SlideShare ist ein Scribd-Unternehmen logo
1 von 41
Downloaden Sie, um offline zu lesen
Deterministic Sampling
for
quantification of modeling uncertainty
– with application to
Dynamic Metrology
Jan Peter Hessling
Kapernicus AB
E-mail: peter(at)kapernicus.com
Tel.: +46 72 50 407 55
KAPERNICUS
My story…1991 – present
KAPERNICUS
●
M.Sc. (Swe) Applied Physics, Linköping Univ., Sweden
●
M.Sc. (Am.) Physics, Univ. of Massachusetts, USA:
Quantum Physics – Applied Math.
●
Ph.D. Theoretical Physics, Chalmers Univ. Sweden:
Superconductivity – Current fluct. in heterostructures (–1996)
●
STRI – ABB: Electrical Power Systems
– Voltage fluctuations from e-arc furnaces
●
ABB Corporate Research: Electrical power generation,
Windpower – Windformer park,…
●
Allgon Systems: Telecommunication – Microwave filters,
Tuning support microwave filters (software)
●
SP: Analysis of Dynamic Measurements
– Dynamic Metrology (2004–2011)
●
SP: Uncertain Scientific Modeling
– Deterministic Sampling Methods (2010-2015)
KAPERNICUS
“…And what is good, Phaedrus,
And what is not good –
Need we ask anyone to tell us these
things”
Robert M. Pirsig (1974), Zen and the art of motorcycle maintenance
KAPERNICUS
Applications
Ex. Meteorology – Weather forecasting
SMHI Ensemble forecasting http://www.smhi.se/en/publications/hydrological-
ensemble-forecasts-hydrologiska-ensembleprognoser-1.6763
KAPERNICUS
Ex. Medicine – Differential diagnosis of neurological disorders
Identification of dynamic models of error correction
KAPERNICUS
Normal,
Alzheimer, etc
Ex. Deterministic Sampling – Dynamic Metrology
'Spaghetti'-plot step response uncertain [sensor] model
0 2 0 4 0 6 0 8 0 1 0 0
0
0 .0 1
0 .0 2
0 .0 3
0 .0 4
0 .0 5
0 .0 6
S a m p le
Stepresponse
S t d M E
0 .0 5 M E
S t d M E - S t d M C - U
KAPERNICUS
0 .8 1
- 0 . 3
- 0 . 2
- 0 . 1
0
0 . 1
0 . 2
0 . 3
R e ( z )
Im(z)
Ex. Spaghettiplot Dynamic Metrology...
– A Selection of Deterministic Ensembles
Sigma-points (UKF):
Sampled poles of digital filter
KAPERNICUS
Hessling J.P., Deterministic Sampling for propagating model covariance,
SIAM/ASA J. Uncertainty Quantification, 1(1), 297–318, (2013):
Applications Deterministic Sampling
KAPERNICUS
•
Dynamic Metrology*
•
Signal Processing*
•
Nuclear power*
•
Medicine (models of timing)*
•
High speed electronic devices*
•
Automotive industry*
•
Fire safety simulations*
•
Meteorology*
•
Robust control systems MPC (Model Predictive Control)
•
Electrical Power Supply, ”Smart Grids” etc.
•
Aerospace industry
•
Safety of large infrastructures, bridges, towers, etc.
•
Econometrics
•
Financial budgets…
•
Stock markets
•
…
KAPERNICUS
Why?
Why sample deterministically and not randomly? (“like
everybody else...”)
Random sampling:
● Not efficient (large ensembles)
● Not reproducible (sampling variance)
KAPERNICUS
1 0
0
1 0
1
1 0
2
1 0
3
0
0 .5
1
1 .5
2
2 .5
A n ta l s a m p e l
P a r a m e t e r
D S
D S
M e a n M C
S td M C
M e a n
S td
1 0
0
1 0
1
1 0
2
1 0
3
6
8
1 0
1 2
1 4
1 6
1 8
2 0
2 2
2 4
2 6
A n ta l s a m p e l
M o d e l
D S
D S
M e a n M C
S td M C
M e a n L IN
S td L IN
 
 
 
 4.2,6.1
,4,3,2,,~
4.0,2,
2,1
)(
4



qqDS
qq
k
MC
qq
nkNq
qqh




DS: Deterministic Sampling
MC: Monte Carlo /
Random Sampling
Stratification, LHS, orthogonal sampling etc
effectively add determinism to random sampling...
KAPERNICUS
KAPERNICUS
Some methods of
deterministic
sampling
The BIG picture…
KAPERNICUS
1
3
2
[Direct] Uncertainty Quantification
Synthesis of deterministic ensembles
KAPERNICUS
1
● Match modeled and known mean and covariance
Consistent to second order
● Excitation matrix <=> Type of ensemble
 
ImVV
VImVV
VSUUh
USUhh
T
mT
Tm
T






ˆˆ
01ˆ,ˆˆ
ˆ1
,cov
1
1
2
21
Some excitation matrices / DS ensembles
̂V HAD =
(H H
H −H )
=
(1 1
1 −1)∗
(1 1
1 −1)...
 
  












































2221
1211
1
ˆˆ
ˆˆ
ˆ
1111
1111
1111
ˆ
11ˆ
ˆ
VV
VV
NV
V
InV
IInV
CMB
BIN
nnnSPX
nnnnSTD
KAPERNICUS
Sample Annealing
Numerical synthesis of deterministic ensembles
Match arbitrary set of statistical moments of ensemble
and parameters (known!):
● Parameter Ensemble
– Samples (Strongly non-linear)
– Weights (Linear!)
● Annealing idea:
– Iterate
– Generate trial sample displacements
– Evaluate weights against parameter statistics
– Penalize non-uniformity of weights – reject/accept trial
sample displacement
KAPERNICUS
KAPERNICUS
Ex. Annealing
Univariate lognormal distribution
Result
Mom Prop Direct Correct
M1 1.1288 1.1330 1.1330
M2 0.2911 0.3648 0.3648
M3 0.0564 0.3866 0.3866
Weights and ensemble
Propagated
0.2500 1.3151
0.2500 0.7599
0.2500 1.9190
0.2500 0.5212
Direct
0.3348 0.6874
0.3346 0.6698
0.3319 2.0276
-0.0013 -4.2718
y≡log(x)∼ N (μ=0,σ=0.5)
Inverse Uncertainty Quantification
– Identification of models
“All models are wrong, and to suppose that
inputs should always be set to their ‘true’
values when these are ‘known’ is to invest the
model with too much credibility in practice.
Treating a model more pragmatically, as
having inputs that we can ‘tweak’ empirically,
can increase its value and predictive power.”
KAPERNICUS
Kennedy, M. C., & O'Hagan, A. (2001). Bayesian calibration of computer models.
Journal of the Royal Statistical Society. Series B, Statistical Methodology, 425-464:
Sample Annealing revisited
– for inverse uncertainty quantification
Match set of statistical moments of
model prediction and calibration data:
● Model Ensemble (hypothetical model prediction)
– Fields of evaluated samples (Strongly non-linear)
– Weights (Linear!)
● Annealing idea:
– Iterate
– Generate trial sample displacements
– Evaluate model for each displaced sample
– Evaluate weights against calibration data
– Penalize non-uniformity of weights – reject/accept trial
sample displacementKAPERNICUS
Inverse Uncertainty Quantification /
Identification of model ensembles
2
Hessling J.P. (2014). Identification of complex models,
SIAM/ASA J. Uncertainty Quantification, 2(1), 717–744:
● Identification of parameter ensembles
(not best estimates)
● Fix point iteration of identification
=> match regression and sample points
● Bayesian inclusion of prior ensemble
● Complete information with maximum entropy
●
Consistent sampling to 2nd
order
● Ex. Wiener filter (predecessor to Kalman Filter)
KAPERNICUS
3
3
Hessling J.P. (2014). Identification of complex models,
SIAM/ASA J. Uncertainty Quantification, 2(1), 717–744:
Bayes rule for deterministic ensembles
● Bayes rule given for prob. distr. – not(!) deterministic ensembles:
● Solution (indirect)
– Complete information with principle of maximum entropy
(=> Gaussian pdf for 1st
and 2nd
order moments)
– Change representation from ensembles to pdf
– Apply Bayes rule
– Synthesize ensemble, i.e. change representation back
● NOTE: Prior information and derived information (Max Likelihood)
must be independent!
KAPERNICUS
P(Model∣Data)∝P(Data∣Model)P(Model )
- 0 .1 - 0 .0 5 0 0 .0 5 0 .1 0 .1 5 0 .2 0 .2 5
0 .7
0 .7 5
0 .8
0 .8 5
0 .9
0 .9 5
1
1 .0 5

( 1 )
1
= P R IO R
( : ,1 )

( 1 )
2
= 
P R IO R
( : ,2 ) 
( 1 )
3
= 
P R I O R
( : ,3 )

( 1 )
4
= 
P R IO R
( : ,4 )

P O S T
= 
( N )
1
2
T r u e
0 0 .5 1 1 .5
0
0 .2
0 .4
0 .6
0 .8
1
1 .2
1 .4
'F i e ld ' x
'Measured'/Priorpredictionh(x,)
C a l d a ta
+ 2 
- 2 
P o s t M o d e l E n s
0 0 .5 1 1 .5
- 0 .2
0
0 .2
0 .4
0 .6
0 .8
1
1 .2
'F i e ld ' x
'Measured'/Priorpredictionh(x,)
C a l d a ta
+ 2 
- 2 
P r i o r M o d e l E n s
   
  ?cov?,
sin,, 2121



 xxh
Hessling J.P. (2014). Identification of complex models,
SIAM/ASA J. Uncertainty Quantification, 2(1), 717–744:
Iterated identificaion – Toy model (Prelude)
ΣPRIOR →Ψ[1] →Σ[1] →Ψ[2]…→ΣPOST =ΨPOST
Hessling J.P. (2014). Identification of complex models, SIAM/ASA J.
Uncertainty Quantification, 2(1), 717–744:
– dramatic(!) effect of matching covariance for toy model
KAPERNICUS
Anti-correlate...
Even larger effect (std) for larger number of parameters!
Why?
Hessling J.P. (2014). Identification of complex models, SIAM/ASA J.
Uncertainty Quantification, 2(1), 717–744:
Example Inertial Navigator – Dynamic Metrology
KAPERNICUS
Ensemble of
Wiener filters
KAPERNICUS
Hessling J.P. (2014). Identification of complex models, SIAM/ASA J.
Uncertainty Quantification, 2(1), 717–744:
Example Inertial Navigator – Identified WF ensemble
KAPERNICUS
Hessling J.P. (2014). Identification of complex models, SIAM/ASA J.
Uncertainty Quantification, 2(1), 717–744:
Example Inertial Navigator – Convergence WF ensemble
KAPERNICUS
Hessling J.P. (2014). Identification of complex models, SIAM/ASA J.
Uncertainty Quantification, 2(1), 717–744:
Example Inertial Navigator – Identifiability
- 0 .5 - 0 .4 - 0 .3 - 0 .2 - 0 .1 0 0 .1 0 .2 0 .3 0 .4 0 .5
- 0 .5
- 0 .4
- 0 .3
- 0 .2
- 0 .1
0
0 .1
0 .2
0 .3
0 .4
0 .5
R e ( s )
Im(s)
p
r
p
x
p
x


2
/v
2
= 0 .1


2
/v
2
= 1 0 0
- 0 .5 - 0 .4 - 0 .3 - 0 .2 - 0 .1 0 0 .1 0 .2 0 .3 0 .4 0 .5
- 0 .5
- 0 .4
- 0 .3
- 0 .2
- 0 .1
0
0 .1
0 .2
0 .3
0 .4
0 .5
R e ( s )
Im(s)
p
r
p
x
p
x
w x
0 .1
w x
Nearly degenerate – fix one of them!
KAPERNICUS
Hessling J.P. (2014). Identification of complex models, SIAM/ASA J.
Uncertainty Quantification, 2(1), 717–744:
Example Inertial Navigator – Residual analysis
0 5 1 0 1 5 2 0 2 5 3 0
- 1
- 0 .8
- 0 .6
- 0 .4
- 0 .2
0
0 .2
0 .4
0 .6
0 .8
1
L a g ( s a m p le s )
1  s t d ( c
u
( 
[ 0 ]
) ) - 1
1 0 0  s t d ( c
u
( [ 2 2 ]
) ) - 1
m e a n ( c y
( [2 2 ]
) )
m e a n ( c u
( [0 ]
) )
m e a n ( c u
( [2 2 ]
) )
0 5 1 0 1 5 2 0 2 5 3 0
- 2
- 1
0
1
2
3
4
x 1 0
- 3
L a g ( s a m p le s )
m e a n ( c
x
( [2 2 ]
) )
s td ( c
x
( [2 2 ]
) )  1 0 0
Autocorrelation of residual Autocorrelation of innovation
NOTE: Uncertain model=Ensemble of Wiener filters => Mean and Std
Advanced application of deterministic sampling
Medicine: Model of error correction (revisited)
Metronome
Challenge: Medicine Model of error correction
Deterministic sampling of sampling covariance!
KAPERNICUS
Std > Mean !
R.A. Fisher says:
“Acov insignificant!”
KAPERNICUS
Foundations
Relevance of modeling
KAPERNICUS
● Deterministic sampling
– Approximates(?) less well known statistical information
– Respects reliable structure of models
with minimal use of surrogates
● Scalable
– How many samples can be afforded?
● High efficiency enables
– Identification of complex models
– Iterative identification
– Illustrate credibility of uncertainty, i.e.
“the uncertainty of the uncertainty”
(using alternative ensembles)
– ???
Fact: Statistical information often incomplete
● Statistical moment – hierarchy of info
● 1: Mean – 'center'
● 2: Variance – 'variation'
● 1-1: Covariance – 'low order dependency'
● 3: Skew – 'asymmetry'
● 1-2,1-1-1: Skew – 'asymmetry of dependency'
● 4: Kurtosis – 'shape' [of distr]
● 1-2-1,1-1-1-1,...: …
● Not knowing is not knowing – not zero!!!
KAPERNICUS
Asym pdf
Sym pdf
Common...
But inconsistent!
Consistent statistical modeling
Representations of information
KAPERNICUS
● Parametric uncertainty
– Probability density / distribution functions
– Statistical moments (mean, std, cov, skew, kurt,..)
– Finite ensembles (approx.)
● Random (not reprod. - sampling variance)
● Deterministic
● Structural information
– Model equations
– Uncertainty difficult – alt. models?
Concept of representation – compare Fourier series...
Monte
Carlo
Uncertain models
KAPERNICUS
● Conventional
– Best estimate
– Associate uncertainty to best estimate
● Uncertain models:
– Best (aspects of interest) representation of
● Prior information
● Observations/measurement
– Not knowing [covariance] = not of interest, not zero!
● Propagation of uncertainty (Symmetry! => annealing)
– DUQ: Model => Prediction
– IUQ: Observation => Model
Identifiability of deterministic ensembles
● Global identifiability of certain model
● Identifiability of model ensemble
● is expressed in testable information and entails
identifiability of parameter ensemble
● which requires a given excitation matrix
KAPERNICUS
Optimal uncertain modeling
● “The more constraints – the worse model fit”
● Model represents known info
do not describe the 'truth'
● Conflict of assigned correlations:
– Uncorrelated measurement noise
– Correlated model output
=> Exceedingly low model uncertainty
=> Unwarranted confidence in prediction
● Only match covariance if known!
KAPERNICUS
Publications
Book chapters (freely downloadable from www.intechopen.com)
1. Deterministic sampling
Hessling J P, Deterministic sampling for Quantification of Modeling Uncertainty of
Signals in Digital Filters and Signal Processing, ISBN 978-953-51-0871-9 (INTECH,
2013)
2. Digital Filters and deterministic sampling
Hessling J P, Integration of digital filters and measurements in Digital Filters, ISBN
978-953-307-190-9 (INTECH, 2011)
3. Dynamic Metrology
Hessling J P, Metrology for non-stationary dynamic measurements in Advances in
Measurement systems, ISBN 978-953-307-061-2 (INTECH, 2010)
Journal articles, see author (Jan Peter Hessling) page on Google scholar
KAPERNICUS
KAPERNICUS
!
Summary
●
Deterministic sampling
– Uncertainty Quantification/Ident. of [complex] models
– Motivation, comparison to random sampling
– Applications
– Selection of methods and 'tricks'
– Foundations
● Dynamic Metrology
– Analysis of dynamic measurements
– Application of deterministic sampling
KAPERNICUS

Weitere ähnliche Inhalte

Was ist angesagt?

solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...Sohar Carr
 
Novel unified finite element schemes for computational solid mechanics based ...
Novel unified finite element schemes for computational solid mechanics based ...Novel unified finite element schemes for computational solid mechanics based ...
Novel unified finite element schemes for computational solid mechanics based ...CHENNAKESAVA KADAPA
 
Problemas resueltos rozamiento
Problemas resueltos rozamientoProblemas resueltos rozamiento
Problemas resueltos rozamientoPablo Rivas
 
Capitulo 2 SOlucionario libro Estatica
Capitulo 2 SOlucionario libro EstaticaCapitulo 2 SOlucionario libro Estatica
Capitulo 2 SOlucionario libro EstaticaUO
 
Crimson Publishers-Electro Magneto Elastic Actuator for Nanotechnology and Bi...
Crimson Publishers-Electro Magneto Elastic Actuator for Nanotechnology and Bi...Crimson Publishers-Electro Magneto Elastic Actuator for Nanotechnology and Bi...
Crimson Publishers-Electro Magneto Elastic Actuator for Nanotechnology and Bi...CrimsonPublishersMAPP
 
Smart Systems for Urban Water Demand Management
Smart Systems for Urban Water Demand ManagementSmart Systems for Urban Water Demand Management
Smart Systems for Urban Water Demand ManagementPantelis Sopasakis
 
Cap 03
Cap 03Cap 03
Cap 03UO
 
Solucion ejercicios beer
Solucion ejercicios beerSolucion ejercicios beer
Solucion ejercicios beerLeomari Garcia
 
Kinetics kinematics
Kinetics kinematicsKinetics kinematics
Kinetics kinematicsshanth_95
 
Capitulo 6 estatica
Capitulo 6 estaticaCapitulo 6 estatica
Capitulo 6 estaticaOscar Ferrer
 
Capitulo 12
Capitulo 12Capitulo 12
Capitulo 12vimacive
 
Energy principle in structure analysis in civil engineering
Energy principle in structure analysis in civil engineeringEnergy principle in structure analysis in civil engineering
Energy principle in structure analysis in civil engineeringNagma Modi
 
Control of Discrete-Time Piecewise Affine Probabilistic Systems using Reachab...
Control of Discrete-Time Piecewise Affine Probabilistic Systems using Reachab...Control of Discrete-Time Piecewise Affine Probabilistic Systems using Reachab...
Control of Discrete-Time Piecewise Affine Probabilistic Systems using Reachab...Leo Asselborn
 

Was ist angesagt? (18)

solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
 
Novel unified finite element schemes for computational solid mechanics based ...
Novel unified finite element schemes for computational solid mechanics based ...Novel unified finite element schemes for computational solid mechanics based ...
Novel unified finite element schemes for computational solid mechanics based ...
 
Problemas resueltos rozamiento
Problemas resueltos rozamientoProblemas resueltos rozamiento
Problemas resueltos rozamiento
 
GDRR Opening Workshop - Variance Reduction for Reliability Assessment with St...
GDRR Opening Workshop - Variance Reduction for Reliability Assessment with St...GDRR Opening Workshop - Variance Reduction for Reliability Assessment with St...
GDRR Opening Workshop - Variance Reduction for Reliability Assessment with St...
 
Capitulo 2 SOlucionario libro Estatica
Capitulo 2 SOlucionario libro EstaticaCapitulo 2 SOlucionario libro Estatica
Capitulo 2 SOlucionario libro Estatica
 
Crimson Publishers-Electro Magneto Elastic Actuator for Nanotechnology and Bi...
Crimson Publishers-Electro Magneto Elastic Actuator for Nanotechnology and Bi...Crimson Publishers-Electro Magneto Elastic Actuator for Nanotechnology and Bi...
Crimson Publishers-Electro Magneto Elastic Actuator for Nanotechnology and Bi...
 
Smart Systems for Urban Water Demand Management
Smart Systems for Urban Water Demand ManagementSmart Systems for Urban Water Demand Management
Smart Systems for Urban Water Demand Management
 
Cap 03
Cap 03Cap 03
Cap 03
 
Solucion ejercicios beer
Solucion ejercicios beerSolucion ejercicios beer
Solucion ejercicios beer
 
Kinetics kinematics
Kinetics kinematicsKinetics kinematics
Kinetics kinematics
 
Capitulo 6 estatica
Capitulo 6 estaticaCapitulo 6 estatica
Capitulo 6 estatica
 
Sol cap 10 edicion 8
Sol cap 10   edicion 8Sol cap 10   edicion 8
Sol cap 10 edicion 8
 
Capitulo 12
Capitulo 12Capitulo 12
Capitulo 12
 
BEER Cap 05 Solucionario
BEER Cap 05 SolucionarioBEER Cap 05 Solucionario
BEER Cap 05 Solucionario
 
Energy principle in structure analysis in civil engineering
Energy principle in structure analysis in civil engineeringEnergy principle in structure analysis in civil engineering
Energy principle in structure analysis in civil engineering
 
Control of Discrete-Time Piecewise Affine Probabilistic Systems using Reachab...
Control of Discrete-Time Piecewise Affine Probabilistic Systems using Reachab...Control of Discrete-Time Piecewise Affine Probabilistic Systems using Reachab...
Control of Discrete-Time Piecewise Affine Probabilistic Systems using Reachab...
 
Slides mevt
Slides mevtSlides mevt
Slides mevt
 
Dynamics of wind & marine turbines
Dynamics of wind & marine turbinesDynamics of wind & marine turbines
Dynamics of wind & marine turbines
 

Andere mochten auch

Measurement System Analysis
Measurement System AnalysisMeasurement System Analysis
Measurement System AnalysisRonald Shewchuk
 
Mmm lab manual_10_mel47b
Mmm lab manual_10_mel47bMmm lab manual_10_mel47b
Mmm lab manual_10_mel47bDr B Sudarshan
 
Static characteristics in mechanical measurements & metrology
Static characteristics in mechanical measurements & metrologyStatic characteristics in mechanical measurements & metrology
Static characteristics in mechanical measurements & metrologyChirag Solanki
 
Mechanical Measurement & Metrology - Surface finish.
Mechanical Measurement & Metrology - Surface finish.Mechanical Measurement & Metrology - Surface finish.
Mechanical Measurement & Metrology - Surface finish.Darshan Panchal
 
Statistical Quality Control.
Statistical Quality Control.Statistical Quality Control.
Statistical Quality Control.Raviraj Jadeja
 

Andere mochten auch (8)

Measurement System Analysis
Measurement System AnalysisMeasurement System Analysis
Measurement System Analysis
 
Metrology Assignment
Metrology AssignmentMetrology Assignment
Metrology Assignment
 
Mmm lab manual_10_mel47b
Mmm lab manual_10_mel47bMmm lab manual_10_mel47b
Mmm lab manual_10_mel47b
 
Static characteristics in mechanical measurements & metrology
Static characteristics in mechanical measurements & metrologyStatic characteristics in mechanical measurements & metrology
Static characteristics in mechanical measurements & metrology
 
Introduction to Metrology
Introduction to MetrologyIntroduction to Metrology
Introduction to Metrology
 
Mechanical Measurement & Metrology - Surface finish.
Mechanical Measurement & Metrology - Surface finish.Mechanical Measurement & Metrology - Surface finish.
Mechanical Measurement & Metrology - Surface finish.
 
Metrology and Measuremenrt
Metrology and MeasuremenrtMetrology and Measuremenrt
Metrology and Measuremenrt
 
Statistical Quality Control.
Statistical Quality Control.Statistical Quality Control.
Statistical Quality Control.
 

Ähnlich wie kape_science

Dynamics of structures with uncertainties
Dynamics of structures with uncertaintiesDynamics of structures with uncertainties
Dynamics of structures with uncertaintiesUniversity of Glasgow
 
Bayesian modelling and computation for Raman spectroscopy
Bayesian modelling and computation for Raman spectroscopyBayesian modelling and computation for Raman spectroscopy
Bayesian modelling and computation for Raman spectroscopyMatt Moores
 
Automated Generation of High-accuracy Interatomic Potentials Using Quantum Data
Automated Generation of High-accuracy Interatomic Potentials Using Quantum DataAutomated Generation of High-accuracy Interatomic Potentials Using Quantum Data
Automated Generation of High-accuracy Interatomic Potentials Using Quantum Dataaimsnist
 
Getting started with chemometric classification
Getting started with chemometric classificationGetting started with chemometric classification
Getting started with chemometric classificationAlex Henderson
 
Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...
Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...
Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...Amro Elfeki
 
Manish Kurse PhD research slides
Manish Kurse PhD research slidesManish Kurse PhD research slides
Manish Kurse PhD research slidesmanishkurse
 
Analysis of RT variability
Analysis of RT variabilityAnalysis of RT variability
Analysis of RT variabilityRaoul
 
SPIE 2009 - "Efficient Parameter Estimation Techniques for Hysteresis Models"...
SPIE 2009 - "Efficient Parameter Estimation Techniques for Hysteresis Models"...SPIE 2009 - "Efficient Parameter Estimation Techniques for Hysteresis Models"...
SPIE 2009 - "Efficient Parameter Estimation Techniques for Hysteresis Models"...Jon Ernstberger
 
FUNCTION OF RIVAL SIMILARITY IN A COGNITIVE DATA ANALYSIS
FUNCTION OF RIVAL SIMILARITY IN A COGNITIVE DATA ANALYSISFUNCTION OF RIVAL SIMILARITY IN A COGNITIVE DATA ANALYSIS
FUNCTION OF RIVAL SIMILARITY IN A COGNITIVE DATA ANALYSISIrene Pochinok
 
Myers_SIAMCSE15
Myers_SIAMCSE15Myers_SIAMCSE15
Myers_SIAMCSE15Karen Pao
 
The Challenges of Probabilistic Thinking (keynote talk at ICFEM 2017)
The Challenges of Probabilistic Thinking (keynote talk at ICFEM 2017)The Challenges of Probabilistic Thinking (keynote talk at ICFEM 2017)
The Challenges of Probabilistic Thinking (keynote talk at ICFEM 2017)David Rosenblum
 
a brief introduction to epistasis detection
a brief introduction to epistasis detectiona brief introduction to epistasis detection
a brief introduction to epistasis detectionHyun-hwan Jeong
 
Thesis defense improved
Thesis defense improvedThesis defense improved
Thesis defense improvedZheng Mengdi
 

Ähnlich wie kape_science (20)

23AFMC_Beamer.pdf
23AFMC_Beamer.pdf23AFMC_Beamer.pdf
23AFMC_Beamer.pdf
 
Dynamics of structures with uncertainties
Dynamics of structures with uncertaintiesDynamics of structures with uncertainties
Dynamics of structures with uncertainties
 
Bayesian modelling and computation for Raman spectroscopy
Bayesian modelling and computation for Raman spectroscopyBayesian modelling and computation for Raman spectroscopy
Bayesian modelling and computation for Raman spectroscopy
 
Automated Generation of High-accuracy Interatomic Potentials Using Quantum Data
Automated Generation of High-accuracy Interatomic Potentials Using Quantum DataAutomated Generation of High-accuracy Interatomic Potentials Using Quantum Data
Automated Generation of High-accuracy Interatomic Potentials Using Quantum Data
 
Getting started with chemometric classification
Getting started with chemometric classificationGetting started with chemometric classification
Getting started with chemometric classification
 
Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...
Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...
Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...
 
Estimating Space-Time Covariance from Finite Sample Sets
Estimating Space-Time Covariance from Finite Sample SetsEstimating Space-Time Covariance from Finite Sample Sets
Estimating Space-Time Covariance from Finite Sample Sets
 
Manish Kurse PhD research slides
Manish Kurse PhD research slidesManish Kurse PhD research slides
Manish Kurse PhD research slides
 
Analysis of RT variability
Analysis of RT variabilityAnalysis of RT variability
Analysis of RT variability
 
Statistical Physics Studies of Machine Learning Problems by Lenka Zdeborova, ...
Statistical Physics Studies of Machine Learning Problems by Lenka Zdeborova, ...Statistical Physics Studies of Machine Learning Problems by Lenka Zdeborova, ...
Statistical Physics Studies of Machine Learning Problems by Lenka Zdeborova, ...
 
Lecture 3 sapienza 2017
Lecture 3 sapienza 2017Lecture 3 sapienza 2017
Lecture 3 sapienza 2017
 
SPIE 2009 - "Efficient Parameter Estimation Techniques for Hysteresis Models"...
SPIE 2009 - "Efficient Parameter Estimation Techniques for Hysteresis Models"...SPIE 2009 - "Efficient Parameter Estimation Techniques for Hysteresis Models"...
SPIE 2009 - "Efficient Parameter Estimation Techniques for Hysteresis Models"...
 
FUNCTION OF RIVAL SIMILARITY IN A COGNITIVE DATA ANALYSIS
FUNCTION OF RIVAL SIMILARITY IN A COGNITIVE DATA ANALYSISFUNCTION OF RIVAL SIMILARITY IN A COGNITIVE DATA ANALYSIS
FUNCTION OF RIVAL SIMILARITY IN A COGNITIVE DATA ANALYSIS
 
MUMS: Transition & SPUQ Workshop - Some Strategies to Quantify Uncertainty fo...
MUMS: Transition & SPUQ Workshop - Some Strategies to Quantify Uncertainty fo...MUMS: Transition & SPUQ Workshop - Some Strategies to Quantify Uncertainty fo...
MUMS: Transition & SPUQ Workshop - Some Strategies to Quantify Uncertainty fo...
 
Myers_SIAMCSE15
Myers_SIAMCSE15Myers_SIAMCSE15
Myers_SIAMCSE15
 
1789 1800
1789 18001789 1800
1789 1800
 
1789 1800
1789 18001789 1800
1789 1800
 
The Challenges of Probabilistic Thinking (keynote talk at ICFEM 2017)
The Challenges of Probabilistic Thinking (keynote talk at ICFEM 2017)The Challenges of Probabilistic Thinking (keynote talk at ICFEM 2017)
The Challenges of Probabilistic Thinking (keynote talk at ICFEM 2017)
 
a brief introduction to epistasis detection
a brief introduction to epistasis detectiona brief introduction to epistasis detection
a brief introduction to epistasis detection
 
Thesis defense improved
Thesis defense improvedThesis defense improved
Thesis defense improved
 

Mehr von Kapernicus AB

The incommensurability of numbers
The incommensurability of numbersThe incommensurability of numbers
The incommensurability of numbersKapernicus AB
 
Con artistry in predictive science
Con artistry in predictive scienceCon artistry in predictive science
Con artistry in predictive scienceKapernicus AB
 
Publications by Kapernicus
Publications by KapernicusPublications by Kapernicus
Publications by KapernicusKapernicus AB
 
Risk study of vibrations in buses, report Gothenburg_2
Risk study of vibrations in buses, report Gothenburg_2Risk study of vibrations in buses, report Gothenburg_2
Risk study of vibrations in buses, report Gothenburg_2Kapernicus AB
 
Risk study of vibrations in buses, report Gothenburg_1
Risk study of vibrations in buses, report Gothenburg_1Risk study of vibrations in buses, report Gothenburg_1
Risk study of vibrations in buses, report Gothenburg_1Kapernicus AB
 

Mehr von Kapernicus AB (6)

The incommensurability of numbers
The incommensurability of numbersThe incommensurability of numbers
The incommensurability of numbers
 
Con artistry in predictive science
Con artistry in predictive scienceCon artistry in predictive science
Con artistry in predictive science
 
Bungee jumping
Bungee jumpingBungee jumping
Bungee jumping
 
Publications by Kapernicus
Publications by KapernicusPublications by Kapernicus
Publications by Kapernicus
 
Risk study of vibrations in buses, report Gothenburg_2
Risk study of vibrations in buses, report Gothenburg_2Risk study of vibrations in buses, report Gothenburg_2
Risk study of vibrations in buses, report Gothenburg_2
 
Risk study of vibrations in buses, report Gothenburg_1
Risk study of vibrations in buses, report Gothenburg_1Risk study of vibrations in buses, report Gothenburg_1
Risk study of vibrations in buses, report Gothenburg_1
 

kape_science

  • 1. Deterministic Sampling for quantification of modeling uncertainty – with application to Dynamic Metrology Jan Peter Hessling Kapernicus AB E-mail: peter(at)kapernicus.com Tel.: +46 72 50 407 55 KAPERNICUS
  • 2. My story…1991 – present KAPERNICUS ● M.Sc. (Swe) Applied Physics, Linköping Univ., Sweden ● M.Sc. (Am.) Physics, Univ. of Massachusetts, USA: Quantum Physics – Applied Math. ● Ph.D. Theoretical Physics, Chalmers Univ. Sweden: Superconductivity – Current fluct. in heterostructures (–1996) ● STRI – ABB: Electrical Power Systems – Voltage fluctuations from e-arc furnaces ● ABB Corporate Research: Electrical power generation, Windpower – Windformer park,… ● Allgon Systems: Telecommunication – Microwave filters, Tuning support microwave filters (software) ● SP: Analysis of Dynamic Measurements – Dynamic Metrology (2004–2011) ● SP: Uncertain Scientific Modeling – Deterministic Sampling Methods (2010-2015)
  • 3. KAPERNICUS “…And what is good, Phaedrus, And what is not good – Need we ask anyone to tell us these things” Robert M. Pirsig (1974), Zen and the art of motorcycle maintenance
  • 5. Ex. Meteorology – Weather forecasting SMHI Ensemble forecasting http://www.smhi.se/en/publications/hydrological- ensemble-forecasts-hydrologiska-ensembleprognoser-1.6763 KAPERNICUS
  • 6. Ex. Medicine – Differential diagnosis of neurological disorders Identification of dynamic models of error correction KAPERNICUS Normal, Alzheimer, etc
  • 7. Ex. Deterministic Sampling – Dynamic Metrology 'Spaghetti'-plot step response uncertain [sensor] model 0 2 0 4 0 6 0 8 0 1 0 0 0 0 .0 1 0 .0 2 0 .0 3 0 .0 4 0 .0 5 0 .0 6 S a m p le Stepresponse S t d M E 0 .0 5 M E S t d M E - S t d M C - U KAPERNICUS
  • 8. 0 .8 1 - 0 . 3 - 0 . 2 - 0 . 1 0 0 . 1 0 . 2 0 . 3 R e ( z ) Im(z) Ex. Spaghettiplot Dynamic Metrology... – A Selection of Deterministic Ensembles Sigma-points (UKF): Sampled poles of digital filter KAPERNICUS Hessling J.P., Deterministic Sampling for propagating model covariance, SIAM/ASA J. Uncertainty Quantification, 1(1), 297–318, (2013):
  • 9. Applications Deterministic Sampling KAPERNICUS • Dynamic Metrology* • Signal Processing* • Nuclear power* • Medicine (models of timing)* • High speed electronic devices* • Automotive industry* • Fire safety simulations* • Meteorology* • Robust control systems MPC (Model Predictive Control) • Electrical Power Supply, ”Smart Grids” etc. • Aerospace industry • Safety of large infrastructures, bridges, towers, etc. • Econometrics • Financial budgets… • Stock markets • …
  • 11. Why sample deterministically and not randomly? (“like everybody else...”) Random sampling: ● Not efficient (large ensembles) ● Not reproducible (sampling variance) KAPERNICUS 1 0 0 1 0 1 1 0 2 1 0 3 0 0 .5 1 1 .5 2 2 .5 A n ta l s a m p e l P a r a m e t e r D S D S M e a n M C S td M C M e a n S td 1 0 0 1 0 1 1 0 2 1 0 3 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6 A n ta l s a m p e l M o d e l D S D S M e a n M C S td M C M e a n L IN S td L IN        4.2,6.1 ,4,3,2,,~ 4.0,2, 2,1 )( 4    qqDS qq k MC qq nkNq qqh     DS: Deterministic Sampling MC: Monte Carlo / Random Sampling
  • 12. Stratification, LHS, orthogonal sampling etc effectively add determinism to random sampling... KAPERNICUS
  • 15. [Direct] Uncertainty Quantification Synthesis of deterministic ensembles KAPERNICUS 1 ● Match modeled and known mean and covariance Consistent to second order ● Excitation matrix <=> Type of ensemble   ImVV VImVV VSUUh USUhh T mT Tm T       ˆˆ 01ˆ,ˆˆ ˆ1 ,cov 1 1 2 21
  • 16. Some excitation matrices / DS ensembles ̂V HAD = (H H H −H ) = (1 1 1 −1)∗ (1 1 1 −1)...                                                  2221 1211 1 ˆˆ ˆˆ ˆ 1111 1111 1111 ˆ 11ˆ ˆ VV VV NV V InV IInV CMB BIN nnnSPX nnnnSTD KAPERNICUS
  • 17. Sample Annealing Numerical synthesis of deterministic ensembles Match arbitrary set of statistical moments of ensemble and parameters (known!): ● Parameter Ensemble – Samples (Strongly non-linear) – Weights (Linear!) ● Annealing idea: – Iterate – Generate trial sample displacements – Evaluate weights against parameter statistics – Penalize non-uniformity of weights – reject/accept trial sample displacement KAPERNICUS
  • 18. KAPERNICUS Ex. Annealing Univariate lognormal distribution Result Mom Prop Direct Correct M1 1.1288 1.1330 1.1330 M2 0.2911 0.3648 0.3648 M3 0.0564 0.3866 0.3866 Weights and ensemble Propagated 0.2500 1.3151 0.2500 0.7599 0.2500 1.9190 0.2500 0.5212 Direct 0.3348 0.6874 0.3346 0.6698 0.3319 2.0276 -0.0013 -4.2718 y≡log(x)∼ N (μ=0,σ=0.5)
  • 19. Inverse Uncertainty Quantification – Identification of models “All models are wrong, and to suppose that inputs should always be set to their ‘true’ values when these are ‘known’ is to invest the model with too much credibility in practice. Treating a model more pragmatically, as having inputs that we can ‘tweak’ empirically, can increase its value and predictive power.” KAPERNICUS Kennedy, M. C., & O'Hagan, A. (2001). Bayesian calibration of computer models. Journal of the Royal Statistical Society. Series B, Statistical Methodology, 425-464:
  • 20. Sample Annealing revisited – for inverse uncertainty quantification Match set of statistical moments of model prediction and calibration data: ● Model Ensemble (hypothetical model prediction) – Fields of evaluated samples (Strongly non-linear) – Weights (Linear!) ● Annealing idea: – Iterate – Generate trial sample displacements – Evaluate model for each displaced sample – Evaluate weights against calibration data – Penalize non-uniformity of weights – reject/accept trial sample displacementKAPERNICUS
  • 21. Inverse Uncertainty Quantification / Identification of model ensembles 2 Hessling J.P. (2014). Identification of complex models, SIAM/ASA J. Uncertainty Quantification, 2(1), 717–744: ● Identification of parameter ensembles (not best estimates) ● Fix point iteration of identification => match regression and sample points ● Bayesian inclusion of prior ensemble ● Complete information with maximum entropy ● Consistent sampling to 2nd order ● Ex. Wiener filter (predecessor to Kalman Filter) KAPERNICUS 3
  • 22. 3 Hessling J.P. (2014). Identification of complex models, SIAM/ASA J. Uncertainty Quantification, 2(1), 717–744: Bayes rule for deterministic ensembles ● Bayes rule given for prob. distr. – not(!) deterministic ensembles: ● Solution (indirect) – Complete information with principle of maximum entropy (=> Gaussian pdf for 1st and 2nd order moments) – Change representation from ensembles to pdf – Apply Bayes rule – Synthesize ensemble, i.e. change representation back ● NOTE: Prior information and derived information (Max Likelihood) must be independent! KAPERNICUS P(Model∣Data)∝P(Data∣Model)P(Model )
  • 23. - 0 .1 - 0 .0 5 0 0 .0 5 0 .1 0 .1 5 0 .2 0 .2 5 0 .7 0 .7 5 0 .8 0 .8 5 0 .9 0 .9 5 1 1 .0 5  ( 1 ) 1 = P R IO R ( : ,1 )  ( 1 ) 2 =  P R IO R ( : ,2 )  ( 1 ) 3 =  P R I O R ( : ,3 )  ( 1 ) 4 =  P R IO R ( : ,4 )  P O S T =  ( N ) 1 2 T r u e 0 0 .5 1 1 .5 0 0 .2 0 .4 0 .6 0 .8 1 1 .2 1 .4 'F i e ld ' x 'Measured'/Priorpredictionh(x,) C a l d a ta + 2  - 2  P o s t M o d e l E n s 0 0 .5 1 1 .5 - 0 .2 0 0 .2 0 .4 0 .6 0 .8 1 1 .2 'F i e ld ' x 'Measured'/Priorpredictionh(x,) C a l d a ta + 2  - 2  P r i o r M o d e l E n s       ?cov?, sin,, 2121     xxh Hessling J.P. (2014). Identification of complex models, SIAM/ASA J. Uncertainty Quantification, 2(1), 717–744: Iterated identificaion – Toy model (Prelude) ΣPRIOR →Ψ[1] →Σ[1] →Ψ[2]…→ΣPOST =ΨPOST
  • 24. Hessling J.P. (2014). Identification of complex models, SIAM/ASA J. Uncertainty Quantification, 2(1), 717–744: – dramatic(!) effect of matching covariance for toy model KAPERNICUS Anti-correlate... Even larger effect (std) for larger number of parameters! Why?
  • 25. Hessling J.P. (2014). Identification of complex models, SIAM/ASA J. Uncertainty Quantification, 2(1), 717–744: Example Inertial Navigator – Dynamic Metrology KAPERNICUS Ensemble of Wiener filters
  • 26. KAPERNICUS Hessling J.P. (2014). Identification of complex models, SIAM/ASA J. Uncertainty Quantification, 2(1), 717–744: Example Inertial Navigator – Identified WF ensemble
  • 27. KAPERNICUS Hessling J.P. (2014). Identification of complex models, SIAM/ASA J. Uncertainty Quantification, 2(1), 717–744: Example Inertial Navigator – Convergence WF ensemble
  • 28. KAPERNICUS Hessling J.P. (2014). Identification of complex models, SIAM/ASA J. Uncertainty Quantification, 2(1), 717–744: Example Inertial Navigator – Identifiability - 0 .5 - 0 .4 - 0 .3 - 0 .2 - 0 .1 0 0 .1 0 .2 0 .3 0 .4 0 .5 - 0 .5 - 0 .4 - 0 .3 - 0 .2 - 0 .1 0 0 .1 0 .2 0 .3 0 .4 0 .5 R e ( s ) Im(s) p r p x p x   2 /v 2 = 0 .1   2 /v 2 = 1 0 0 - 0 .5 - 0 .4 - 0 .3 - 0 .2 - 0 .1 0 0 .1 0 .2 0 .3 0 .4 0 .5 - 0 .5 - 0 .4 - 0 .3 - 0 .2 - 0 .1 0 0 .1 0 .2 0 .3 0 .4 0 .5 R e ( s ) Im(s) p r p x p x w x 0 .1 w x Nearly degenerate – fix one of them!
  • 29. KAPERNICUS Hessling J.P. (2014). Identification of complex models, SIAM/ASA J. Uncertainty Quantification, 2(1), 717–744: Example Inertial Navigator – Residual analysis 0 5 1 0 1 5 2 0 2 5 3 0 - 1 - 0 .8 - 0 .6 - 0 .4 - 0 .2 0 0 .2 0 .4 0 .6 0 .8 1 L a g ( s a m p le s ) 1  s t d ( c u (  [ 0 ] ) ) - 1 1 0 0  s t d ( c u ( [ 2 2 ] ) ) - 1 m e a n ( c y ( [2 2 ] ) ) m e a n ( c u ( [0 ] ) ) m e a n ( c u ( [2 2 ] ) ) 0 5 1 0 1 5 2 0 2 5 3 0 - 2 - 1 0 1 2 3 4 x 1 0 - 3 L a g ( s a m p le s ) m e a n ( c x ( [2 2 ] ) ) s td ( c x ( [2 2 ] ) )  1 0 0 Autocorrelation of residual Autocorrelation of innovation NOTE: Uncertain model=Ensemble of Wiener filters => Mean and Std
  • 30. Advanced application of deterministic sampling Medicine: Model of error correction (revisited) Metronome
  • 31. Challenge: Medicine Model of error correction Deterministic sampling of sampling covariance! KAPERNICUS Std > Mean ! R.A. Fisher says: “Acov insignificant!”
  • 33. Relevance of modeling KAPERNICUS ● Deterministic sampling – Approximates(?) less well known statistical information – Respects reliable structure of models with minimal use of surrogates ● Scalable – How many samples can be afforded? ● High efficiency enables – Identification of complex models – Iterative identification – Illustrate credibility of uncertainty, i.e. “the uncertainty of the uncertainty” (using alternative ensembles) – ???
  • 34. Fact: Statistical information often incomplete ● Statistical moment – hierarchy of info ● 1: Mean – 'center' ● 2: Variance – 'variation' ● 1-1: Covariance – 'low order dependency' ● 3: Skew – 'asymmetry' ● 1-2,1-1-1: Skew – 'asymmetry of dependency' ● 4: Kurtosis – 'shape' [of distr] ● 1-2-1,1-1-1-1,...: … ● Not knowing is not knowing – not zero!!! KAPERNICUS Asym pdf Sym pdf Common... But inconsistent! Consistent statistical modeling
  • 35. Representations of information KAPERNICUS ● Parametric uncertainty – Probability density / distribution functions – Statistical moments (mean, std, cov, skew, kurt,..) – Finite ensembles (approx.) ● Random (not reprod. - sampling variance) ● Deterministic ● Structural information – Model equations – Uncertainty difficult – alt. models? Concept of representation – compare Fourier series... Monte Carlo
  • 36. Uncertain models KAPERNICUS ● Conventional – Best estimate – Associate uncertainty to best estimate ● Uncertain models: – Best (aspects of interest) representation of ● Prior information ● Observations/measurement – Not knowing [covariance] = not of interest, not zero! ● Propagation of uncertainty (Symmetry! => annealing) – DUQ: Model => Prediction – IUQ: Observation => Model
  • 37. Identifiability of deterministic ensembles ● Global identifiability of certain model ● Identifiability of model ensemble ● is expressed in testable information and entails identifiability of parameter ensemble ● which requires a given excitation matrix KAPERNICUS
  • 38. Optimal uncertain modeling ● “The more constraints – the worse model fit” ● Model represents known info do not describe the 'truth' ● Conflict of assigned correlations: – Uncorrelated measurement noise – Correlated model output => Exceedingly low model uncertainty => Unwarranted confidence in prediction ● Only match covariance if known! KAPERNICUS
  • 39. Publications Book chapters (freely downloadable from www.intechopen.com) 1. Deterministic sampling Hessling J P, Deterministic sampling for Quantification of Modeling Uncertainty of Signals in Digital Filters and Signal Processing, ISBN 978-953-51-0871-9 (INTECH, 2013) 2. Digital Filters and deterministic sampling Hessling J P, Integration of digital filters and measurements in Digital Filters, ISBN 978-953-307-190-9 (INTECH, 2011) 3. Dynamic Metrology Hessling J P, Metrology for non-stationary dynamic measurements in Advances in Measurement systems, ISBN 978-953-307-061-2 (INTECH, 2010) Journal articles, see author (Jan Peter Hessling) page on Google scholar KAPERNICUS
  • 41. Summary ● Deterministic sampling – Uncertainty Quantification/Ident. of [complex] models – Motivation, comparison to random sampling – Applications – Selection of methods and 'tricks' – Foundations ● Dynamic Metrology – Analysis of dynamic measurements – Application of deterministic sampling KAPERNICUS