SlideShare ist ein Scribd-Unternehmen logo
1 von 14
Downloaden Sie, um offline zu lesen
Paper 06
A Methodology for Modeling
the Influence of
Construction Machinery Operators
on Productivity and Fuel Consumption
Reno Filla
VOLVO CONSTRUCTION EQUIPMENT AB, ESKILSTUNA, SWEDEN
Abstract
This paper is concerned with modeling the actions of a human operator of construction
machinery and integrating this operator model into a large, complex simulation model
of the complete machine and its environment. Because human operators to a large de-
gree affect how the machine is run, adaptive operator models are a necessity when the
simulation goal is quantification and optimization of productivity and energy efficiency.
Interview studies and test series have been performed to determine how professionals
operate wheel loaders. Two models using different approaches were realized and inte-
grated into a multi-domain model for dynamic simulation. The results are satisfactory
and the methodology is easily usable for other, similar situations.
Keywords: dynamic simulation, operator model, driver model
A déjà vu is usually a glitch in the Matrix.
It happens when they change something.
(from the film “The Matrix”)
This paper has been published as:
Filla, R. (2009) “A Methodology for Modeling the Influence of Construction
Machinery Operators on Productivity and Fuel Consumption”. Proceedings of
HCII 2009: Digital Human Modeling, LNCS 5620, pp 614-623.
http://dx.doi.org/10.1007/978-3-642-02809-0_65
A Methodology… 3
1 Introduction
In this ongoing research on simulation in the conceptual design of complex working
machines, a wheel loader was chosen as the object of study, although others can be
found not only in the field of construction machinery, but also in other sectors such as
agriculture, forestry, and mining. Common factors are that these machines consist of at
least two working systems that are used simultaneously and that the human operator is
essential to the performance of the total system.
In the case of a wheel loader, drive train and hydraulics are both equally powerful
and compete for the limited engine torque. Figure 1 visualizes how the primary power
from the diesel engine is split up between hydraulics and drive train (outer loop) in or-
der to create lift/tilt movements of the bucket and traction of the wheels, but is con-
nected again when filling the bucket in e.g. a gravel pile. In this situation, the traction
force from the drive train, acting between wheels and ground, creates a reaction force
between gravel pile and bucket edge, which in turn counteracts lift and tilt forces from
hydraulics, and vice versa [1].
Figure 1. Simplified power transfer and control scheme of a wheel loader
during bucket loading
The inner loop in Figure 1 shows how the human operator interacts with the wheel
loader. In order to fill the bucket, the operator needs to control three motions simultane-
ously: a forward motion that also exerts a force (traction), an upward motion (lift) and a
rotating motion of the bucket to fit in as much material as possible (tilt). This is similar
to how a simple manual shovel is used. However, in contrast to a manual shovel, the
operator of a wheel loader can only observe, and cannot directly control these three
motions. Instead, he or she has to use different subsystems of the machine in order to
accomplish the task. The gas pedal controls engine speed, while lift and tilt lever control
valves in the hydraulics system that ultimately control movement of the linkage’s lift
and tilt cylinder, respectively.
The difficulty lies in that no operator control directly affects only one single motion.
The gas pedal controls engine speed, which affects both the machine’s longitudinal mo-
4 Paper 06
tion and via the hydraulic pumps the speeds of the lift and tilt cylinders. The linkage
between the hydraulic cylinders and the bucket acts as a non-linear planar transmission
and due to its design a lift movement will also change the buckets tilt angle and a tilt
movement affects the bucket edge’s height above the ground. In summary, there are
many of interdependencies and it thus takes a certain amount of training to be able to
use the machine efficiently.
In modern wheel loaders the operator does not control major components and sub-
systems directly, but via electronic control units (ECUs). This makes it possible to give
the operator support, e.g. by controlling the cylinder speeds in such a manner that the
non-linearity of the linkage is compensated for and thus the speed of bucket lift and tilt
is proportional to the angle of the tilt and lift lever. Certain aspects of machine opera-
tion, for instance a typical brake-and-reverse driving sequence, can also be developed to
be semi-automatic or fully automated.
If a simulation is required to capture the full scope of the interaction between the ma-
chine, its environment, and its operator, all three must be modeled at an appropriate
level of detail in order to give valid results as regards such complex total system proper-
ties as productivity and fuel consumption / energy efficiency. This is an aspect that is
traditionally neglected, because the modeling needs to be extended beyond the technical
system.
2 Literature study
2.1 Working cycle
The knowledge regarding wheel loader operation and working cycles presented in this
paper has been derived from the author’s own wheel loader experience and to a large
extent from discussions with colleagues, test engineers, product specialists, and profes-
sional operators at Volvo. Most of these discussions were not formally structured, but
rather conducted in an ad-hoc manner. However, some unstructured research interviews
were carried out and one interview, conducted with a professional test operator, was
recorded in the form of a semi-structured research interview. Furthermore, many meas-
urements were performed and the results and implications discussed. Most of these re-
ports are internal, but some MSc theses [2], [4], [5] and academic papers [6] are avail-
able in the public domain.
In [7], Gellerstedt published wheel loader operator’s thoughts and reasoning and also
documented some typical working cycles with photos and test data.
Furthermore, non-academic publications like operating manuals and instruction ma-
terial available from machine manufacturers contain useful information.
A Methodology… 5
2.2 Operator models
Surprisingly little could be found in a literature review restricted to working machines
and designing operator models for the purpose of simulation. Zhang et al. validate con-
trol strategies by conducting human-operated experiments in their Earthmoving Vehicle
Powertrain Simulator. The corresponding paper [3] gives some insight into their reason-
ing regarding human-machine interaction. They acknowledge the difference between
task-oriented jobs (such as wheel loader operation in a short loading cycle) and refer-
ence-oriented jobs (e.g. driving a car).
Some more work can be found in the field of autonomous excavation. Hemami spe-
cifically examines bucket filling in [8] and also Wu [9], starting off with analyzing
wheel loader operation in general, later focuses on the bucket filling phase. Both handle
the problem as one that can be solved by following predefined trajectories.
An abundance of literature in the aerospace and in the automotive sector deals with
pilot models and parameter identification for the purpose of predicting pilot behavior
over the next seconds [10]-[14]. Among the techniques employed are path-following
controllers, Kalman filters, fuzzy logic, and neural networks. Such models are used for
advanced control problems like pilot or driver assistance systems and energy manage-
ment of hybrids. But the inverse problem is also considered: assessing handling quali-
ties in certain predefined maneuvers.
3 Development methodology
3.1 Required model features
Since the application of the operator model is in simulation in conceptual design, i.e.
before any physical prototype is available, it has been deemed important that the model
not be hard-coded in any way. Using fixed time, speed or position references and prede-
fined trajectories, there is a significant risk that these references are only valid for the
machine that was used during development of the operator model, but result in large
deviations for a new machine with as yet unknown properties. Therefore, any such ref-
erences must be weak ones and either constant for all machines of any size and architec-
ture, or possible to formulate parametrically, i.e. as a function of bucket length, loading
capacity, wheel distance or similar.
Also, in order to mimic the human operator as close as possible, the operator model
must also be strictly separated from both machine and environment model, and its in-
puts and outputs must be limited to those of a human operator.
3.2 Orientating interviews
These interviews are unstructured and aim to establish basic knowledge of the type of
cycle to model, its features, and its characteristics.
6 Paper 06
In our work, interviewing owners and operators of wheel loaders at different sites has
lead to the conclusion that each working place is unique in its parameters, but the short
loading cycle (Figure 2) is highly representative of the majority of applications.
Figure 2. Short loading cycle
Typical for this cycle is bucket loading of material on an adjacent load receiver
within a time frame of 25-35 seconds. The aforementioned problems with interactions
between subsystems are highly present.
Several phases can be identified (Figure 2), which Table 1 describes briefly. A more
detailed exploration of the short loading cycle can be found in [1].
Essentially all operators described their operation commands as triggered by events,
both from the machine and its environment, sometimes guided by weak speed or posi-
tion references. It has therefore been found meaningful to develop rule-based operator
models and all subsequent steps are based on that decision.
3.3 In-depth interviews
In this next step, semi-structured research interviews are conducted with professional
operators who are able to verbally express how they use the machine in the working
task at hand. It is important to go through each cycle phase in detail, noting what event
triggered a reaction, which controls are applied and how long, alternate scenarios, what
defines success, what defines failure etc.
In our work we were able to interview one product specialist who was also a profes-
sional test operator and, more importantly, experienced machine instructor and thus
used to teaching people how to operate wheel loaders in an efficient manner. Addition-
ally, many brief unstructured interviews were performed with colleagues of a similar
background. Table 2 lists one result: a guide to how to fill the bucket.
A Methodology… 7
Table 1. Phases of the short loading cycle
# Phase Description
1 Bucket filling Bucket is filled by simultaneously controlling the
machine speed and lift and tilt functions.
2 Leaving bank Operator drives backwards towards the reversing
point and steers the machine to achieve the charac-
teristic V-pattern.
3 Retardation Is started some time before phase 4 and can be
either prolonged or shortened by controlling the
gas pedal and the service brakes.
4 Reversing Begins when the remaining distance to the load
receiver will be sufficient for the lift hydraulics to
achieve the bucket height necessary for emptying
during the time it takes to get there.
5 Towards
load receiver
The operator steers towards the load receiver, thus
completing the V-pattern. The machine arrives
perpendicular to the load receiver.
6 Bucket emptying The machine is driven forward slowly, the loading
unit being raised and the bucket tilted forward at
the same time.
7 Leaving
load receiver
Operator drives backwards towards the reversing
point, while the bucket is lowered to a position
suitable for driving.
8 Retardation
and reversing
Not necessarily executed at the same location as in
phases 3 and 4, because lowering an empty bucket
is faster than raising a full one.
9 Towards bank The machine is driven forward to the location
where the next bucket filling is to be performed,
the bucket being lowered and aligned with the
ground at the same time.
10 Retardation
at bank
Often combined with the next bucket filling by
using the machine’s momentum to drive the
bucket into the gravel pile.
Table 2. Bucket filling
# Description
1 Accelerate to a certain velocity
2 Shift to lowest gear (kick-down) when bucket edge meets gravel pile
3 Apply gas pedal to increase traction and push bucket into the pile
4 In case of slippage between tires and ground, lift bucket a little more to
increase load on front axle (increases traction)
5 If bucket gets stuck in pile, tilt bucket backwards a little
6 If bucket gets stuck in pile, reduce traction a little
7 Follow the slope of the pile in a carving manner
8 Lift continuously, apply tilt function without releasing lift lever
9 Leave pile with bucket below tipping height (straight lifting arms)
10 Tilt bucket fully back
8 Paper 06
As another example, Table 3 shows how phases 2 to 4 are performed, i.e. leaving
bank, retardation, and reversing.
Table 3. Leaving bank, retardation, and reversing
# Description
1 Put transmission into reverse gear
2 Start lifting
3 Apply gas pedal to accelerate, but keep machine speed below shifting
point for gear 3
4 Steer machine into right curve (if load receiver is standing to the left)
5 Adjust steering so that machine can arrive perpendicular to the load
receiver
6 Choose reversing point so that distance to load receiver is enough for
bucket to reach sufficient height for emptying, if continuously lifted
7 Retard economically by releasing gas pedal
8 Steer back machine into straight position
9 Apply brakes until machine almost stands still
10 Put transmission into forward gear
3.4 Recording and analyzing test series
Together with video recordings of the machine in operation and possibly also from in-
side the cab, measurement data can serve as an additional source of information.
In our work we equipped test machines with a data acquisitioning system and re-
corded control inputs and major machine variables, such as engine speed, traveling dis-
tance, bucket height and angle (etc). We also found video recordings of the machine in
operation to be a valuable complement.
3.5 Deriving general rules and constraints
The results from interview studies and possibly additional measurements are now to be
transformed into general, non-machine specific rules and constraints. This is the last
step before coding the operator model, which makes it necessary to construct the rules
and constraints in a way that is possible to implement.
In our work one result was a quantification of values for “a little” and “certain”, the
vague vocabulary used in Table 2. For instance, the initial velocity in rule #1 was set to
3 km/h and the trigger for kick-down in rule #2 was set to a bucket penetration depth of
200 mm. The height in rule #9 was set to 1/3 of maximum lifting height. Also, the
working place was set up parametrically, more details can be found in [16].
A Methodology… 9
3.6 Implementation
The derived general rules and constraints are now to be implemented as execution paths
of a finite state machine.
In our work two operator models have been realized. In both cases the model of the
technical system and the working place were developed and simulated in ADAMS, a
three-dimensional multi-body system code. Both operator models are separate entities
and the information exchange with machine and environment is limited to operator in-
puts and outputs similar to a human being, i.e. the operator has neither insight nor influ-
ence at a deeper level.
The first operator model has focused on the bucket filling and has been realized as
state equations in ADAMS with an algorithm reminiscent of fuzzy logic. This is ex-
plained in more detail in [15].
The second operator model, with a focus on the remaining phases of the short load-
ing cycle, has been realized in Stateflow (Figure 3) and co-simulated with ADAMS
[16]. Table 4 shows how cycle phase 2 has been realized with two parallel paths.
Figure 3. Top level view of the operator model in Stateflow [16]
Table 4. Applied steps in phase 2 of the operator model
# Description
A1 Apply full lift and full gas pedal.
A2 Steer machine so that reversing will take place with machine pointing at
workplace origin (angle at ca 45°). Calculate required steering angle.
A3 Apply full steering, reduce and stop when required steering angle is reached.
A4 Begin steering back when machine is about to point at workplace origin.
A5 Keep driving backwards until path B terminates this phase.
B1 Wait for machine to pass load receiver (fist geometric possibility to reverse).
B2 Wait for extrapolated remaining lifting time to be lower than remaining ex-
trapolated driving time to load receiver.
B3 Calculate required steering angle for perpendicular arrival at load receiver.
Terminate this phase if within achievable limits.
B4 Go to phase 2a (extension, continued straight driving until steering possible).
10 Paper 06
3.7 Validation
With the operator model implemented, it can now be validated by running simulations
with varying parameter setups and comparing to results from test series.
In our work, both operator models have been tested by varying the machine’s techni-
cal parameters. For instance, changing the machine’s torque converter to a weaker char-
acteristics (as we also have done in our measurement series), leads to a slightly different
operating style with in general higher engine speeds, since the operator adapts and
quickly finds the necessary amount of gas pedal angle to control traction force. Exactly
this phenomenon has also been shown to occur in our simulations, without any explicit
coding of it (see Figure 4, results from first operator model).
Figure 4. Engine load duty for machines with different torque converters
(first model) [15]
Figure 5. Adaptation to lifting speed (second model) [16]
Another example is that of changed speed in the bucket’s lift hydraulics, emulating
insufficient pump capacity. A human operator adapts to this by reversing farther with
the wheel loader until finally driving forward to the load receiver to dump the bucket’s
A Methodology… 11
load. This could also be demonstrated in our simulations without any modification of
the operator model. Figure 5 shows traces from experiments with the second operator
model (black curve with circular markings: lower lifting speed).
4 Conclusion and outlook
With both presented operator models, a “human element” has been introduced to dy-
namic multi-domain simulation of complete construction machinery. Both operator
models have been derived from interview studies in a fairly straightforward manner.
They prescribe the machine’s working cycle in a more generic way, independently of
the machine’s technical parameters. Due to this, whole components or sub-systems can
be changed in their characteristics without compromising the validity of the simulation.
This gives more relevant answers with respect to total machine performance, productiv-
ity, and fuel consumption. The results are satisfactory and the methodology is easily
usable for other, similar situations.
In the future, we will try to develop operator models with which a machine’s oper-
ability can be predicted using simulation. As noted earlier, in automotive and aerospace
simulations this is usually achieved by analyzing the control effort required to perform
predefined maneuvers. A weighed, piece-wise analysis of prominent cycle phases (e.g.
bucket filling, reversing and bucket emptying) might be a way forward.
In order to validate any such simulations, we will also work with quantification of
work load by simultaneously performing in-depth measurements on a wheel loader in
operation and physiological measurements on the operator controlling the machine.
References
[1] Filla, R. (2005) “Operator and Machine Models for Dynamic Simulation of Con-
struction Machinery”. Licentiate thesis, Department of Management and Engi-
neering, Linköping University, Sweden.
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-4092
[2] Vännström, J. and Lindholm, S. (2007) “Educational Interface for Reducing Fuel
Consumption”. Master thesis, Luleå University of Technology, Luleå, Sweden.
http://epubl.luth.se/1402-1617/2007/114/
[3] Zhang, R., Alleyne, A. G. and Carter, D. E. (2003) “Multivariable Control of an
Earthmoving Vehicle Powertrain Experimentally Validated in an Emulated Work-
ing Cycle”. Conference paper, ASME 2003 International Mechanical Engineering
Congress and Exposition.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.133.7304
[4] Stener, P. and Snabb, R. (2008) ”Körbarhetskvantifiering av hjullastare”. Master
thesis, Linköping University, Linköping, Sweden.
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11148
12 Paper 06
[5] Boman, M. (2006) “On predicting fuel consumption and productivity of wheel
loaders”. Master thesis, Luleå University of Technology, Luleå, Sweden.
http://epubl.ltu.se/1402-1617/2006/009/
[6] Filla, R. (2003) “Anläggningsmaskiner: Hydrauliksystem i multidomäna miljöer”.
Hydraulikdagar 2003, Linköping, Sweden.
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-13371
[7] Gellersted, S. (2002) ”Manövrering av hjullastare (Operation of Wheel Loaders)”.
Technical report, JTI – Institutet för jordbruks- och miljöteknik, Uppsala, Sweden.
http://www.jti.se/index.php?page=publikationsinfo&publicationid=195&returnto=109
[8] Hemami, A. (1994) “Motion trajectory study in the scooping operation of an
LHD-loader”. IEEE Transactions on Industry Applications, vol. 30, no. 5, Sept-
Oct 1994, pp 1333-1338.
http://dx.doi.org/10.1109/28.315248
[9] Wu, L. (2003) “A Study on Automatic Control of Wheel Loaders in Rock/Soil
Loading”. Doctoral thesis, University of Arizona, Tucson, Arizona, USA.
http://wwwlib.umi.com/dissertations/fullcit/3090033
[10] Macadam, C.C. (2003) “Understanding and Modeling the Human Driver”. Vehicle
System Dynamics, vol. 40, pp 101-134.
http://www.tandfonline.com/doi/abs/10.1076/vesd.40.1.101.15875
[11] Summala, H. (2000) “Automatization, automation, and modeling of driver’s be-
havior”. Recherche – Transports – Sécurité, vol. 66, pp 35-46.
http://dx.doi.org/10.1016/S0761-8980(00)80004-7
[12] Plöchl, M. and Edelmann, J. (2007) “Driver models in automobile dynamics ap-
plication”. Vehicle System Dynamics, vol. 45, nos. 7-8, pp 699-741.
http://dx.doi.org/10.1080/00423110701432482
[13] Bengtsson, J. (2001) “Adaptive Cruise Control and Driver Modeling”. Licentiate
Thesis, Lunds Institute of Technology, Lund, Sweden.
http://www.cs.clemson.edu/~johnmc/courses/cpsc875/resources/acc/6.pdf
[14] Anderson, M. R., Clark and C., Dungan, G. (1995) “Flight test maneuver design
using a skill- and rule-based pilot model”. Conference paper, IEEE International
Conference on Intelligent Systems for the 21st Century, vol. 3, pp 2682-2687.
http://dx.doi.org/10.1109/ICSMC.1995.538188
[15] Filla, R., Ericsson, A. and Palmberg, J.-O. (2005) “Dynamic Simulation of Con-
struction Machinery: Towards an Operator Model”. IFPE 2005 Technical Confer-
ence, Las Vegas (NV), USA, pp 429-438.
http://www.arxiv.org/abs/cs.CE/0503087
A Methodology… 13
[16] Filla, R. (2005) “An Event-driven Operator Model for Dynamic Simulation of
Construction Machinery”. The Ninth Scandinavian International Conference on
Fluid Power, Linköping, Sweden.
http://www.arxiv.org/abs/cs.CE/0506033
(Internet links updated and verified on August 18, 2011)
A Methodology for Modeling the Influence of Construction Machinery Operators on Productivity and Fuel Consumption

Weitere ähnliche Inhalte

Was ist angesagt?

IRJET- Development of Winch Machine For Erection of Transmission Tower –A Review
IRJET- Development of Winch Machine For Erection of Transmission Tower –A ReviewIRJET- Development of Winch Machine For Erection of Transmission Tower –A Review
IRJET- Development of Winch Machine For Erection of Transmission Tower –A ReviewIRJET Journal
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)ijceronline
 
Mechanics of strain propogation in members of a platform structure devised fo...
Mechanics of strain propogation in members of a platform structure devised fo...Mechanics of strain propogation in members of a platform structure devised fo...
Mechanics of strain propogation in members of a platform structure devised fo...Dr.Vikas Deulgaonkar
 
Experimental investigation of inmitiable platform on heavy vehicle chassis ij...
Experimental investigation of inmitiable platform on heavy vehicle chassis ij...Experimental investigation of inmitiable platform on heavy vehicle chassis ij...
Experimental investigation of inmitiable platform on heavy vehicle chassis ij...Dr.Vikas Deulgaonkar
 
Energy-Efficient Driving in the Portuguese Rail Operation (MSc. Dissertation ...
Energy-Efficient Driving in the Portuguese Rail Operation (MSc. Dissertation ...Energy-Efficient Driving in the Portuguese Rail Operation (MSc. Dissertation ...
Energy-Efficient Driving in the Portuguese Rail Operation (MSc. Dissertation ...João Vieira
 
Design and Analysis of Mechanism for Dynamic Characterization of Power Transm...
Design and Analysis of Mechanism for Dynamic Characterization of Power Transm...Design and Analysis of Mechanism for Dynamic Characterization of Power Transm...
Design and Analysis of Mechanism for Dynamic Characterization of Power Transm...iosrjce
 
Mbd 06 kinematic-&_structural_simulation_of_the_automated_infotech
Mbd 06 kinematic-&_structural_simulation_of_the_automated_infotechMbd 06 kinematic-&_structural_simulation_of_the_automated_infotech
Mbd 06 kinematic-&_structural_simulation_of_the_automated_infotechAnand Kumar Chinni
 
IRJET- Strength Evaluation of Tipper Chassis under Static and Dynamic Load Co...
IRJET- Strength Evaluation of Tipper Chassis under Static and Dynamic Load Co...IRJET- Strength Evaluation of Tipper Chassis under Static and Dynamic Load Co...
IRJET- Strength Evaluation of Tipper Chassis under Static and Dynamic Load Co...IRJET Journal
 
Modification of Mono-Tube Shock Absorber
Modification of Mono-Tube Shock AbsorberModification of Mono-Tube Shock Absorber
Modification of Mono-Tube Shock Absorberijsrd.com
 
Gradient load evaluation of chassis frame mounted specialised structure desig...
Gradient load evaluation of chassis frame mounted specialised structure desig...Gradient load evaluation of chassis frame mounted specialised structure desig...
Gradient load evaluation of chassis frame mounted specialised structure desig...Dr.Vikas Deulgaonkar
 
Dj3211351138
Dj3211351138Dj3211351138
Dj3211351138IJMER
 
Newly Developed Nonlinear Vehicle Model for an Active Anti-roll Bar System
Newly Developed Nonlinear Vehicle Model for an Active Anti-roll Bar SystemNewly Developed Nonlinear Vehicle Model for an Active Anti-roll Bar System
Newly Developed Nonlinear Vehicle Model for an Active Anti-roll Bar SystemjournalBEEI
 
Strain characteristicts in a unique platform integrated with truck chassis un...
Strain characteristicts in a unique platform integrated with truck chassis un...Strain characteristicts in a unique platform integrated with truck chassis un...
Strain characteristicts in a unique platform integrated with truck chassis un...Dr.Vikas Deulgaonkar
 
finite element analysis & design optimization of material handling equipment
finite element analysis & design optimization of material handling equipmentfinite element analysis & design optimization of material handling equipment
finite element analysis & design optimization of material handling equipmentINFOGAIN PUBLICATION
 
Simulation and Optimization of wheel Hub and Upright of Vehicle: A Review
Simulation and Optimization of wheel Hub and Upright of Vehicle: A ReviewSimulation and Optimization of wheel Hub and Upright of Vehicle: A Review
Simulation and Optimization of wheel Hub and Upright of Vehicle: A ReviewIOSRJMCE
 

Was ist angesagt? (19)

IRJET- Development of Winch Machine For Erection of Transmission Tower –A Review
IRJET- Development of Winch Machine For Erection of Transmission Tower –A ReviewIRJET- Development of Winch Machine For Erection of Transmission Tower –A Review
IRJET- Development of Winch Machine For Erection of Transmission Tower –A Review
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
Mechanics of strain propogation in members of a platform structure devised fo...
Mechanics of strain propogation in members of a platform structure devised fo...Mechanics of strain propogation in members of a platform structure devised fo...
Mechanics of strain propogation in members of a platform structure devised fo...
 
Experimental investigation of inmitiable platform on heavy vehicle chassis ij...
Experimental investigation of inmitiable platform on heavy vehicle chassis ij...Experimental investigation of inmitiable platform on heavy vehicle chassis ij...
Experimental investigation of inmitiable platform on heavy vehicle chassis ij...
 
Energy-Efficient Driving in the Portuguese Rail Operation (MSc. Dissertation ...
Energy-Efficient Driving in the Portuguese Rail Operation (MSc. Dissertation ...Energy-Efficient Driving in the Portuguese Rail Operation (MSc. Dissertation ...
Energy-Efficient Driving in the Portuguese Rail Operation (MSc. Dissertation ...
 
Design and Analysis of Mechanism for Dynamic Characterization of Power Transm...
Design and Analysis of Mechanism for Dynamic Characterization of Power Transm...Design and Analysis of Mechanism for Dynamic Characterization of Power Transm...
Design and Analysis of Mechanism for Dynamic Characterization of Power Transm...
 
Mbd 06 kinematic-&_structural_simulation_of_the_automated_infotech
Mbd 06 kinematic-&_structural_simulation_of_the_automated_infotechMbd 06 kinematic-&_structural_simulation_of_the_automated_infotech
Mbd 06 kinematic-&_structural_simulation_of_the_automated_infotech
 
Technical Report
Technical ReportTechnical Report
Technical Report
 
IRJET- Strength Evaluation of Tipper Chassis under Static and Dynamic Load Co...
IRJET- Strength Evaluation of Tipper Chassis under Static and Dynamic Load Co...IRJET- Strength Evaluation of Tipper Chassis under Static and Dynamic Load Co...
IRJET- Strength Evaluation of Tipper Chassis under Static and Dynamic Load Co...
 
Do31774777
Do31774777Do31774777
Do31774777
 
Modification of Mono-Tube Shock Absorber
Modification of Mono-Tube Shock AbsorberModification of Mono-Tube Shock Absorber
Modification of Mono-Tube Shock Absorber
 
In tech train-braking
In tech train-brakingIn tech train-braking
In tech train-braking
 
Bhushjan
BhushjanBhushjan
Bhushjan
 
Gradient load evaluation of chassis frame mounted specialised structure desig...
Gradient load evaluation of chassis frame mounted specialised structure desig...Gradient load evaluation of chassis frame mounted specialised structure desig...
Gradient load evaluation of chassis frame mounted specialised structure desig...
 
Dj3211351138
Dj3211351138Dj3211351138
Dj3211351138
 
Newly Developed Nonlinear Vehicle Model for an Active Anti-roll Bar System
Newly Developed Nonlinear Vehicle Model for an Active Anti-roll Bar SystemNewly Developed Nonlinear Vehicle Model for an Active Anti-roll Bar System
Newly Developed Nonlinear Vehicle Model for an Active Anti-roll Bar System
 
Strain characteristicts in a unique platform integrated with truck chassis un...
Strain characteristicts in a unique platform integrated with truck chassis un...Strain characteristicts in a unique platform integrated with truck chassis un...
Strain characteristicts in a unique platform integrated with truck chassis un...
 
finite element analysis & design optimization of material handling equipment
finite element analysis & design optimization of material handling equipmentfinite element analysis & design optimization of material handling equipment
finite element analysis & design optimization of material handling equipment
 
Simulation and Optimization of wheel Hub and Upright of Vehicle: A Review
Simulation and Optimization of wheel Hub and Upright of Vehicle: A ReviewSimulation and Optimization of wheel Hub and Upright of Vehicle: A Review
Simulation and Optimization of wheel Hub and Upright of Vehicle: A Review
 

Andere mochten auch

INTERNATIONAL CRIMINAL COURT (wikipedia info)
INTERNATIONAL CRIMINAL COURT (wikipedia info)INTERNATIONAL CRIMINAL COURT (wikipedia info)
INTERNATIONAL CRIMINAL COURT (wikipedia info)VogelDenise
 
Hindi Right of REVOLUTION & Political CORRUPTION
Hindi   Right of REVOLUTION & Political CORRUPTIONHindi   Right of REVOLUTION & Political CORRUPTION
Hindi Right of REVOLUTION & Political CORRUPTIONVogelDenise
 
041413 public notice (031113 fax to barack obama) - vietnamese
041413   public notice (031113 fax to barack obama) - vietnamese041413   public notice (031113 fax to barack obama) - vietnamese
041413 public notice (031113 fax to barack obama) - vietnameseVogelDenise
 
GEORGE ZIMMERMAN'S NOT GUILTY VERDICT - NOT SO FAST (finnish)
GEORGE ZIMMERMAN'S NOT GUILTY VERDICT - NOT SO FAST (finnish)GEORGE ZIMMERMAN'S NOT GUILTY VERDICT - NOT SO FAST (finnish)
GEORGE ZIMMERMAN'S NOT GUILTY VERDICT - NOT SO FAST (finnish)VogelDenise
 
GEORGE ZIMMERMAN'S NOT GUILTY VERDICT - NOT SO FAST (esperanto)
GEORGE ZIMMERMAN'S NOT GUILTY VERDICT - NOT SO FAST (esperanto)GEORGE ZIMMERMAN'S NOT GUILTY VERDICT - NOT SO FAST (esperanto)
GEORGE ZIMMERMAN'S NOT GUILTY VERDICT - NOT SO FAST (esperanto)VogelDenise
 
GEORGE ZIMMERMAN'S RE-ENACTMENT (bengali)
GEORGE ZIMMERMAN'S RE-ENACTMENT   (bengali)GEORGE ZIMMERMAN'S RE-ENACTMENT   (bengali)
GEORGE ZIMMERMAN'S RE-ENACTMENT (bengali)VogelDenise
 
Community IT Innovators - IT Planning & Budgeting 102413
Community IT Innovators - IT Planning & Budgeting 102413Community IT Innovators - IT Planning & Budgeting 102413
Community IT Innovators - IT Planning & Budgeting 102413Community IT Innovators
 
TaxCycle Software and Tax Update Seminar Tour October 2013 for Canadian Tax P...
TaxCycle Software and Tax Update Seminar Tour October 2013 for Canadian Tax P...TaxCycle Software and Tax Update Seminar Tour October 2013 for Canadian Tax P...
TaxCycle Software and Tax Update Seminar Tour October 2013 for Canadian Tax P...Trilogy Software
 
Проект “Экологический транспорт, объединяющий соседей” по Программе LV-LT-BY ...
Проект “Экологический транспорт, объединяющий соседей” по Программе LV-LT-BY ...Проект “Экологический транспорт, объединяющий соседей” по Программе LV-LT-BY ...
Проект “Экологический транспорт, объединяющий соседей” по Программе LV-LT-BY ...Ira Koleda
 
Toastmasters' Revitalized Education Program
Toastmasters' Revitalized Education Program Toastmasters' Revitalized Education Program
Toastmasters' Revitalized Education Program Paul Katsus
 
2016 FAMU SPORTS HALL OF FAME INDUCTEES (Vogel Newsome)-ARABIC
2016 FAMU SPORTS HALL OF FAME INDUCTEES (Vogel Newsome)-ARABIC2016 FAMU SPORTS HALL OF FAME INDUCTEES (Vogel Newsome)-ARABIC
2016 FAMU SPORTS HALL OF FAME INDUCTEES (Vogel Newsome)-ARABICVogelDenise
 
EEOC - Administrative Appeals
EEOC - Administrative AppealsEEOC - Administrative Appeals
EEOC - Administrative AppealsVogelDenise
 
SYRIA CRISIS - (USA) CHEMICAL WEAPONS ATTACK(maltese)
SYRIA CRISIS - (USA) CHEMICAL WEAPONS ATTACK(maltese)SYRIA CRISIS - (USA) CHEMICAL WEAPONS ATTACK(maltese)
SYRIA CRISIS - (USA) CHEMICAL WEAPONS ATTACK(maltese)VogelDenise
 
Nuremberg principle armenian
Nuremberg principle   armenianNuremberg principle   armenian
Nuremberg principle armenianVogelDenise
 
Dinamiche non lineari in reti neurali cellulari
Dinamiche non lineari in reti neurali cellulariDinamiche non lineari in reti neurali cellulari
Dinamiche non lineari in reti neurali cellulariStefano Vena
 
NEWSEUM BOARD OF TRUSTEES (Freedom Forum Affiliation)
NEWSEUM BOARD OF TRUSTEES (Freedom Forum Affiliation)NEWSEUM BOARD OF TRUSTEES (Freedom Forum Affiliation)
NEWSEUM BOARD OF TRUSTEES (Freedom Forum Affiliation)VogelDenise
 
Indonesian 040412
Indonesian 040412Indonesian 040412
Indonesian 040412VogelDenise
 

Andere mochten auch (20)

INTERNATIONAL CRIMINAL COURT (wikipedia info)
INTERNATIONAL CRIMINAL COURT (wikipedia info)INTERNATIONAL CRIMINAL COURT (wikipedia info)
INTERNATIONAL CRIMINAL COURT (wikipedia info)
 
Hindi Right of REVOLUTION & Political CORRUPTION
Hindi   Right of REVOLUTION & Political CORRUPTIONHindi   Right of REVOLUTION & Political CORRUPTION
Hindi Right of REVOLUTION & Political CORRUPTION
 
041413 public notice (031113 fax to barack obama) - vietnamese
041413   public notice (031113 fax to barack obama) - vietnamese041413   public notice (031113 fax to barack obama) - vietnamese
041413 public notice (031113 fax to barack obama) - vietnamese
 
GEORGE ZIMMERMAN'S NOT GUILTY VERDICT - NOT SO FAST (finnish)
GEORGE ZIMMERMAN'S NOT GUILTY VERDICT - NOT SO FAST (finnish)GEORGE ZIMMERMAN'S NOT GUILTY VERDICT - NOT SO FAST (finnish)
GEORGE ZIMMERMAN'S NOT GUILTY VERDICT - NOT SO FAST (finnish)
 
GEORGE ZIMMERMAN'S NOT GUILTY VERDICT - NOT SO FAST (esperanto)
GEORGE ZIMMERMAN'S NOT GUILTY VERDICT - NOT SO FAST (esperanto)GEORGE ZIMMERMAN'S NOT GUILTY VERDICT - NOT SO FAST (esperanto)
GEORGE ZIMMERMAN'S NOT GUILTY VERDICT - NOT SO FAST (esperanto)
 
GEORGE ZIMMERMAN'S RE-ENACTMENT (bengali)
GEORGE ZIMMERMAN'S RE-ENACTMENT   (bengali)GEORGE ZIMMERMAN'S RE-ENACTMENT   (bengali)
GEORGE ZIMMERMAN'S RE-ENACTMENT (bengali)
 
Community IT Innovators - IT Planning & Budgeting 102413
Community IT Innovators - IT Planning & Budgeting 102413Community IT Innovators - IT Planning & Budgeting 102413
Community IT Innovators - IT Planning & Budgeting 102413
 
TaxCycle Software and Tax Update Seminar Tour October 2013 for Canadian Tax P...
TaxCycle Software and Tax Update Seminar Tour October 2013 for Canadian Tax P...TaxCycle Software and Tax Update Seminar Tour October 2013 for Canadian Tax P...
TaxCycle Software and Tax Update Seminar Tour October 2013 for Canadian Tax P...
 
Проект “Экологический транспорт, объединяющий соседей” по Программе LV-LT-BY ...
Проект “Экологический транспорт, объединяющий соседей” по Программе LV-LT-BY ...Проект “Экологический транспорт, объединяющий соседей” по Программе LV-LT-BY ...
Проект “Экологический транспорт, объединяющий соседей” по Программе LV-LT-BY ...
 
Toastmasters' Revitalized Education Program
Toastmasters' Revitalized Education Program Toastmasters' Revitalized Education Program
Toastmasters' Revitalized Education Program
 
Galician 040412
Galician 040412Galician 040412
Galician 040412
 
2016 FAMU SPORTS HALL OF FAME INDUCTEES (Vogel Newsome)-ARABIC
2016 FAMU SPORTS HALL OF FAME INDUCTEES (Vogel Newsome)-ARABIC2016 FAMU SPORTS HALL OF FAME INDUCTEES (Vogel Newsome)-ARABIC
2016 FAMU SPORTS HALL OF FAME INDUCTEES (Vogel Newsome)-ARABIC
 
EEOC - Administrative Appeals
EEOC - Administrative AppealsEEOC - Administrative Appeals
EEOC - Administrative Appeals
 
SYRIA CRISIS - (USA) CHEMICAL WEAPONS ATTACK(maltese)
SYRIA CRISIS - (USA) CHEMICAL WEAPONS ATTACK(maltese)SYRIA CRISIS - (USA) CHEMICAL WEAPONS ATTACK(maltese)
SYRIA CRISIS - (USA) CHEMICAL WEAPONS ATTACK(maltese)
 
Nuremberg principle armenian
Nuremberg principle   armenianNuremberg principle   armenian
Nuremberg principle armenian
 
Hindi 040412
Hindi 040412Hindi 040412
Hindi 040412
 
Semana de turismo
Semana de turismoSemana de turismo
Semana de turismo
 
Dinamiche non lineari in reti neurali cellulari
Dinamiche non lineari in reti neurali cellulariDinamiche non lineari in reti neurali cellulari
Dinamiche non lineari in reti neurali cellulari
 
NEWSEUM BOARD OF TRUSTEES (Freedom Forum Affiliation)
NEWSEUM BOARD OF TRUSTEES (Freedom Forum Affiliation)NEWSEUM BOARD OF TRUSTEES (Freedom Forum Affiliation)
NEWSEUM BOARD OF TRUSTEES (Freedom Forum Affiliation)
 
Indonesian 040412
Indonesian 040412Indonesian 040412
Indonesian 040412
 

Ähnlich wie A Methodology for Modeling the Influence of Construction Machinery Operators on Productivity and Fuel Consumption

Dynamic Simulation of Construction Machinery: Towards an Operator Model
Dynamic Simulation of Construction Machinery: Towards an Operator ModelDynamic Simulation of Construction Machinery: Towards an Operator Model
Dynamic Simulation of Construction Machinery: Towards an Operator ModelReno Filla
 
Towards Finding the Optimal Bucket Filling Strategy through Simulation
Towards Finding the Optimal Bucket Filling Strategy through SimulationTowards Finding the Optimal Bucket Filling Strategy through Simulation
Towards Finding the Optimal Bucket Filling Strategy through SimulationReno Filla
 
Simulating Operability of Wheel Loaders: Operator Models and Quantification o...
Simulating Operability of Wheel Loaders: Operator Models and Quantification o...Simulating Operability of Wheel Loaders: Operator Models and Quantification o...
Simulating Operability of Wheel Loaders: Operator Models and Quantification o...Reno Filla
 
Evaluating the efficiency of wheel loader bucket designs and bucket filling s...
Evaluating the efficiency of wheel loader bucket designs and bucket filling s...Evaluating the efficiency of wheel loader bucket designs and bucket filling s...
Evaluating the efficiency of wheel loader bucket designs and bucket filling s...Reno Filla
 
A Case Study on Quantifying the Workload of Working Machine Operators by Mean...
A Case Study on Quantifying the Workload of Working Machine Operators by Mean...A Case Study on Quantifying the Workload of Working Machine Operators by Mean...
A Case Study on Quantifying the Workload of Working Machine Operators by Mean...Reno Filla
 
An Event-driven Operator Model for Dynamic Simulation of Construction Machinery
An Event-driven Operator Model for Dynamic Simulation of Construction MachineryAn Event-driven Operator Model for Dynamic Simulation of Construction Machinery
An Event-driven Operator Model for Dynamic Simulation of Construction MachineryReno Filla
 
Using Dynamic Simulation in the Development of Construction Machinery
Using Dynamic Simulation in the Development of Construction MachineryUsing Dynamic Simulation in the Development of Construction Machinery
Using Dynamic Simulation in the Development of Construction MachineryReno Filla
 
On Increasing Fuel Efficiency by Operator Assistance Systems in a Wheel Loader
On Increasing Fuel Efficiency by Operator Assistance Systems in a Wheel LoaderOn Increasing Fuel Efficiency by Operator Assistance Systems in a Wheel Loader
On Increasing Fuel Efficiency by Operator Assistance Systems in a Wheel LoaderReno Filla
 
IRJET- Design and development of Hydraulic Lift for fastening of a SPM (S...
IRJET-  	  Design and development of Hydraulic Lift for fastening of a SPM (S...IRJET-  	  Design and development of Hydraulic Lift for fastening of a SPM (S...
IRJET- Design and development of Hydraulic Lift for fastening of a SPM (S...IRJET Journal
 
Fuel efficiency in construction equipment – optimize the machine as one system
Fuel efficiency in construction equipment – optimize the machine as one systemFuel efficiency in construction equipment – optimize the machine as one system
Fuel efficiency in construction equipment – optimize the machine as one systemReno Filla
 
Selecting representative working cycles from large measurement data sets
Selecting representative working cycles from large measurement data setsSelecting representative working cycles from large measurement data sets
Selecting representative working cycles from large measurement data setsReno Filla
 
Representative Testing of Emissions and Fuel Consumption of Working Machines ...
Representative Testing of Emissions and Fuel Consumption of Working Machines ...Representative Testing of Emissions and Fuel Consumption of Working Machines ...
Representative Testing of Emissions and Fuel Consumption of Working Machines ...Reno Filla
 
Optimizing the trajectory of a wheel loader working in short loading cycles
Optimizing the trajectory of a wheel loader working in short loading cyclesOptimizing the trajectory of a wheel loader working in short loading cycles
Optimizing the trajectory of a wheel loader working in short loading cyclesReno Filla
 
IRJET- Finite Element Simulation of Pressurized Fluid
IRJET- Finite Element Simulation of Pressurized FluidIRJET- Finite Element Simulation of Pressurized Fluid
IRJET- Finite Element Simulation of Pressurized FluidIRJET Journal
 
IRJET- Design, Analysis and Optimisation of Shock Absorber
IRJET- Design, Analysis and Optimisation of Shock AbsorberIRJET- Design, Analysis and Optimisation of Shock Absorber
IRJET- Design, Analysis and Optimisation of Shock AbsorberIRJET Journal
 
Cfd study of a Pelton turbine runner by M.Minozzo R.Bergamin M.Merelli M.Galb...
Cfd study of a Pelton turbine runner by M.Minozzo R.Bergamin M.Merelli M.Galb...Cfd study of a Pelton turbine runner by M.Minozzo R.Bergamin M.Merelli M.Galb...
Cfd study of a Pelton turbine runner by M.Minozzo R.Bergamin M.Merelli M.Galb...TUM
 
Enhancing the Efficiency of a Torque Converter Clutch (TCC)
Enhancing the Efficiency of a Torque Converter Clutch (TCC)Enhancing the Efficiency of a Torque Converter Clutch (TCC)
Enhancing the Efficiency of a Torque Converter Clutch (TCC)Sharon Lin
 
1801069 minor project
1801069 minor project1801069 minor project
1801069 minor projectShaswatVerma4
 
IRJET- Experimental Analysis of Passive/Active Suspension System
IRJET- Experimental Analysis of Passive/Active Suspension SystemIRJET- Experimental Analysis of Passive/Active Suspension System
IRJET- Experimental Analysis of Passive/Active Suspension SystemIRJET Journal
 

Ähnlich wie A Methodology for Modeling the Influence of Construction Machinery Operators on Productivity and Fuel Consumption (20)

Dynamic Simulation of Construction Machinery: Towards an Operator Model
Dynamic Simulation of Construction Machinery: Towards an Operator ModelDynamic Simulation of Construction Machinery: Towards an Operator Model
Dynamic Simulation of Construction Machinery: Towards an Operator Model
 
Towards Finding the Optimal Bucket Filling Strategy through Simulation
Towards Finding the Optimal Bucket Filling Strategy through SimulationTowards Finding the Optimal Bucket Filling Strategy through Simulation
Towards Finding the Optimal Bucket Filling Strategy through Simulation
 
Simulating Operability of Wheel Loaders: Operator Models and Quantification o...
Simulating Operability of Wheel Loaders: Operator Models and Quantification o...Simulating Operability of Wheel Loaders: Operator Models and Quantification o...
Simulating Operability of Wheel Loaders: Operator Models and Quantification o...
 
Evaluating the efficiency of wheel loader bucket designs and bucket filling s...
Evaluating the efficiency of wheel loader bucket designs and bucket filling s...Evaluating the efficiency of wheel loader bucket designs and bucket filling s...
Evaluating the efficiency of wheel loader bucket designs and bucket filling s...
 
A Case Study on Quantifying the Workload of Working Machine Operators by Mean...
A Case Study on Quantifying the Workload of Working Machine Operators by Mean...A Case Study on Quantifying the Workload of Working Machine Operators by Mean...
A Case Study on Quantifying the Workload of Working Machine Operators by Mean...
 
An Event-driven Operator Model for Dynamic Simulation of Construction Machinery
An Event-driven Operator Model for Dynamic Simulation of Construction MachineryAn Event-driven Operator Model for Dynamic Simulation of Construction Machinery
An Event-driven Operator Model for Dynamic Simulation of Construction Machinery
 
Using Dynamic Simulation in the Development of Construction Machinery
Using Dynamic Simulation in the Development of Construction MachineryUsing Dynamic Simulation in the Development of Construction Machinery
Using Dynamic Simulation in the Development of Construction Machinery
 
On Increasing Fuel Efficiency by Operator Assistance Systems in a Wheel Loader
On Increasing Fuel Efficiency by Operator Assistance Systems in a Wheel LoaderOn Increasing Fuel Efficiency by Operator Assistance Systems in a Wheel Loader
On Increasing Fuel Efficiency by Operator Assistance Systems in a Wheel Loader
 
IRJET- Design and development of Hydraulic Lift for fastening of a SPM (S...
IRJET-  	  Design and development of Hydraulic Lift for fastening of a SPM (S...IRJET-  	  Design and development of Hydraulic Lift for fastening of a SPM (S...
IRJET- Design and development of Hydraulic Lift for fastening of a SPM (S...
 
Fuel efficiency in construction equipment – optimize the machine as one system
Fuel efficiency in construction equipment – optimize the machine as one systemFuel efficiency in construction equipment – optimize the machine as one system
Fuel efficiency in construction equipment – optimize the machine as one system
 
Selecting representative working cycles from large measurement data sets
Selecting representative working cycles from large measurement data setsSelecting representative working cycles from large measurement data sets
Selecting representative working cycles from large measurement data sets
 
Representative Testing of Emissions and Fuel Consumption of Working Machines ...
Representative Testing of Emissions and Fuel Consumption of Working Machines ...Representative Testing of Emissions and Fuel Consumption of Working Machines ...
Representative Testing of Emissions and Fuel Consumption of Working Machines ...
 
Optimizing the trajectory of a wheel loader working in short loading cycles
Optimizing the trajectory of a wheel loader working in short loading cyclesOptimizing the trajectory of a wheel loader working in short loading cycles
Optimizing the trajectory of a wheel loader working in short loading cycles
 
IRJET- Finite Element Simulation of Pressurized Fluid
IRJET- Finite Element Simulation of Pressurized FluidIRJET- Finite Element Simulation of Pressurized Fluid
IRJET- Finite Element Simulation of Pressurized Fluid
 
IRJET- Design, Analysis and Optimisation of Shock Absorber
IRJET- Design, Analysis and Optimisation of Shock AbsorberIRJET- Design, Analysis and Optimisation of Shock Absorber
IRJET- Design, Analysis and Optimisation of Shock Absorber
 
Cfd study of a Pelton turbine runner by M.Minozzo R.Bergamin M.Merelli M.Galb...
Cfd study of a Pelton turbine runner by M.Minozzo R.Bergamin M.Merelli M.Galb...Cfd study of a Pelton turbine runner by M.Minozzo R.Bergamin M.Merelli M.Galb...
Cfd study of a Pelton turbine runner by M.Minozzo R.Bergamin M.Merelli M.Galb...
 
Power split transmition
Power split transmitionPower split transmition
Power split transmition
 
Enhancing the Efficiency of a Torque Converter Clutch (TCC)
Enhancing the Efficiency of a Torque Converter Clutch (TCC)Enhancing the Efficiency of a Torque Converter Clutch (TCC)
Enhancing the Efficiency of a Torque Converter Clutch (TCC)
 
1801069 minor project
1801069 minor project1801069 minor project
1801069 minor project
 
IRJET- Experimental Analysis of Passive/Active Suspension System
IRJET- Experimental Analysis of Passive/Active Suspension SystemIRJET- Experimental Analysis of Passive/Active Suspension System
IRJET- Experimental Analysis of Passive/Active Suspension System
 

Mehr von Reno Filla

In support of removal of periodic calibration of Flight Recorders
In support of removal of periodic calibration of Flight RecordersIn support of removal of periodic calibration of Flight Recorders
In support of removal of periodic calibration of Flight RecordersReno Filla
 
Brave new electric world.pdf
Brave new electric world.pdfBrave new electric world.pdf
Brave new electric world.pdfReno Filla
 
Calculation of power requirement for a truck
Calculation of power requirement for a truckCalculation of power requirement for a truck
Calculation of power requirement for a truckReno Filla
 
Reflections on Research (and a Fractal Perspective on Systems Engineering)
Reflections on Research (and a Fractal Perspective on Systems Engineering)Reflections on Research (and a Fractal Perspective on Systems Engineering)
Reflections on Research (and a Fractal Perspective on Systems Engineering)Reno Filla
 
E-Roads Getting Real
E-Roads Getting RealE-Roads Getting Real
E-Roads Getting RealReno Filla
 
Electric Road Systems
Electric Road SystemsElectric Road Systems
Electric Road SystemsReno Filla
 
SEC lecture "Electrification of Future Transports"
SEC lecture "Electrification of Future Transports"SEC lecture "Electrification of Future Transports"
SEC lecture "Electrification of Future Transports"Reno Filla
 
Electrification of future transports
Electrification of future transportsElectrification of future transports
Electrification of future transportsReno Filla
 
Interview Alumni HS Magdeburg
Interview Alumni HS MagdeburgInterview Alumni HS Magdeburg
Interview Alumni HS MagdeburgReno Filla
 
Future Trends for Heavy Vehicles
Future Trends for Heavy VehiclesFuture Trends for Heavy Vehicles
Future Trends for Heavy VehiclesReno Filla
 
Towards Finding the Optimal Bucket Filling Strategy through Simulation
Towards Finding the Optimal Bucket Filling Strategy through SimulationTowards Finding the Optimal Bucket Filling Strategy through Simulation
Towards Finding the Optimal Bucket Filling Strategy through SimulationReno Filla
 
Electromobility and Construction Machinery
Electromobility and Construction MachineryElectromobility and Construction Machinery
Electromobility and Construction MachineryReno Filla
 
Gliding Contest Scoring: current and proposal 8.1.4 for the 2016 IGC plenary
Gliding Contest Scoring: current and proposal 8.1.4 for the 2016 IGC plenaryGliding Contest Scoring: current and proposal 8.1.4 for the 2016 IGC plenary
Gliding Contest Scoring: current and proposal 8.1.4 for the 2016 IGC plenaryReno Filla
 
Automation of Mobile Working Machines
Automation of Mobile Working MachinesAutomation of Mobile Working Machines
Automation of Mobile Working MachinesReno Filla
 
Classification of physiological signals for wheel loader operators using Mult...
Classification of physiological signals for wheel loader operators using Mult...Classification of physiological signals for wheel loader operators using Mult...
Classification of physiological signals for wheel loader operators using Mult...Reno Filla
 
Mental State Monitoring System for the Professional Drivers Based on Heart Ra...
Mental State Monitoring System for the Professional Drivers Based on Heart Ra...Mental State Monitoring System for the Professional Drivers Based on Heart Ra...
Mental State Monitoring System for the Professional Drivers Based on Heart Ra...Reno Filla
 

Mehr von Reno Filla (16)

In support of removal of periodic calibration of Flight Recorders
In support of removal of periodic calibration of Flight RecordersIn support of removal of periodic calibration of Flight Recorders
In support of removal of periodic calibration of Flight Recorders
 
Brave new electric world.pdf
Brave new electric world.pdfBrave new electric world.pdf
Brave new electric world.pdf
 
Calculation of power requirement for a truck
Calculation of power requirement for a truckCalculation of power requirement for a truck
Calculation of power requirement for a truck
 
Reflections on Research (and a Fractal Perspective on Systems Engineering)
Reflections on Research (and a Fractal Perspective on Systems Engineering)Reflections on Research (and a Fractal Perspective on Systems Engineering)
Reflections on Research (and a Fractal Perspective on Systems Engineering)
 
E-Roads Getting Real
E-Roads Getting RealE-Roads Getting Real
E-Roads Getting Real
 
Electric Road Systems
Electric Road SystemsElectric Road Systems
Electric Road Systems
 
SEC lecture "Electrification of Future Transports"
SEC lecture "Electrification of Future Transports"SEC lecture "Electrification of Future Transports"
SEC lecture "Electrification of Future Transports"
 
Electrification of future transports
Electrification of future transportsElectrification of future transports
Electrification of future transports
 
Interview Alumni HS Magdeburg
Interview Alumni HS MagdeburgInterview Alumni HS Magdeburg
Interview Alumni HS Magdeburg
 
Future Trends for Heavy Vehicles
Future Trends for Heavy VehiclesFuture Trends for Heavy Vehicles
Future Trends for Heavy Vehicles
 
Towards Finding the Optimal Bucket Filling Strategy through Simulation
Towards Finding the Optimal Bucket Filling Strategy through SimulationTowards Finding the Optimal Bucket Filling Strategy through Simulation
Towards Finding the Optimal Bucket Filling Strategy through Simulation
 
Electromobility and Construction Machinery
Electromobility and Construction MachineryElectromobility and Construction Machinery
Electromobility and Construction Machinery
 
Gliding Contest Scoring: current and proposal 8.1.4 for the 2016 IGC plenary
Gliding Contest Scoring: current and proposal 8.1.4 for the 2016 IGC plenaryGliding Contest Scoring: current and proposal 8.1.4 for the 2016 IGC plenary
Gliding Contest Scoring: current and proposal 8.1.4 for the 2016 IGC plenary
 
Automation of Mobile Working Machines
Automation of Mobile Working MachinesAutomation of Mobile Working Machines
Automation of Mobile Working Machines
 
Classification of physiological signals for wheel loader operators using Mult...
Classification of physiological signals for wheel loader operators using Mult...Classification of physiological signals for wheel loader operators using Mult...
Classification of physiological signals for wheel loader operators using Mult...
 
Mental State Monitoring System for the Professional Drivers Based on Heart Ra...
Mental State Monitoring System for the Professional Drivers Based on Heart Ra...Mental State Monitoring System for the Professional Drivers Based on Heart Ra...
Mental State Monitoring System for the Professional Drivers Based on Heart Ra...
 

Kürzlich hochgeladen

SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESmohitsingh558521
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfMounikaPolabathina
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rick Flair
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersRaghuram Pandurangan
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxLoriGlavin3
 

Kürzlich hochgeladen (20)

SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdf
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information Developers
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptx
 

A Methodology for Modeling the Influence of Construction Machinery Operators on Productivity and Fuel Consumption

  • 1. Paper 06 A Methodology for Modeling the Influence of Construction Machinery Operators on Productivity and Fuel Consumption Reno Filla VOLVO CONSTRUCTION EQUIPMENT AB, ESKILSTUNA, SWEDEN Abstract This paper is concerned with modeling the actions of a human operator of construction machinery and integrating this operator model into a large, complex simulation model of the complete machine and its environment. Because human operators to a large de- gree affect how the machine is run, adaptive operator models are a necessity when the simulation goal is quantification and optimization of productivity and energy efficiency. Interview studies and test series have been performed to determine how professionals operate wheel loaders. Two models using different approaches were realized and inte- grated into a multi-domain model for dynamic simulation. The results are satisfactory and the methodology is easily usable for other, similar situations. Keywords: dynamic simulation, operator model, driver model
  • 2. A déjà vu is usually a glitch in the Matrix. It happens when they change something. (from the film “The Matrix”) This paper has been published as: Filla, R. (2009) “A Methodology for Modeling the Influence of Construction Machinery Operators on Productivity and Fuel Consumption”. Proceedings of HCII 2009: Digital Human Modeling, LNCS 5620, pp 614-623. http://dx.doi.org/10.1007/978-3-642-02809-0_65
  • 3. A Methodology… 3 1 Introduction In this ongoing research on simulation in the conceptual design of complex working machines, a wheel loader was chosen as the object of study, although others can be found not only in the field of construction machinery, but also in other sectors such as agriculture, forestry, and mining. Common factors are that these machines consist of at least two working systems that are used simultaneously and that the human operator is essential to the performance of the total system. In the case of a wheel loader, drive train and hydraulics are both equally powerful and compete for the limited engine torque. Figure 1 visualizes how the primary power from the diesel engine is split up between hydraulics and drive train (outer loop) in or- der to create lift/tilt movements of the bucket and traction of the wheels, but is con- nected again when filling the bucket in e.g. a gravel pile. In this situation, the traction force from the drive train, acting between wheels and ground, creates a reaction force between gravel pile and bucket edge, which in turn counteracts lift and tilt forces from hydraulics, and vice versa [1]. Figure 1. Simplified power transfer and control scheme of a wheel loader during bucket loading The inner loop in Figure 1 shows how the human operator interacts with the wheel loader. In order to fill the bucket, the operator needs to control three motions simultane- ously: a forward motion that also exerts a force (traction), an upward motion (lift) and a rotating motion of the bucket to fit in as much material as possible (tilt). This is similar to how a simple manual shovel is used. However, in contrast to a manual shovel, the operator of a wheel loader can only observe, and cannot directly control these three motions. Instead, he or she has to use different subsystems of the machine in order to accomplish the task. The gas pedal controls engine speed, while lift and tilt lever control valves in the hydraulics system that ultimately control movement of the linkage’s lift and tilt cylinder, respectively. The difficulty lies in that no operator control directly affects only one single motion. The gas pedal controls engine speed, which affects both the machine’s longitudinal mo-
  • 4. 4 Paper 06 tion and via the hydraulic pumps the speeds of the lift and tilt cylinders. The linkage between the hydraulic cylinders and the bucket acts as a non-linear planar transmission and due to its design a lift movement will also change the buckets tilt angle and a tilt movement affects the bucket edge’s height above the ground. In summary, there are many of interdependencies and it thus takes a certain amount of training to be able to use the machine efficiently. In modern wheel loaders the operator does not control major components and sub- systems directly, but via electronic control units (ECUs). This makes it possible to give the operator support, e.g. by controlling the cylinder speeds in such a manner that the non-linearity of the linkage is compensated for and thus the speed of bucket lift and tilt is proportional to the angle of the tilt and lift lever. Certain aspects of machine opera- tion, for instance a typical brake-and-reverse driving sequence, can also be developed to be semi-automatic or fully automated. If a simulation is required to capture the full scope of the interaction between the ma- chine, its environment, and its operator, all three must be modeled at an appropriate level of detail in order to give valid results as regards such complex total system proper- ties as productivity and fuel consumption / energy efficiency. This is an aspect that is traditionally neglected, because the modeling needs to be extended beyond the technical system. 2 Literature study 2.1 Working cycle The knowledge regarding wheel loader operation and working cycles presented in this paper has been derived from the author’s own wheel loader experience and to a large extent from discussions with colleagues, test engineers, product specialists, and profes- sional operators at Volvo. Most of these discussions were not formally structured, but rather conducted in an ad-hoc manner. However, some unstructured research interviews were carried out and one interview, conducted with a professional test operator, was recorded in the form of a semi-structured research interview. Furthermore, many meas- urements were performed and the results and implications discussed. Most of these re- ports are internal, but some MSc theses [2], [4], [5] and academic papers [6] are avail- able in the public domain. In [7], Gellerstedt published wheel loader operator’s thoughts and reasoning and also documented some typical working cycles with photos and test data. Furthermore, non-academic publications like operating manuals and instruction ma- terial available from machine manufacturers contain useful information.
  • 5. A Methodology… 5 2.2 Operator models Surprisingly little could be found in a literature review restricted to working machines and designing operator models for the purpose of simulation. Zhang et al. validate con- trol strategies by conducting human-operated experiments in their Earthmoving Vehicle Powertrain Simulator. The corresponding paper [3] gives some insight into their reason- ing regarding human-machine interaction. They acknowledge the difference between task-oriented jobs (such as wheel loader operation in a short loading cycle) and refer- ence-oriented jobs (e.g. driving a car). Some more work can be found in the field of autonomous excavation. Hemami spe- cifically examines bucket filling in [8] and also Wu [9], starting off with analyzing wheel loader operation in general, later focuses on the bucket filling phase. Both handle the problem as one that can be solved by following predefined trajectories. An abundance of literature in the aerospace and in the automotive sector deals with pilot models and parameter identification for the purpose of predicting pilot behavior over the next seconds [10]-[14]. Among the techniques employed are path-following controllers, Kalman filters, fuzzy logic, and neural networks. Such models are used for advanced control problems like pilot or driver assistance systems and energy manage- ment of hybrids. But the inverse problem is also considered: assessing handling quali- ties in certain predefined maneuvers. 3 Development methodology 3.1 Required model features Since the application of the operator model is in simulation in conceptual design, i.e. before any physical prototype is available, it has been deemed important that the model not be hard-coded in any way. Using fixed time, speed or position references and prede- fined trajectories, there is a significant risk that these references are only valid for the machine that was used during development of the operator model, but result in large deviations for a new machine with as yet unknown properties. Therefore, any such ref- erences must be weak ones and either constant for all machines of any size and architec- ture, or possible to formulate parametrically, i.e. as a function of bucket length, loading capacity, wheel distance or similar. Also, in order to mimic the human operator as close as possible, the operator model must also be strictly separated from both machine and environment model, and its in- puts and outputs must be limited to those of a human operator. 3.2 Orientating interviews These interviews are unstructured and aim to establish basic knowledge of the type of cycle to model, its features, and its characteristics.
  • 6. 6 Paper 06 In our work, interviewing owners and operators of wheel loaders at different sites has lead to the conclusion that each working place is unique in its parameters, but the short loading cycle (Figure 2) is highly representative of the majority of applications. Figure 2. Short loading cycle Typical for this cycle is bucket loading of material on an adjacent load receiver within a time frame of 25-35 seconds. The aforementioned problems with interactions between subsystems are highly present. Several phases can be identified (Figure 2), which Table 1 describes briefly. A more detailed exploration of the short loading cycle can be found in [1]. Essentially all operators described their operation commands as triggered by events, both from the machine and its environment, sometimes guided by weak speed or posi- tion references. It has therefore been found meaningful to develop rule-based operator models and all subsequent steps are based on that decision. 3.3 In-depth interviews In this next step, semi-structured research interviews are conducted with professional operators who are able to verbally express how they use the machine in the working task at hand. It is important to go through each cycle phase in detail, noting what event triggered a reaction, which controls are applied and how long, alternate scenarios, what defines success, what defines failure etc. In our work we were able to interview one product specialist who was also a profes- sional test operator and, more importantly, experienced machine instructor and thus used to teaching people how to operate wheel loaders in an efficient manner. Addition- ally, many brief unstructured interviews were performed with colleagues of a similar background. Table 2 lists one result: a guide to how to fill the bucket.
  • 7. A Methodology… 7 Table 1. Phases of the short loading cycle # Phase Description 1 Bucket filling Bucket is filled by simultaneously controlling the machine speed and lift and tilt functions. 2 Leaving bank Operator drives backwards towards the reversing point and steers the machine to achieve the charac- teristic V-pattern. 3 Retardation Is started some time before phase 4 and can be either prolonged or shortened by controlling the gas pedal and the service brakes. 4 Reversing Begins when the remaining distance to the load receiver will be sufficient for the lift hydraulics to achieve the bucket height necessary for emptying during the time it takes to get there. 5 Towards load receiver The operator steers towards the load receiver, thus completing the V-pattern. The machine arrives perpendicular to the load receiver. 6 Bucket emptying The machine is driven forward slowly, the loading unit being raised and the bucket tilted forward at the same time. 7 Leaving load receiver Operator drives backwards towards the reversing point, while the bucket is lowered to a position suitable for driving. 8 Retardation and reversing Not necessarily executed at the same location as in phases 3 and 4, because lowering an empty bucket is faster than raising a full one. 9 Towards bank The machine is driven forward to the location where the next bucket filling is to be performed, the bucket being lowered and aligned with the ground at the same time. 10 Retardation at bank Often combined with the next bucket filling by using the machine’s momentum to drive the bucket into the gravel pile. Table 2. Bucket filling # Description 1 Accelerate to a certain velocity 2 Shift to lowest gear (kick-down) when bucket edge meets gravel pile 3 Apply gas pedal to increase traction and push bucket into the pile 4 In case of slippage between tires and ground, lift bucket a little more to increase load on front axle (increases traction) 5 If bucket gets stuck in pile, tilt bucket backwards a little 6 If bucket gets stuck in pile, reduce traction a little 7 Follow the slope of the pile in a carving manner 8 Lift continuously, apply tilt function without releasing lift lever 9 Leave pile with bucket below tipping height (straight lifting arms) 10 Tilt bucket fully back
  • 8. 8 Paper 06 As another example, Table 3 shows how phases 2 to 4 are performed, i.e. leaving bank, retardation, and reversing. Table 3. Leaving bank, retardation, and reversing # Description 1 Put transmission into reverse gear 2 Start lifting 3 Apply gas pedal to accelerate, but keep machine speed below shifting point for gear 3 4 Steer machine into right curve (if load receiver is standing to the left) 5 Adjust steering so that machine can arrive perpendicular to the load receiver 6 Choose reversing point so that distance to load receiver is enough for bucket to reach sufficient height for emptying, if continuously lifted 7 Retard economically by releasing gas pedal 8 Steer back machine into straight position 9 Apply brakes until machine almost stands still 10 Put transmission into forward gear 3.4 Recording and analyzing test series Together with video recordings of the machine in operation and possibly also from in- side the cab, measurement data can serve as an additional source of information. In our work we equipped test machines with a data acquisitioning system and re- corded control inputs and major machine variables, such as engine speed, traveling dis- tance, bucket height and angle (etc). We also found video recordings of the machine in operation to be a valuable complement. 3.5 Deriving general rules and constraints The results from interview studies and possibly additional measurements are now to be transformed into general, non-machine specific rules and constraints. This is the last step before coding the operator model, which makes it necessary to construct the rules and constraints in a way that is possible to implement. In our work one result was a quantification of values for “a little” and “certain”, the vague vocabulary used in Table 2. For instance, the initial velocity in rule #1 was set to 3 km/h and the trigger for kick-down in rule #2 was set to a bucket penetration depth of 200 mm. The height in rule #9 was set to 1/3 of maximum lifting height. Also, the working place was set up parametrically, more details can be found in [16].
  • 9. A Methodology… 9 3.6 Implementation The derived general rules and constraints are now to be implemented as execution paths of a finite state machine. In our work two operator models have been realized. In both cases the model of the technical system and the working place were developed and simulated in ADAMS, a three-dimensional multi-body system code. Both operator models are separate entities and the information exchange with machine and environment is limited to operator in- puts and outputs similar to a human being, i.e. the operator has neither insight nor influ- ence at a deeper level. The first operator model has focused on the bucket filling and has been realized as state equations in ADAMS with an algorithm reminiscent of fuzzy logic. This is ex- plained in more detail in [15]. The second operator model, with a focus on the remaining phases of the short load- ing cycle, has been realized in Stateflow (Figure 3) and co-simulated with ADAMS [16]. Table 4 shows how cycle phase 2 has been realized with two parallel paths. Figure 3. Top level view of the operator model in Stateflow [16] Table 4. Applied steps in phase 2 of the operator model # Description A1 Apply full lift and full gas pedal. A2 Steer machine so that reversing will take place with machine pointing at workplace origin (angle at ca 45°). Calculate required steering angle. A3 Apply full steering, reduce and stop when required steering angle is reached. A4 Begin steering back when machine is about to point at workplace origin. A5 Keep driving backwards until path B terminates this phase. B1 Wait for machine to pass load receiver (fist geometric possibility to reverse). B2 Wait for extrapolated remaining lifting time to be lower than remaining ex- trapolated driving time to load receiver. B3 Calculate required steering angle for perpendicular arrival at load receiver. Terminate this phase if within achievable limits. B4 Go to phase 2a (extension, continued straight driving until steering possible).
  • 10. 10 Paper 06 3.7 Validation With the operator model implemented, it can now be validated by running simulations with varying parameter setups and comparing to results from test series. In our work, both operator models have been tested by varying the machine’s techni- cal parameters. For instance, changing the machine’s torque converter to a weaker char- acteristics (as we also have done in our measurement series), leads to a slightly different operating style with in general higher engine speeds, since the operator adapts and quickly finds the necessary amount of gas pedal angle to control traction force. Exactly this phenomenon has also been shown to occur in our simulations, without any explicit coding of it (see Figure 4, results from first operator model). Figure 4. Engine load duty for machines with different torque converters (first model) [15] Figure 5. Adaptation to lifting speed (second model) [16] Another example is that of changed speed in the bucket’s lift hydraulics, emulating insufficient pump capacity. A human operator adapts to this by reversing farther with the wheel loader until finally driving forward to the load receiver to dump the bucket’s
  • 11. A Methodology… 11 load. This could also be demonstrated in our simulations without any modification of the operator model. Figure 5 shows traces from experiments with the second operator model (black curve with circular markings: lower lifting speed). 4 Conclusion and outlook With both presented operator models, a “human element” has been introduced to dy- namic multi-domain simulation of complete construction machinery. Both operator models have been derived from interview studies in a fairly straightforward manner. They prescribe the machine’s working cycle in a more generic way, independently of the machine’s technical parameters. Due to this, whole components or sub-systems can be changed in their characteristics without compromising the validity of the simulation. This gives more relevant answers with respect to total machine performance, productiv- ity, and fuel consumption. The results are satisfactory and the methodology is easily usable for other, similar situations. In the future, we will try to develop operator models with which a machine’s oper- ability can be predicted using simulation. As noted earlier, in automotive and aerospace simulations this is usually achieved by analyzing the control effort required to perform predefined maneuvers. A weighed, piece-wise analysis of prominent cycle phases (e.g. bucket filling, reversing and bucket emptying) might be a way forward. In order to validate any such simulations, we will also work with quantification of work load by simultaneously performing in-depth measurements on a wheel loader in operation and physiological measurements on the operator controlling the machine. References [1] Filla, R. (2005) “Operator and Machine Models for Dynamic Simulation of Con- struction Machinery”. Licentiate thesis, Department of Management and Engi- neering, Linköping University, Sweden. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-4092 [2] Vännström, J. and Lindholm, S. (2007) “Educational Interface for Reducing Fuel Consumption”. Master thesis, Luleå University of Technology, Luleå, Sweden. http://epubl.luth.se/1402-1617/2007/114/ [3] Zhang, R., Alleyne, A. G. and Carter, D. E. (2003) “Multivariable Control of an Earthmoving Vehicle Powertrain Experimentally Validated in an Emulated Work- ing Cycle”. Conference paper, ASME 2003 International Mechanical Engineering Congress and Exposition. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.133.7304 [4] Stener, P. and Snabb, R. (2008) ”Körbarhetskvantifiering av hjullastare”. Master thesis, Linköping University, Linköping, Sweden. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11148
  • 12. 12 Paper 06 [5] Boman, M. (2006) “On predicting fuel consumption and productivity of wheel loaders”. Master thesis, Luleå University of Technology, Luleå, Sweden. http://epubl.ltu.se/1402-1617/2006/009/ [6] Filla, R. (2003) “Anläggningsmaskiner: Hydrauliksystem i multidomäna miljöer”. Hydraulikdagar 2003, Linköping, Sweden. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-13371 [7] Gellersted, S. (2002) ”Manövrering av hjullastare (Operation of Wheel Loaders)”. Technical report, JTI – Institutet för jordbruks- och miljöteknik, Uppsala, Sweden. http://www.jti.se/index.php?page=publikationsinfo&publicationid=195&returnto=109 [8] Hemami, A. (1994) “Motion trajectory study in the scooping operation of an LHD-loader”. IEEE Transactions on Industry Applications, vol. 30, no. 5, Sept- Oct 1994, pp 1333-1338. http://dx.doi.org/10.1109/28.315248 [9] Wu, L. (2003) “A Study on Automatic Control of Wheel Loaders in Rock/Soil Loading”. Doctoral thesis, University of Arizona, Tucson, Arizona, USA. http://wwwlib.umi.com/dissertations/fullcit/3090033 [10] Macadam, C.C. (2003) “Understanding and Modeling the Human Driver”. Vehicle System Dynamics, vol. 40, pp 101-134. http://www.tandfonline.com/doi/abs/10.1076/vesd.40.1.101.15875 [11] Summala, H. (2000) “Automatization, automation, and modeling of driver’s be- havior”. Recherche – Transports – Sécurité, vol. 66, pp 35-46. http://dx.doi.org/10.1016/S0761-8980(00)80004-7 [12] Plöchl, M. and Edelmann, J. (2007) “Driver models in automobile dynamics ap- plication”. Vehicle System Dynamics, vol. 45, nos. 7-8, pp 699-741. http://dx.doi.org/10.1080/00423110701432482 [13] Bengtsson, J. (2001) “Adaptive Cruise Control and Driver Modeling”. Licentiate Thesis, Lunds Institute of Technology, Lund, Sweden. http://www.cs.clemson.edu/~johnmc/courses/cpsc875/resources/acc/6.pdf [14] Anderson, M. R., Clark and C., Dungan, G. (1995) “Flight test maneuver design using a skill- and rule-based pilot model”. Conference paper, IEEE International Conference on Intelligent Systems for the 21st Century, vol. 3, pp 2682-2687. http://dx.doi.org/10.1109/ICSMC.1995.538188 [15] Filla, R., Ericsson, A. and Palmberg, J.-O. (2005) “Dynamic Simulation of Con- struction Machinery: Towards an Operator Model”. IFPE 2005 Technical Confer- ence, Las Vegas (NV), USA, pp 429-438. http://www.arxiv.org/abs/cs.CE/0503087
  • 13. A Methodology… 13 [16] Filla, R. (2005) “An Event-driven Operator Model for Dynamic Simulation of Construction Machinery”. The Ninth Scandinavian International Conference on Fluid Power, Linköping, Sweden. http://www.arxiv.org/abs/cs.CE/0506033 (Internet links updated and verified on August 18, 2011)