudio de la geometría analítica.pptx
DEBER DE RESOLUCION DE PROBLEMAS DE FUERZA (3°).pdf von Victor Hugo Caiza
DEBER DE RESOLUCION DE PROBLEMAS DE FUERZA (3°).pdfDEBER DE RESOLUCION DE PROBLEMAS DE FUERZA (3°).pdf
DEBER DE RESOLUCION DE PROBLEMAS DE FUERZA (3°).pdf
Fracciones Generatrices y Sumas Infinitas - Santiago Cruz Garcia von SantiagoCruzGarca
Fracciones Generatrices y  Sumas Infinitas - Santiago Cruz GarciaFracciones Generatrices y  Sumas Infinitas - Santiago Cruz Garcia
Fracciones Generatrices y Sumas Infinitas - Santiago Cruz Garcia
SantiagoCruzGarca115 views
Perennials, Bulbs, Grasses and Ferns of Poland, Spain and Portugal.pptx von e-twinning
Perennials, Bulbs, Grasses and Ferns of Poland, Spain and Portugal.pptxPerennials, Bulbs, Grasses and Ferns of Poland, Spain and Portugal.pptx
Perennials, Bulbs, Grasses and Ferns of Poland, Spain and Portugal.pptx
e-twinning58 views

Experiencia 7. 2do MATE. (1).pdf

  • 1. I.E. “JORGE CHAVEZ CHAPARRO” – UGEL CUSCO – REGION CUSCO – PERU. EXPERIENCIA DE APRENDIZAJE N° 07. AREA MATEMATICA SEGUNDO GRADO, AÑO 2021. Título: “Reconocemos la creatividad de las familias peruanas” Prof. Luis Rondan Aybar. SESIÓNES VIRTUALES: O1, 02, 03, 04 ,05 ,06. SEMANAS:21,22,23. Del 20 de setiembre al 08 de octubre de 2021 PROPOSITO DE APRENDIZAJE: COMPETENCIA, CAPACIDADES, ESTANDARES, DESEMPEÑOS, NECESIDADES, RETOS, PRODUCTOS, EVIDENCIAS DE APRENDIZAJE E INTRUMENTOS DE EVALUACIÓN. Competencias transversales/Capacidades. Gestiona aprendizaje de manera autónoma: Organiza un conjunto de estrategias y procedimientos en función del tiempo y de los recursos de que dispone para lograr las metas de Aprendizaje de acuerdo con sus posibilidades. Enfoques transversales Valor /Actitud/ acciones observables Enfoque orientación al bien común: Empatía. Los estudiantes reflexionan en torno a las dificultades en el acceso a información de calidad respecto al cuidado de la salud y reconocen lo que otros ciudadanos experimentan debido a esa situación Enfoque intercultural: Diálogo intercultural. Los estudiantes reconocen que el bienestar puede abordarse desde diversas perspectivas culturales y desde el saber científico, enriqueciendo así sus propuestas de acciones en favor del bienestar individual y colectivo. SEMANA 21. ACTIVIDAD 05. TITULO “Construimos formas geométricas en familia haciendo uso de normas” Evidencia 1 (Resuelve problemas de forma, movimiento y localización) Modela objetos con forma geométricas, comunicando su comprensión de las relaciones geométricas, usando estrategias. Asimismo, argumenta sus afirmaciones, sobre las características y atributos medibles de objetos. Asocia estas relaciones y representa, con formas bidimensionales sus elementos y propiedades de volumen, área y perímetro Situación significativa: Nuestra Región de Cusco sigue en un periodo de emergencia sanitaria, el cual hace que muchas familias opten por los mejores cuidados y evitar el contagio de la COVID-19. Sin embargo, muchas familias han optado en buscar mejores procedimientos para cuidarse, respetando las medidas por el Minsa y especificaciones, para ello realizan reuniones de intercambio de saberes y prácticas dirigidas para aclarar sus principales dudas, expectativas y demandas vinculadas a los cuidados que se debe tener presente frente a esta pandemia. Frente a la situación planteada nos preguntamos: ¿De qué manera nuestras familias están respondiendo a las situaciones que afectan su bienestar? ¿Qué procedimientos debemos seguir para respaldar mejora a nuestra familia? ¿Podemos calcular los costos que requiere nuestro cuidado? Recuerda: En las sesiones estamos nivelando, reforzando y retroalimentan do al mismo tiempo. Sé puntual y cumplido. COMPETENCIA Y CAPACIDAD. Resuelve problemas de forma, movimiento localización. 1. Modela objetos con formas geométricas y sus transformaciones. 2. Comunica su comprensión sobre la forma y relaciones geométricas. PROPOSIT0 DE APRENDIZAJE: permitirá que los alumnos efectúen representaciones gráficas de los objetos planteados como alternativas de solución para mejorar la calidad de vida de su familia. Además, podrán realizar el cálculo de la cantidad de materiales que necesitan para implementarlos. DESEMPEÑO Establece relaciones entre las características y los atributos medibles de objetos Asocia estas características y las representa con formas bidimensionales. Establece, propiedades de formas poligonales, volumen, área y perímetro. . Evidencia de aprendizaje Identifica y aplica cuadriláteros en la vida diaria, organizando datos y gráficos leyéndolos, analizándolos, comparando, representando e interpretándolos y proponiendo conclusiones; sobre la mejora de calidad de vida familiar. ESTANDAR DE APRENDIZAJE Resuelve problemas en los que modela características de objetos mediante polígonos, sus elementos y propiedades. Expresa su comprensión de las formas, la relación entre una forma geométrica y sus diferentes perspectivas; usando dibujos y construcciones NECESIDADES DE APRENDIZAJE 1. Construir o dibujar, con instrumentos de precisión (regla y compás), los cuadriláteros y clasificarlos para comprender sus propiedades. 2. Aplicar diversas estrategias para calcular el área de los cuadriláteros. PRODUCTOS: Los alumnos recogen datos a través de la información cuadriláteros y los analiza, sistematiza e interpreta a partir de gráficos situacionales y plantean conclusiones relacionadas con mejoramiento de la calidad de vida familiar RETOS: Debes responder: ¿Por qué nuestro cuidado de calidad de vida familiar, debe ser bien estructurado? ¿Qué acciones propondrías para mejorar la calidad de vida familiar? Instrumentos y técnica de evaluación. Lista de cotejo.
  • 2. Recordamos: El cuadrilátero: es una figura geométrica, específicamente un polígono conformado por cuatro lados, cuatro ángulos y cuatro vértices. Elementos del cuadrilátero 1. Vértice: A, B, C, D. 2. Lados: AB, BC, DC, AD. 3. Ángulos interiores: w,t,y,v. Suman 360. 4. Diagonales: Son segmentos de recta que unen vértices opuestos de la figura. Son AC y DB. Clasificación de cuadriláteros. Área de figuras planas. ¡Ahora!, Aplicamos lo recordado en las situaciones propuestas. 1. El perímetro de un rectángulo es 28 cm, uno de los lados es 6 cm más que el otro lado. Halla el mayor lado del rectángulo. 2. La figura mostrada estpá formado por un cuadrado y un trapecio recto. Halla el perímetro de la figura. 3. Encuentra el perímetro de la región colorada. 4. La figura que se muestra esta formada por dos cuadrados congruentes y un triángulo equilátero. Halla el perímetro de la figura, si AB = CD = 6
  • 3. ¡Ahora! Seguimos y reflexionamos. Situación1 Responde a las siguientes preguntas. 1. ¿Qué están haciendo Helena y sus hermanos?, ¿por qué lo hacen? 2. ¿Qué se puede hacer con las piezas de mecano? 3. ¿Qué recuerdas de los cuadriláteros? Menciona todos los que tengas en mente. 4. ¿Cómo construirías los cuadriláteros con las piezas de mecano? 5. ¿Cuánto mide cada una de las piezas de mecano? Para ello, utiliza el mecano que está en la hoja “Piezas de mecano”, el cual se encuentra en la sección “Recursos para mi aprendizaje", y que también lo puedes encontrar en el Cuaderno de trabajo de Matemática “Resolvamos problemas 1” (página 221). 6. ¿Qué te piden responder en la situación? 1. ¿Cuántos tipos de cuadriláteros se pueden formar con las piezas de mecano de cada grupo? ¿Cuáles son los nombres y las características de los cuadriláteros formados? 2. ¿Cuál es el perímetro de cada tipo de cuadrilátero construido con las piezas de mecano de cada grupo Helena y sus hermanos cumplen las normas acordadas en la familia y se reúnen en la mesa para realizar actividades lúdicas. Ellos van a construir piezas de mecano con tiras alargadas de cartón o papel que poseen una serie de agujeros equidistantes. Las tiras son de diferentes tamaños, y para unirlas usan hilos que les permiten alargar la longitud que deseen. De este modo, pueden formar líneas abiertas, cerradas, rectas o quebradas; es decir, figuras geométricas. Anteriormente, aprendimos sobre la importancia de cumplir normas para el cuidado de nuestra salud, tanto en la familia como en la sociedad. Ahora, es el momento de poner en práctica los acuerdos de convivencia en el desarrollo de nuestras actividades, haciendo uso de piezas de mecano. 5. la diagonal mayorde un rombo mide 12 cm y ladiagonal menor mide la tercera parte de la mayor. Halla el área de la región del rombo. 6. Encuentra el área de la región colorada. 7. Encuentra el área de la región sombreada. 8. Halle el área del cuadrado, si su diagonal mide
  • 4. Autoevaluación Lista de cotejo CRITERIOS DE EVALUACIÓN LO LOGRE ESTOY EN PROCESO DE LOGRARLO ¿QUE PUEDO HACER PARA MEJORAR? Representé las características y los atributos medibles de objetos con cuadriláteros. Clasifiqué cuadriláteros según sus propiedades. SEMANA 22. ACTIVIDAD 05. TITULO “Construimos formas geométricas en familia haciendo uso de normas” Evidencia 2 (Resuelve problemas de forma, movimiento y localización) Modela objetos con forma geométricas, comunicando su comprensión de las relaciones geométricas, usando estrategias. Asimismo, argumenta sus afirmaciones, sobre las características y atributos medibles de objetos. Asocia estas relaciones y representa, con formas bidimensionales sus elementos y propiedades de volumen, área y perím Exploremos el material y construyamos figuras geométricas 1. Formamos grupos. Luego, acuerden algunas normas de convivencia durante la actividad. 2. Recortamos las piezas de mecano, asegurando que se observen los agujeros 3. Agrupamos las piezas de mecano en Grupo, como se indicó en la situación inicial. Cada equipo, recibe sus piezas para realizar las actividades que se indican. 4. Formamos todos los tipos de cuadriláteros posibles con las piezas de mecano en cada grupo, haciendo uso de hilos. 5. Observamos el video “Clasificación de cuadriláteros”, que se encuentra en la sección “Recursos para mi aprendizaje” para que tengas más ideas. Reconoce cuál de las figuras que has armado se consideran en el video. Luego, identifica los elementos y las características de los cuadriláteros. 6. Observamos los cuadriláteros que hemos armado y los que se muestran en el video. A continuación, los juntamos en tres grupos y graficamos en la tabla con sus respectivos nombres. 7. A continuación, respondemos lo siguiente: • ¿Cuántos cuadriláteros has construido con el grupo A? ¿Y cuáles son sus nombres? • ¿Cuántos cuadriláteros has construido con el grupo B? ¿Y cuáles son sus nombres? 8. Finalmente, anotamos las medidas de longitud de cada figura que hemos obtenido en la tabla. Luego, calculamos sus perímetros y respondemos la segunda pregunta de la situación inicial: ¿Cuál es el perímetro de cada tipo de cuadrilátero construido con las piezas de mecano de cada grupo? Ahora, explicamos lo que hemos aprendido 1. Respondemos las siguientes preguntas con relación a las tres clases de cuadriláteros obtenidos en la tabla anterior. • ¿Qué clase de cuadrilátero tiene como característica que sus dos pares de lados opuestos son paralelos y congruentes? • ¿Qué clase de cuadrilátero tiene dos lados opuestos paralelos? • ¿Qué cuadriláteros no tienen lados paralelos? 2. Graficamos cada uno de los cuadriláteros y escribimos sus características. Toma en cuenta lo que has observado en las piezas de mecano y en el video. 3. Comparamos dos de los cuadriláteros que se han construido y señalamos las diferencias y semejanzas entre ellos. Organizamos y aplicamos lo aprendido: 1. Elaboramos un organizador visual de lo que hemos aprendido. Para afianzar más nuestro aprendizaje, realizamos las actividades que indica el texto “Comprobamos nuestro aprendizaje”, el cual se encuentra en la sección “Recursos para mi aprendizaje”. Reflexionamos en familia: 1. ¿Ha sido útil establecer normas de convivencia para el desarrollo de la actividad? 2. ¿Qué importancia tiene cumplir las normas en la familia y sociedad
  • 5. Situación significativa formar un trapecio isósceles? Justifica tu respuesta. COMPROBAMOS NUESTROS APRENDIZAJES Propósito: Empleamos recursos o procedimientos para determinar la longitud, el perímetro y el área de cuadriláteros, empleando unidades convencionales. Asimismo, justificamos con ejemplos y con nuestros conocimientos geométricos las relaciones y propiedades que descubrimos entre las formas geométricas,y corregimoserroressiloshubiera. Resolución Primero debemos conocer cuáles son las características de un trapecio isósceles: - Tiene dos lados paralelos y dos lados no paralelos. - Sus dos lados no paralelos son iguales. - Tiene cuatro ángulos, dos agudos y dos obtusos. - Tiene cuatro lados. - Sus lados paralelos se denominan bases y son de diferente longitud. Una vez descritas algunas de las características de esta figura geométrica, se decide cuál de los grupos de mecanos nos permite construir un trapecio isósceles. Respuesta: La respuesta es el grupo A, porque tiene dos varillas iguales que serían los lados no paralelos y dos varillas diferentes que serían las bases. Describe tres características más, diferentes a las ya mencionadas en la resolución. ¿Puedes formar otros trapecios con B y C? Justificatu respuesta y representa gráficamente Autoevaluación Lista de cotejo CRITERIOS DE EVALUACIÓN LO LOGRE ESTOY EN PROCESO DE LOGRARLO ¿QUE PUEDO HACER PARA MEJORAR? Representé las características y los atributos medibles de objetos con cuadriláteros. Empleé estrategias, recursos o procedimientos para determinar perímetros o áreas
  • 6. SEMANA 23 ACTIVIDAD 09. TITULO “Calculamos áreas presentes en la cocina mejorada” Evidencia 3 (Resuelve problemas de forma, movimiento y localización) Modela objetos con forma geométricas, comunicando su comprensión de las relaciones geométricas, usando estrategias. Asimismo, argumenta sus afirmaciones, sobre las características y atributos medibles de objetos. Asocia estas relaciones y representa, con formas bidimensionales sus elementos y propiedades de volumen, área y perímetro Situación: Comprendemos el problema. Diseñamos o seleccionamos una estrategia. Ejecutamos la estrategia: Propuesta 1. Estimamos la cantidad de ladrillos haciendo uso de gráficos. 6. Observamos las caras estructuradas e identificamos sus dimensiones. 7. Graficamos las 4 caras de la estructura base. En su interior, graficamos una las caras del ladrillo hasta intentar cubrirla. Respondemos: ¿Los ladrillos cubren toda la superficie?, ¿Por qué? Aproximadamente, ¡Cuántos ladrillos se requieren para construir la estructura base! Propuesta 2: Estimamos la cantidad de ladrillos haciendo uso de cosas. Identificamos las 4 superficies laterales de la estructura base y la cara del ladrillo, que será parte de la cara lateral de la estructura base de la cocina. Luego, los dibujamos y anotamos sus dimensiones. 2.Calculamos el área lateral total de la estructura base (A1) y el área de la cara del ladrillo que se verá en la superficie lateral de la estructura base (A2) 1 2 .. .. .. .. .. .. .. : .. .. .. .. .. A Area lateral total de la estructura base N de ladrillos Área de la cara del ladrillo A    3.Para averiguar cuántos ladrillos entran, aproximadamente, en la cara lateral de la estructura base, podríamos realizar lo siguiente: 4.Respondemos la pregunta de la situación inicial: ¿cuántos ladrillos pandereta necesitarán comprar Luis y su familia para construir la estructura de la base de la cocina mejorada? La familia de Luis está preocupada por el humo que se produce al cocinar con fuego abierto. Luis decide investigar qué alternativas de solución existen para no contaminarse en el interior de su vivienda, y encuentra un manual de Foncodes que explica cómo instalar la cocina mejorada Caralia. En el manual lee que se requiere construir una estructura para la base de la cocina, que está compuesta por tres hileras de ladrillos pandereta de 9 × 11 × 23 cm. Aproximadamente, ¿cuántos ladrillos pandereta necesitarán comprar Luis y su familia para construir la estructura base de la cocina mejorada? 1. ¿Qué desean hacer Luis y su familia? ¿Por qué lo harán? 2. ¿Qué entiendes por cocina mejorada? 3. ¿Cuáles serán las características de la estructura base? 4. ¿Qué figuras geométricas observas en las caras laterales de la estructura base de la cocina y en un ladrillo pandereta? Represéntalo con dibujos. 5. ¿Qué dimensiones tienen las caras laterales de la estructura base de la cocina? ¿Qué dimensiones tienen las caras del ladrillo pandereta? Represéntalo con dibujos. Describe el procedimiento a seguir:
  • 7. Reflexionamos sobre el desarrollo 1. 1. ¿Cuál es la importancia de la cocina mejorada? 2. ¿De qué otra manera puedes estimar la cantidad de ladrillos que serán necesarios para construir la estructura base de una cocina mejorada? 3. Observa nuevamente el video “Áreas de figuras planas”, que se encuentra en la sección “Recursos para mi aprendizaje” y con lo que has trabajado responde: • ¿Qué entiendes por unidad cuadrada? ¿Y qué unidades te permiten medirla? • ¿Qué propiedades geométricas te permiten calcular las áreas de cuadriláteros? • Explica cómo se obtiene la propiedad que permite calcular el área de un rombo, de un romboide (paralelogramo) y de un rectángulo. • ¿Qué importancia tiene conocer las características y elementos de las figuras geométricas para determinar su perímetro y áreas? Sustenta con ejemplos. CRITERIOS DE EVALUACIÓN LO LOGRE ESTOY EN PROCESO DE LOGRARLO ¿QUE PUEDO HACER PARA MEJORAR? Empleé estrategias, recursos o procedimientos para determinar perímetros o áreas. Planteé afirmaciones sobre las relaciones y propiedades, haciendo uso de ejemplos y conocimientos geométricos Empleé estrategias, recursos o procedimientos para determinar perímetros o áreas. Un pulmón limpio de COVID 19 Algunos gráficos, imágenes y ejercicios fueron tomados de Internet, por el cual se agradece.